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Abstract

Intestinal microbiota performed numerous important functions during digestion. The first filial

generation (F1) hybrids of Hainan black goats and Saanen goats had different traits, black

goats (BG) and white goats (WG), which also brought different production performance. We

explored the difference of gut microbiota between black goats and white goats that both

belonged to the first filial generation (F1) hybrids. In general, the alpha diversity of the black

goat group was significantly higher than the white goat group. The species richness had no

significant difference, while the species evenness of BG was higher than WG. Bacteroides,

Oscillospira, Alistipes, Ruminococcus, Clostridium and Oscillibacter, as the core gut microbial

genera, all had high abundance in BG and WG group. Only the Bacteroides and Bacteroida-

ceae 5-7N15 were the different genera between the BG and WG group, of which Bacteroides

overlapped with the core genera and enriched in the WG group. Besides, PICRUSt analysis

showed that there was a high abundance in the secondary metabolic pathways including

membrane transport, replication and repair, carbohydrate metabolism and amino acid metab-

olism. We found the intestinal microbial species of black goats and white goats were very sim-

ilar for living in the identical growing environment and feeding conditions, but there was still a

slight difference in the content. On the one hand, it was proved that the small effect of geno-

type and the great effect of diet affected the intestinal microbiota together. On the other hand,

it was also proved that these different traits of first filial generation (F1) hybrids may not

related to gut microbiota and only because of different genotype. Moreover, characterization

of the gut microbiota in BG and WG will be useful in goats gut microbiota research.

Introduction

Microorganisms are mainly distributed in the oral cavity, alimentary canal, skin epidermis and

intestines in animals [1]. There are hundreds of millions microbes in the gut and the total

number of intestinal microbial genes is about 100 times more than the total host organism

genes [2]. Therefore, the gut microbiota was also known as the second genome of the body [3].

The interactions between microbiota and host including nutrient absorption and immune

response, which maintain the stability and host’s health [4]. In some animal species, microbial

activity in the cecum may provide 25–35% of animal nutritional needs [5]. Carbohydrates are
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hydrolyzed and utilized by intestinal microbiota to produce intermediate products, such as

monosaccharides, oligosaccharides and organic acids. These intermediates continue to be fer-

mented to produce short-chain fatty acids, mainly including acetic acid, propionic acid and

butyric acid [6, 7], which are the main energy source of colon cells, and offer about 10% energy

in the food for the host. Besides, proteins are decomposed to produce peptides and amino

acids, which are further metabolized by intestinal microbiota to produce short-chain fatty

acids [8]. On the contrary, gut microbiota can also use nitrogen sources to synthesize amino

acids and proteins as the energy for their growth [9, 10]. For ruminants, different parts of the

intestine also have distinct digestive functions. The small intestine is the most vital organ to

digest and absorb food and nutrients, including water, inorganic salts, carbohydrate, protein,

and fat [11]. The colon and jejunum mainly absorb water and the ileum digests fiber [12].

Large intestine absorbs salt and residual water. The digestion and absorption of food by intesti-

nal microbiota in different individuals is not the same, and it even determines the absorption

of nutrients of the host. Turnbaugh et al. found that germ-free mice transplanted with intesti-

nal microbiota from obesity mice gained more weight and greater fat than from lean mice

[13]. Thus, the difference in the metabolic ability of intestinal microbiota can affect the absorp-

tion and utilization of food, which leads to the fat or thin of the host [14, 15].

There are at least 24 indigenous breeds of goats (Capra hirus) recorded in China [16]. Hai-

nan black goat, which is peculiar to Hainan province, is a local breed formed by long-term natural

selection under the distinct climatic conditions of high temperature and high humidity. It is well

known not only for its rough feeding tolerance, strong disease resistance and well adaptability to

the tropical maritime climate in Hainan province [17], but also for its delicious meat with no

smell of mutton, rich nutrition, and tender meat [18, 19]. Saneng goat is the representative of

dairy goat, and Saanen goats have been imported into Hainan province to improve the body size

of black goats in the local [20]. The first filial generation (F1) hybrids of Hainan black goats and

Saanen goats had different traits, black goats (BG) and white goats (WG), which also brought dif-

ferent production performance including the milk yield was significantly higher in WG, BG

gained weight more slowly in the same period. The BG and WG both belong to a first filial genera-

tion, while showing different appearance and performance. As we all know, the intestinal micro-

biota performed numerous activities important during digestion, even influenced phenotype. We

supposed these special traits were not only related to their own genetic genes but also related to

intestinal microbiota, so we explored the difference of gut microbiota between BG and WG.

