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ABSTRACT This article describes a series of animal
studies for the development of an avian metapneumovirus
(aMPV) live vaccine. Although aMPV causes continual
economic loss in the poultry industry, there are no live
aMPYV vaccines available in Korea. Furthermore, infor-
mation is limited with respect to standard field practices
for vaccinations at an early age. Here, the development of
an aMPV live vaccine was attempted, and its efficacy was
investigated with respect to the vaccination route and age
to develop a method for controlling aMPV. Before vaccine
development, an animal challenge model was established
using the aMPYV field isolate to identify the most effective
time and site for collecting samples for evaluation. After
attenuation of the virulent aMPYV in Vero cells, a safety

and efficacy test was conducted for the vaccine candidate.
As a novel aMPV live vaccine candidate, aMPV K655/
07HP displayed sufficient safety in day-old chicks with 10
vaccine doses. The efficacy test using 1-week-old chicks
showed weaker humoral immune response than that in
4-week-old chicks. However, the candidate vaccine pro-
vided complete protection against infection caused by the
challenge virus for all ages of vaccinated chicks. In
conclusion, an effective aMPV challenge model was
established for studying aMPV in chickens, which offered
important, insightful information. The safety and efficacy
study suggested that the new aMPV candidate vaccine
could be used to effectively reduce the economic losses
incurred because of aMPV infection.
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INTRODUCTION

Avian metapneumovirus (aMPV) is a member of the
subfamily Pneumovirinaein the family, Paramyzoviridae.
This virus, previously known as avian pneumovirus, is the
causative agent of rhinotracheitis in turkeys. In chickens,
the virus causes the swollen head syndrome (SHS) and
leads to a drop in egg production along with discolored
eggs. The clinical signs can be more severe because of com-
plications caused by infections with other respiratory
pathogens (Ganapathy and Jones, 2007). The economic
losses by aMPYV in broiler chickens are more considerable
than those of layers, because aMPV causes delays in
feeding time by severe nasal discharge, followed by
decreased uniformity and productivity. Among the 4 sub-
types (A, B, C, and D) of aMPV, subtype A and B are the
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major subtype of virus in the chicken industry causing
those clinical signs (Patnayak et al., 2005; Clubbe and
Naylor, 2011). Vaccination against aMPV is the most
effective way to control the disease. Several live attenu-
ated and inactivated vaccines have been developed to pre-
vent aMPV infection, which are used as commercial
products in many countries (Ganapathy and Jones, 2007).

Since the first report of SHS in Korea in 1992 (Kim
et al., 1992), the presence of aMPV has been demon-
strated by the specific antibodies in infected birds
(Lee 1995; Choi et al., 2010) and isolation of the virus
(Lee et al., 2007; Kwon et al., 2010). Studies have proven
that aMPV causes significant economic losses in the
Korean poultry industry (Paudel et al., 2016). Several
inactivated aMPV vaccines have been available in Korea
since 2011 for the prevention of aMPYV infection. Howev-
er, live aMPV vaccines have not yet been registered.
Although many experts agree that the combined use of
live and killed aMPV vaccines is much more effective
than using the killed vaccine alone (Cook et al., 1996),
there are some concerns regarding the use of a foreign
strain of live aMPV vaccines. Introducing foreign live
vaccine strain derived from other countries can result
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in new types of virulent viruses if the viruses revert to a
virulent state (Lupini et al., 2011; Franzo et al., 2015). In
addition, if there are antigenic differences between the
endemic field virus and foreign vaccine virus, the foreign
vaccine may not be effective in controlling the domestic
field stain (Catelli et al., 2010; Cecchinato et al., 2010).
For these reasons, developing live vaccines using
endemic strains is preferred.

The vaccination of 1-week-old chicks via the drinking
water route is a common and preferred method for mass
vaccination of live vaccines against respiratory diseases
in Korea (Kim et al., 2016). Because aMPV is widely
spread in Korea (Lee et al., 2010), it is essential to secure
early protection against the disease. However, there are
concerns that the immune response induced by vaccina-
tion on early age of chickens with immature immune sys-
tem is not adequate compared with the response on
mature-aged chickens (Smialek et al., 2015). However,
there is limited information comparing the efficacies of
aMPV vaccines with respect to the age of the vaccinated
chickens, even though this type of information is vital
for establishing an optimal program for disease preven-
tion. In addition, young birds with an immature immune
system can show stronger vaccine reactions (Mazija
et al., 2010). Therefore, identifying the minimum age for
safe vaccination is essential for establishing a recommen-
ded vaccination age.

This study aimed to develop a live aMPV vaccine for
the practical control of aMPV. For this purpose, an
aMPV challenge model was established using Korean
field isolates. After confirmation of the adequate safety
of attenuated viruses in day-old chicks, the protective ef-
ficacy of the attenuated live vaccine candidate using
different vaccination routes and the age of chickens
was compared using the challenge model.

MATERIALS AND METHODS

Chickens

Specific pathogen-free (SPF) White Leghorn chickens
(Namdeog Sanitek, Korea) were randomly allocated into
groups for each study and placed in separate isolators
(3 Shine, Daejeon, Korea). Food and water were pro-
vided ad libitum in a biosafety level 2 laboratory.

Virus

The aMPV K655/07 strain (Ck/A/Kr/655/07), which
was used for vaccine development, was isolated from a
broiler breeder flock with SHS. For isolation of the virus,
oropharyngeal swabs and nasal turbinate from the flock
were re-suspended in minimum essential medium with
gentamicin (Kukjae Pharmoco, Gyeonggi-do, Korea). Af-
ter centrifugation at 1,000 X ¢ for 10 min, supernatant
was passaged 5 times in Vero cell. Avian metapneumovi-
rus was identified by an immunofluorescence assay with
the monoclonal antibody against aMPV. The aMPV sub-
type A was confirmed by reverse transcriptase polymerase
chain reaction, followed by nucleotide sequencing analysis

of the G glycoprotein gene of aMPV using a previously
described method (Kwon et al., 2010). This virulent field
strain K655/07 (K655/07parent) was later used as the
challenge virus.

Animal Study 1: Pathogenicity Test of aMPV
K655/07parent

Before developing an aMPV vaccine candidate from the
K655/07parent virus, the pathogenicity of the K655/07
parent was evaluated for the following challenge studies.
First, 4-wk-old SPF chickens (n = 135) were divided
into 2 groups. The first group (n = 110) was ocularly
(50 uL) and nasally (100 uL) inoculated with 10°° 50% tis-
sue culture infectious doses (T'CIDsyg) of K655/07parent
per chicken. This method was used to ensure that accurate
virus doses were delivered to each chicken. The 25 chickens
in the second group were not inoculated with aMPV.
Twenty chickens from the first group and 5 chickens
from the second group were euthanized daily between 2
and 6 D postinoculation (DPI), and the nasal turbinate
and trachea were collected from each chicken. The viral
amount of nasal turbinate, trachea, oropharyngeal swabs,
and nasal discharge from 10 birds was each measured daily
by quantitative real-time reverse transcriptase polymer-
ase chain reaction (QRRT-PCR). Other remaining nasal
turbinate and trachea from 10 birds of each group were
fixed with formalin and processed for histopathological ex-
amination. The histopathological lesions were scored as
follows: 0 = normal, 1 = extensively focal lesions,
2 = multifocal lesions, and 3 = diffuse lesions. A separate
set of oropharyngeal swabs and nasal discharge were taken
daily from the remaining 10 chickens of the first group dur-
ing the same period.

Animal Study 2: Safety Test of Attenuated
aMPV K655/07THP

For attenuation of the K655/07 strain, the virus was
passaged in Vero cells. Attenuation was confirmed by
comparing the histopathological scores between the
parent (K655/07parent) and passaged virus (K655/
07HP; HP, high passage). The safety of the vaccine candi-
date was tested in day-old chicks. For the test, 61-day-old
SPF chicks were randomly allocated into 3 groups. In 2
groups, the chicks were inoculated with 10*° TCIDg, of
K655 /07parent or K655/07THP. The control group was
sham-inoculated with phosphate-buffered saline (PBS).
Each bird received the virus ocularly (50 pL) and nasally
(100 pL). At 5 DPL, all birds were euthanized, and turbi-
nate were collected for histopathological studies. The sam-
ples were processed for histopathological examinations
using the same methods as those specified for study 1.

Animal Study 3: Serological Responses to
Different Doses of aMPV K655/07HP

Serological responses were evaluated with respect to
the viral dose to determine the minimum dose of the
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Table 1. Viral amount of aMPV inoculated in 4-week-old SPF chicks detected by qRRT-PCR.