With advances in high-throughput sequencing technology, metagenomic sequencing has

been used to analyze the diverse species composition of microbiota in different samples [21,

22]. Xu et al. revealed the composition and function of cecal microbiota in Dagu chicken using

high-throughput sequencing technology in 2016 [23]. The dynamic structure and distribution

of small-tail Han sheep microbiota across different intestinal segments also have been studied

by high-throughput sequencing technology [3]. As we all know, the gene, environment and

proportion of various nutrients in diet affect the stability and balance of intestinal microbiota.

In this study, the differences of the gut microbiota and metabolic pathways between the two

color types of the hybrids of Hainan black goats and Saanen goats grazing in Hainan province

were analyzed by comparing targeted V3-V4 regions using 16S rRNA gene sequencing with

the Illumina Miseq platform.

Materials and methods

The goats and fecal sampling

The first filial generation (F1) hybrids of Hainan black goats and Saanen goats and were

divided into black goats (BG) and white goats (WG), ten each. All the goats were aged from
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7–12 months with the body weights ranged from 45 to 67 kg. There was no significant differ-

ence in the composition of the feeds which mainly including hay, straw, corn, bran and bean

pulp. Faecal samples from 10 black goats (BG) and 10 white goats (WG) were collected and the

faecal samples was numbered (BG1-10 or WG1-10). Faecal samples were weighed, mixed with

protector (Takara, Japan) in sterile tubes at the ratio of 1:5 (w/w) until homogenous. The mix-

ture was placed in an ice box and transported to the laboratory, and then the metagenomic

DNA was extracted immediately. The sampling method and all subsequent methods described

in this section were conducted in accordance with the approved guidelines and were approved

by the Ethical Committee of the Hainan University (Haikou, China).

Metagenomic DNA extraction

The commercial metagenomic DNA extraction kit of QIAamp1DNA Stool Mini Kit (Qia-

gen, Hilden, Germany) coupled with bead-beating was used for DNA extraction from the fae-

cal samples to guarantee the integrity, purity, and concentration of the DNA [24]. The quality

of metagenomic DNA was evaluated using 0.8% agarose gel electrophoresis. Metagenomic

DNA of the gut microbiota was stored at -20˚C prior to further evaluation.

Amplification V3-V4 regions of 16S rRNA Gene and high-throughput

sequencing

The V3-V4 regions of the 16S rRNA genes were amplified using PCR assays [25, 26]. A set of

6-nucleotide barcodes was added to the universal forward primer 338F (50-ACTCCTACGG
GAGGCAGCA-30) and the reverse primer 806R (50-GGACTACHVGGGTWTCTAAT-30), which

was targeted at domain bacteria [24]. PCR amplification was achieved following the methods

of Wu et al. [27]. The PCR products were then purified and quantified using the Agilent DNA

1000 Kit and the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA). Purified

PCR products were pooled together in equimolar ratios with a final concentration of 100

nmol/L each and sequenced using an Illumina Miseq PE300 platform.

Bioinformatics and statistical analysis

Low-quality sequences were removed using the protocols of Zhang et al. [28]. After removal of

the primers and barcodes, the remaining high-quality sequences were analyzed using the

QIIME (v1.7.0) suite of software tools [29]. Approach of phylogenetic investigation of commu-

nities by reconstruction of unobserved states (PICRUSt, v1.0) was used to predict the 16S

rRNA gene based high-throughput sequencing data for functional features [30]. R program

(v3.3.0) was used for statistical analyses. Based on the rarefied OTU subset, the relative abun-

dance of taxa was compared using the Wilcoxon rank-sum test [31]. False discovery rate

(FDR) values were estimated using the Benjamini-Yekutieli method to control for multiple

testing [32]. PCoA analysis was done in R using the ‘ade4’ package. Major metabolic pathways

were visualized with a heatmap made in R using the ‘pheatmap’ package. The sequence data

reported in this paper have been deposited in the NCBI database (Metagenomic data:

PRJNA347413).

Results

The gut microbial diversity of 10 black goats (BG) and 10 white goats (WG) was evaluated

using 16S rRNA gene high-throughput sequencing. There was a total of 212,177 sequences.

From this total 96.48% (204,809 sequences) were high-quality 16S rRNA gene sequences, with

an average of 10,240 sequences for each sample (ranging from 8,512 to 11,775). The number of
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OTUs was analyzed with a confidence coefficient of 97% for each sample ranging from 714 to

1,739, with an average of 1,314 (Table 1). These results indicated that most of the microbial

diversity had already been captured.

Alpha diversity and beta diversity between BG and WG

We evaluated the alpha diversity between BG and WG using Simpson, Chao1 and Shannon

index (Fig 1). The Chao1 indices were measured to estimate community richness, which indi-

cated that the species richness had not significantly difference between BG and WG. Simpson

and Shannon indexes in the BG were significantly higher than those in WG, which showed the

species evenness of BG was higher than WG.