Mean CT' value = SE
Number

Tissue of samples 2 DPI” 3 DPI 4 DPI 5 DPI 6 DPI

Nasal discharge 10 23.7 * 1.5P 21.0 = 0.74 21.7 = 0.44 25.5 + 0.5%8 26.8 = 1.14
Turbinate tissue 10 27.0 * 1.34BC 22.5 = 0.5 20.0 + 0.4* 231+ 0.5 25.3 + 1.24
Oropharyngeal swab 10 28.0 + 1.15¢ 26.2 * 0.5° 21.9 + 0.3* 27.3 = 1.28 28.2 = 1.04
Trachea tissue 10 31.8 = 1.0° 27.3 = 1.0° 28.2 + 1.1° 23.7 = 0.8* 32.0 = 1.0°

Different letters represent a significant difference (P < 0.05) between different samples within the same DPI.
Abbreviations: aMPV, avian metapneumovirus; SPF, specific pathogen-free; qRRT-PCR, quantitative real-time reverse

transcriptase polymerase chain reaction.
!Cycle threshold.
Day postinoculation.

vaccine. Seventy-six 4-week-old SPF chickens were
assigned to 7 groups of 10 to 13 chickens each. Next, 5
groups were vaccinated ocularly or orally with K655/
07HP (10*° TCIDj;, 10*° TCIDs,, and 10*° TCIDs),
whereas the remaining groups remained nonimmunized
and were later sham-inoculated with PBS. For 4 wk after
vaccination, the chickens were examined for clinical
symptoms, and the severity of these symptoms was
scored as described by Jones et al. (Jones et al., 1992).
Briefly, a score of 0 = no sign, 1 = clear nasal exudate,
2 = turbid nasal exudate, and 3 = frothy eyes or swollen
infraorbital sinuses in conjunction with nasal exudates.
Blood samples were obtained 4 wk postvaccination
(WPYV), and antibodies against aMPV were measured
via the serum neutralization (SN) test (Paudel et al.,
2016).

Animal Study 4: the Protective Efficacy of
aMPV K655/07HP

To evaluate the efficacy of aMPV K655/07HP,
Twenty-five 4-week-old SPF chickens were randomly
allocated into 3 groups of 7 to 9 birds each. Two groups
of chickens were immunized with 10*® TCIDs, of K655/
07HP orally or intraocularly. The control (unvaccinated)
group received PBS. At 4 WPV, blood samples were ob-
tained from the birds, and aMPV specific antibody levels
were measured through SN test. On the same day, all
chickens were challenged with 10°° TCIDs, of K655/
07parent. Each chicken was inoculated with the challenge
virus ocularly (50 pL) and nasally (100 pL). The chickens
were euthanized 5 D postchallenge. Sections of the turbi-
nate and trachea from the chickens were removed for the
detection of aMPV RNA by qRRT-PCR, as described by
Kwon et al. (2010).

The same study was conducted with different group-
ings consisting of 2 groups of ten 1-week-old SPF
chickens to determine the efficacy of the vaccines.
Chickens in the vaccine group were vaccinated with
10%% TCIDs, of K655/07HP orally. The control group
was not vaccinated. The experimental schedule and eval-
uation methods were the same as that described above.

Ethics Statement

All animal procedures carried out in this study
(permit number: KU19110) were reviewed, approved,

and supervised by the Institutional Animal Care and
Use Committee of Konkuk University.

RESULTS

Animal Study 1: Pathogenicity Test of aMPV
K655/07parent

The results of aMPV-specific qRRT-PCR on turbinate,
trachea tissue, oropharyngeal swabs, and nasal discharge
are shown in Table 1. During the study, aMPV was
detected in all collected samples. Generally, turbinate tis-
sue and nasal discharge showed higher viral amounts
than the trachea tissue and oropharyngeal swabs. In turbi-
nate tissues, the cycle threshold values were lowest at 4DPI
and increased from then on. Cycle threshold values of nasal
discharge showed similar patterns but were lowest at 3DPI.

When histopathological scores were compared, score
at 5 DPI in the K655/07parent inoculated group was
significantly higher (P = 0.003) than that of the control
group (Figure 1). Tissue samples at 3 DPI were excluded
from the result because they were not appropriately pro-
cessed for histopathological scoring. No substantial score

*%

0 T T T
2 4 5 6

Mean histopathological score of tubinate
b

Days post inocuation

-+ K655/07parent = Control

Figure 1. Histopathological scores after inoculation with K655/
07parent in 4-week-old SPF chicks. Abbreviations: SPF, specific path-
ogen-free. **P < 0.01 by two way ANOVA test compared with control
group.
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Figure 2. Histopathological lesion scores of turbinate in the safety
test of K655/07THP compared with its parental virus in day-old SPF
chicks. Abbreviations: SPF, specific pathogen-free. *P < 0.05 by one
way ANOVA test compared with control group. ***P < 0.001 by one
way ANOVA test compared with control group.

was obtained for the tracheal sample up on histological
analysis.

Animal Study 2: Safety Test of Attenuated
aMPV K655/07HP

The K655/07 parental virus was pathogenic to day-
old chicks and induced significantly higher (P < 0.001)
inflammatory responses than that in the control group
with K655/07HP (Figure 2). In contrast, there was no
significant difference between the aMPV K655/07THP
inoculated group and the negative control group. This
showed that aMPV K655/07 was adequately attenuated
by passaging in Vero cells.

Animal Study 3: Serological Responses by
Different Doses of aMPV K655/07HP

Clinical signs and serological responses were moni-
tored after the inoculation of K655/07HP with different
doses to evaluate safety and immunogenicity. Over 4 wk
of observation, no aMPV infection—associated clinical
signs were observed despite administration of viral
dose of K655/07HP (data not shown). All inoculated
chickens exhibited increasing levels of SN in the SN
test at 4 WPV (Table 2). In these groups, regardless of
the administrated viral amount and routes, the values

rose and were significantly higher than those in control
group, which showed no serological response. Among
the inoculated groups, there were no significant differ-
ences between the different doses and vaccination routes
of K655/07HP. Based on the results of this study, the
minimum dose of the candidate vaccine was designated
as 10> TCIDs, through both ocular and oral routes.

Animal Study 4: the Protective Efficacy of
aMPV K655/07HP

The aMPV live vaccine candidate K655/07HP
was administered orally or intraocularly to 1- or
4-week-old SPF chickens to evaluate its efficacy. In
blood samples collected from unvaccinated chickens,
no antibodies against aMPV  were detected
(Table 3). Chickens vaccinated at 4 wk showed signif-
icantly higher (P < 0.015) values in the SN test than
the control group. Chickens vaccinated when they
were 1-week-old did not show any significant difference
with respect to the control group in the SN test.
Regardless of serological results, all turbinate tissues
and trachea samples from the vaccinated groups were
negative for aMPV after the parent strain challenge,
as determined by reverse transcriptase polymerase
chain reaction. For the 2 control groups, the number
of positive samples was 7/7 or 10/10 for turbinate
and 5/7 or 5/10 for trachea tissues.

DISCUSSION

Establishing an appropriate animal challenge model is
essential when developing a vaccine and evaluating its
safety and efficacy. Although there have been several
studies about aMPV live vaccine on chicken, many of
them evaluated the safety and efficacy based on the clin-
ical sign alone (Ganapathy et al., 2006; Cook et al., 2010;
Ganapathy et al., 2010; Awad et al., 2015). Although
some studies conducted isolation and detection of the vi-
rus for evaluation of the aMPV vaccine, the studies did
not show a statistical difference between groups
(Ganapathy and Jones, 2007). Experimentally, aMPV
infected chickens often show only mild respiratory signs
unlike those seen in the field (Kwon et al., 2010). To
prove the efficacy and safety of the attenuated live vac-
cine, there should be an adequate evaluation way
providing enough differences for vaccinated group from

Table 2. Serological responses to different doses of aMPV K655/07HP in 4-week-old SPF chickens.

Mean value of serum

Administrated viral dose Administration route Number of birds neutralization test = SE
10%° TCID5' Ocular 10 808 * 140

10" TCIDs; Ocular 10 960 = 107

10*% TCID Ocular 10 873 + 245

10%° TCIDs, Oral 13 763 + 123

10%° TCIDs, Oral 13 800 + 117

PBS Ocular 10 0x0

PBS Oral 10 00

Abbreviations: aMPV, avian metapneumovirus; PBS, phosphate-buffered saline; SPF, specific pathogen-free.

1 . . .
50% tissue culture infectious doses.
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Table 3. Results of the protective tests of the aMPV K655/07HP vaccine through different
administration routes in 1- or 4-week-old SPF chickens.