Beta diversity was calculated to compare the differences in gut microbiota amongst the fae-

cal samples from BG and WG. Principal co-ordinates analysis (PCoA) was performed based

on the weighted and unweighted UniFrac distances of 16S rRNA sequence profiles (Fig 2).

This identified an apparent clustering pattern for gut microbiota data from the BG (red) and

WG (blue), respectively (Fig 2). Data of BG was clustered in the right side of the coordinate

axis, while the data of WG was clustered in the left side of the coordinate axis. There was signif-

icant separation between samples from BG and WG (P<0.001), which showed that the struc-

ture of gut microbiota was different between BG and WG.

Core gut microbiota at the level of genus and species

The composition of core gut microbiota was identified at the level of genus and species (Fig 3).

The microbiota at the genus level that existed in each sample with an average relative content

of more than 0.5% was listed in the figure (Fig 3A), and those at the species level were list in

Fig 3B. All genera of Bacteroides, Oscillospira, Alistipes, Ruminococcus, Clostridium and Oscilli-
bacter had high abundance in BG and WG group, and Bacteroides was the dominant genus.

Table 1. Metagenomic sequencing coverage.

Sample Qualified OTU Number Barcode Observed species

BG1 11195 1608 CCTCTA 2834.97

BG2 11104 1226 TTCACG 2412.93

BG3 11674 1463 ATTCCT 1897.8

BG4 10413 1406 GTCGTA 2479.62

BG5 11045 1663 CCTCTA 2428.05

BG6 9018 1605 CGGATT 1764.45

BG7 10339 1502 GAGTTA 2226.91

BG8 11775 1565 GGTGAA 2194.36

BG9 9057 1283 GGTGCA 1929.41

BG10 10683 1332 GAGTGC 1486.61

WG1 9284 1590 TCTTCA 2509.76

WG2 10254 1739 AGCATC 1882.82

WG3 10333 1144 GTCGGA 1819.93

WG4 10012 1137 AATGTC 2039.96

WG5 11025 1202 TCTACA 1766.72

WG6 9390 1020 AATGGC 1174.14

WG7 8512 714 TTCGCA 1440.54

WG8 9353 845 TTCACA 2066.19

WG9 10698 1142 GATATC 1316.81

WG10 9645 1096 GTCAGA 2407.52

https://doi.org/10.1371/journal.pone.0228496.t001
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We also found the core gut microbiota had similarity between BG and WG at genus and spe-

cies level. But interestingly, the dominant species belong to genus Oscillibacter, not genus Bac-
teroides. Furthermore, the correlation between core gut microbiota at the species level was

analyzed using Spearman’s test (Fig 4). Core microbiota of BG was in Fig 4A and WG’s was in

Fig 4B. The darker the blue, the positive correlation was stronger. In the same way, the darker

Fig 1. The alpha diversity between black goat (BG) and white goat (WG). P value was calculated using one-tailed unpaired t test.

https://doi.org/10.1371/journal.pone.0228496.g001

Fig 2. PCoA score plot based on weighted (A) and unweighted (B) UniFrac metrics for all samples. Each point represents the composition of the intestinal

microbiota of one sample.

https://doi.org/10.1371/journal.pone.0228496.g002
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the red, the negative correlation was stronger. Bacteroides_coprocola had the strong negative

correlation with Coprobacillus_cateniformis in BG, while had strong positive correlation with

Eubacterium_siraeum.

Different genera between BG and WG

The genera with significant differences were listed using the two-tailed t test (Table 2). Only

genera of Bacteroides and 5-7N15 (belong to Bacteroidaceae family) were the different genera

between BG and WG. While at the species level, there was no significant difference between

Fig 3. Composition of core gut microbiota of BG and WG at the genus (A) and species (B) level.

https://doi.org/10.1371/journal.pone.0228496.g003

Fig 4. Correlation of core microbiota in BG (A) and WG (B).

https://doi.org/10.1371/journal.pone.0228496.g004
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BG and WG. We also found that only Bacteroides overlapped with the core gut microbiota and

enriched in the WG group.

The comparison of major metabolic pathways between samples

PICRUSt (v 1.0) was used to predict functional features based on the V3-V4 regions of 16S

rRNA gene sequencing data to determine the potential role of the gut microbiota present in

goats. In the primary metabolic pathways, there were no significant differences between BG

and WG (Fig 5) and the metabolism pathway had a high abundance above all. The metabolic

secondary pathways with relative content greater than 0.01% were listed (Fig 6). Membrane

transport, carbohydrate metabolism, replication and repair and amino acid metabolism were

the major metabolic secondary pathways and had high abundance in the BG and WG. The

two-tailed t test showed that the microbial pathways of metabolism, enzyme families and

poorly characterized had significant differences between the BG and WG groups, but due to

the low content, it is not obvious in the figure. Furthermore, the tertiary metabolic pathways

were predicted, in which pyruvate metabolism pathway had higher abundance in the BG

group, to the contrary, peptidases pathway had higher abundance in the WG (S1 Table).

Correlation between microbiota and microbial pathways

We calculated the correlation between the core microbiota and the core metabolic pathways

and drew the network (Fig 7), in which the blue circle represented the genera and the pink

Table 2. The different genera between BG and WG.

Genus taxonomy p value BG (%) WG (%)

Median Min-Max Average Median Min-Max Average

Bacteroides 0.0290 5.850 4.424–9.839 6.566 9.894 5.901–19.430 10.286

Bacteroidaceae 5-7N15 0.0428 0.044 0.000–0.113 0.045 0.107 0.000–0.276 0.119

https://doi.org/10.1371/journal.pone.0228496.t002

Fig 5. The primary metabolic pathways between BG and WG.

https://doi.org/10.1371/journal.pone.0228496.g005
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square represented the core metabolic pathways. If there was a correlation, the genera were

connected with the pathways. The thickness of the line indicated the size of the absolute value

of the correlation. Additionally, red represented positive correlation, and blue represented

negative correlation. We could find that there was a strong correlation between Alistipes and

amino acid metabolism pathway, indicating that Alistipes may play an important role in amino

acid metabolism. Bacteroidaceae 5-7N15 was positively correlated with amino acid metabolism

and membrane transport.

Discussion

It used to be believed that the gut was merely an organ to recycle water and some nutrients

and store undigested food residues as excrement. In the recent years, sequencing-based assess-

ment of microbial communities in animal faeces had uncovered a large quantity and types of

microbial species colonizing in the host gut. A growing body of research had indicated that the

microbial communities were associated with the digestion of dietary macronutrients, produc-

tion of nutrients and vitamins. Thus, the gastrointestinal microbiota can be considered a

highly active metabolic organ to complement the host metabolic activities, and the diet can

have a major influence on the gut microbial community.

In this research, we used next-generation sequencing of the V3-V4 regions of 16S rRNA

genes of metagenomic DNA to understand the full composition of the microbiota in the gut.

We compared the alpha and beta diversity between BG and WG and abundant microbiota and

Fig 6. The main secondary metabolic pathways between BG and WG.

https://doi.org/10.1371/journal.pone.0228496.g006
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major metabolic pathways also had been showed here. Though the goats had different traits,

the gut microbiota had high similarity. In general, the alpha diversity of the black goat group

was significantly higher than the white goat group. The richness had no significant difference,

while the species evenness of BG was higher than WG. Bacteroides, Oscillospira, Alistipes,
Ruminococcus, Clostridium and Oscillibacter, as the core gut microbial genus, all had high

abundance in BG and WG group. Only the Bacteroides and Bacteroidaceae 5-7N15 were the

different genera between the BG and WG group, of which Bacteroides overlapped with the

core genera and enriched in the WG group. Besides, there was a slight difference in the sec-

ondary metabolic pathways including metabolism, enzyme families and poorly characterized.

Goats as ruminant animals, numerous microbes habited in the rumen and gut, which were

associated with the digestion of dietary macronutrients (including crude protein, non-fibre

Fig 7. Correlation between genera and metabolic secondary pathways.

https://doi.org/10.1371/journal.pone.0228496.g007
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carbohydrates, non-digestible fibre, and lignin), production of nutrients and vitamins. Studies

of the gut microbiota of vegetarian humans found increased levels of Bacteroides and Prevo-
tella [33]. That revealed that Bacteroides had the ability to digest dietary fiber and could explain

why both BG and WG had the high abundance of genus Bacteroides. High levels of Firmicutes

have been reported from the faeces of humans consuming plant-based diets (cereal, vegetables

and fruit) where it is thought that they could contribute to the metabolism of the plant-based

diet [34]. No matter at the genus level or at the species level, Oscillibacter and Oscillibacter_va-
lericigenes both had high abundance. And Oscillibacter, Ruminococcus, Eubacterium, Clostrid-
ium, Dorea and Oscillospira all belonged to Firmicutes. Furthermore, an important member of

the Ruminococcus can metabolize dietary plant polysaccharides including cellulose, xylan and

amylase [33].

Conclusions

This study proved the huge impact of diet on the intestinal tract. We found the intestinal

microbial species of black goats and white goats were very similar in the identical environment

and feeding conditions, but there was still a slight difference in the content. On the one hand,

it proved that the small effect of genotype and the great effect of diet affected the intestinal

microbiota together. On the other hand, it also confirmed that these different traits of first filial

generation (F1) hybrids may not be related to gut microbiota and only because of different

genotype. Moreover, characterization of the gut microbiota in BG and WG will be useful in

another gut microbiota-based goat research.
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