Mean value of serum neutralization

Positive sample number/tested
sample number 5 DPC

Group test at AWPV = SE Turbinate tissue Trachea
4-week-old control 0=*0" T/ 5/7
4-week-old ocular vaccination 653 = 1714 0/9° 0/9°
4-week-old oral vaccination 573 + 1474 0/9° 0/9°
1-week-old control 0+ 0" 10/10 5/10
1-week-old oral vaccination 272 + 5248 0/10° 0/10'

Different letters represent a significant difference (P < 0.05) between different groups.
Abbreviations: aMPV, avian metapneumovirus; DPC, days postchallenge; SPF, specific pathogen-free; WPV,

wk postvaccination.

}P < 0.05 by 2-tailed #test compared with the control group.
2P < 0.01 by 2-tailed #test compared with the control group.
3P < 0.001 by 2-tailed ttest compared with the control group.

challenged control group. The clinical sign is not only a
subjective method but also an inappropriate indicator
to secure enough difference for statistical analysis.
Therefore, we compared histopathological scores and
viral quantity by various sampling sites and days after
challenge as the first animal study. Based on detailed
evaluation methods, we designated the optimum time
and the site of sampling for following safety and efficacy
study.

Safety is a paramount concern with regards to live vac-
cines. Based on safety results, the applicable age for vacci-
nation was established, and possible vaccine reactions
were predicted. In the safety test on day-old chicks,
aMPV K655/07THP—a virus passaged in Vero cells—
showed significantly decreased pathogenicity compared
with its parent virus, aMPV K655 /07parent. In addition,
there was no significant difference with respect to the un-
vaccinated control. The tested viral amount, 10*°
TCID5q aMPV K655/07THP, corresponds to 10 vaccine
doses, which was later determined to be 10*® TCIDs,
per dose. Because the vaccine proved to be safe for day-
old chicks even in harsh conditions with high overdoses,
this candidate vaccine can be used in chickens of any
age without concerns regarding vaccine reactions.

The presence of antibodies in the blood is a conve-
nient indicator of vaccine-take (Awad et al., 2015).
The minimum effective dose was designated by SN
test. Although many studies have used commercial
enzyme-linked immunosorbent assay (ELISA), the
ELISA values do not reflect the efficacy of live
aMPV vaccines (Chary et al., 2005; Ganapathy and
Jones, 2007; Ganapathy et al., 2010; Kwon et al.,
2010; Awad et al, 2015). Antibody mechanisms,
including neutralization of the epitope, show that
the SN test is more appropriate to estimate the pro-
tective efficacy of the aMPV live vaccine. There was
no correspondence between the ELISA value and the
decrease in viral amount after the challenge (data
not shown). In this study, aMPV-specific antibodies
were measured through SN tests, and seroconversion
was confirmed after vaccination using different doses
and routes.

Animal study 4 was performed to assess the efficacy of
aMPV live vaccine candidate against its parent strain
with respect to the route and age of the vaccinated
chickens. In this article, to our knowledge, for the first
time, the difference in vaccine efficacy based on vaccina-
tion route and age was investigated. Although there was
a difference in the SN test results for chickens vaccinated
at 1 wk and 4 wk of age, they were completely protected
against the challenge. Smialek et al. also reported similar
result (Smialek et al., 2015). The authors explained that
differences between birds vaccinated at different age
might be influenced by the maturation of the immune
and /or respiratory system. For the efficacy test, the pro-
liferation of the challenged virus was assessed through
the detection of viral RNA. The perfect protection
observed in this study proves the excellent efficacy of
the current candidate vaccine. This finding further sup-
ports previous reports that contend that humoral anti-
bodies against aMPV play little or no part in the
protection of the respiratory tract because of the limited
accessibility to the epithelium of the turbinate and tra-
chea (Naylor et al., 1997; Ganapathy et al., 2005;
Ganapathy et al., 2007; Ganapathy et al., 2010; Awad
et al., 2015). Local and cell-mediated immunity play a
significant role in protection against aMPV
(Rubbenstroth and Rautenschlein, 2009; Awad et al.,
2015; Smialek et al., 2015).

In conclusion, an effective aMPV challenge model was
established for studying aMPV in chickens, and several
insights have been provided. The safety and efficacy
studies indicate that the new aMPV candidate vaccine
can effectively assist in reducing economic losses due to
aMPYV infection.
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