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Acute Myeloid Leukemia

Higher HOPX expression is associated with
distinct clinical and biological features and
predicts poor prognosis in de novo acute
myeloid leukemia
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ABSTRACT

omeodomain-only protein homeobox (HOPX) is the smallest

homeodomain protein. It was regarded as a stem cell marker in

several non-hematopoietic systems. While the prototypic home-
obox genes such as the HOX family have been well characterized in
acute myeloid leukemia (AML), the clinical and biological implications of
HOPX in the disease remain unknown. Thus we analyzed HOPX and
global gene expression patterns in 347 newly diagnosed de novo AML
patients in our institute. We found that higher HOPX expression was
closely associated with older age, higher platelet counts, lower white
blood cell counts, lower lactate dehydrogenase levels, and mutations in
RUNX1, IDH2, ASXL1, and DNMT3A, but negatively associated with
acute promyelocytic leukemia, favorable karyotypes, CEBPA double
mutations and NPV 1 mutation. Patients with higher HOPX expression
had a lower complete remission rate and shorter survival. The finding
was validated in two independent cohorts. Multivariate analysis revealed
that higher HOPX expression was an independent unfavorable prognos-
tic factor irrespective of other known prognostic parameters and gene
signatures derived from multiple cohorts. Gene set enrichment analysis
showed higher HOPX expression was associated with both hematopoi-
etic and leukemia stem cell signatures. While HOPX and HOX family
genes showed concordant expression patterns in normal hematopoietic
stem/progenitor cells, their expression patterns and associated clinical
and biological features were distinctive in AML settings, demonstrating
HOPX to be a unique homeobox gene. Therefore, HOPX is a distinctive
homeobox gene with characteristic clinical and biological implications
and its expression is a powerful predictor of prognosis in AML patients.

Introduction

HOPX was first identified in the expression sequence tag database for transcripts
encoding proteins related to the development of the heart in mice and zebrafish."?
Human HOPX, located in chromosome 4q12, has five isoforms. The predominant
one encodes a short protein of 73 amino acids with a molecular weight of 12 kd.
This is by far the smallest homeodomain protein, with conservation of the home-
odomain of 60 amino acids. But the difference between this and other home-
odomain proteins is that the HOPX protein does not bind DNA directly. Rather, it
exerts its transcriptional inhibition through sequestration of serum responsive factor

- 1044 haematologica | 2017; 102(6)



1 1 1
09 | NTUH 0.9 TCGA & NTUH
0.8 Median 23.7 vs. 116.8 .8 Non-APL
08 Median 11.2 vs. 24.4 0:8
0.7 0.7 Median 23.7 vs. 108.1
0.6 0.6 :
0.5 0.5
0.4 0.4
03 0.3
0.2 N =103 0.2
0.1 P<0.001 0.1 P<0.001
0 t 0 4 4 L
0 50 100 150 200 0 50 100 0 50 100 150 200
B 0S (months) D 0S (months) F 0S (months)
1 1 1
0.9 NTUH 09 GSE12417 09 NTUH
0.8 Median 5.9 vs. NR 0.8 - Median 7.8 vs. 33.3 0.8 Normal karyotype
0.7 0.7 0.7 Median 39.1 vs. 116.8
0.6 0.6 N =81 0.6
0.5 0.5 05 +
0.4 0.4 0.4
03 0.3 03 +
0.2 0.2 N=81 02 +
0.1 P<0.001 0.1 P<0.001 0.1 P=0.004
0 1 0 0 ‘
0 50 100 150 200 0 10 20 30 40 0 50 100 150 200
DFS (months) 0OS (months) 0S (months)

Figure 1. HOPX expression levels and acute myleoid leukemia (AML) patients’ survival. (A and B) In NTUH cohort, the overall survival (OS) and disease-free survival
(DFS) of AML patients with higher HOPX expression are significantly shorter than those with lower expression: median 0S 23.7 versus 116.8 months, P<0.001; medi-
an DFS 5.9 months versus not reached (NR); P<0.001. (C and D) The observation is validated by TCGA (median OS 11.2 months vs. 24.4 months; P<0.001) and
GSE12417 (median OS 7.8 months vs. 33.3 months; P<0.001) cohorts. (E and F) When we restrict the analysis in non-acute promyelocytic leukemia (APL) patients
or patients with a normal karyotype in NTUH cohort, HOPX levels still significantly correlate with OS: median 0S 23.7 versus 108.1 months (P=0.0003) and median
0S 39.1 versus 116.8 months (P=0.004), respectively. Green line: higher HOPX expression group; blue line: lower HOPX expression group.

by physical interaction and by recruitment of histone
deacetylase.?

Recently, the HOPX gene has been regarded as a stem
cell marker in intestine, hair follicles, and pulmonary
alveolar cells.*” Some studies suggested a role for HOPX
in tumorigenesis with clinical implications. HOPX has
been suggested to be a tumor suppressor gene in lung,
colon, esophagus, pancreas, uterine and stomach
cancers.*™ Most of the studies showed silencing of
HOPX through hypermethylation of the promoter as a
mechanism of its downregulation in cancer cells.”"”
However, the mechanisms for the tumor suppression
remain largely unknown.

The HOX family and HOPX belong to homeobox
genes. However, while HOX family genes have been well
studied in acute myeloid leukemia (AML)," the clinical
and biological significance of HOPX in human
hematopoiesis remains undefined. We are interested in
exploring the roles of HOPX in AML patients, as well as
comparing HOX and HOPX in the pathophysiology of
malignant hematopoiesis. In this study, we compared
clinical and biological characteristics between de novo
AML patients with higher and lower HOPX expression
and found that higher HOPX expression was strictly cor-
related with unfavorable prognosis of AML patients in
ours and the other two independent cohorts. Multivariate
analysis revealed higher HOPX expression as an inde-
pendent unfavorable prognostic factor, and independent
of several published gene signatures derived from multiple
cohorts. Using bioinformatics approaches, we found that
HOPX expression was closely associated with known
hematopoietic stem cell (HSC) signatures. While HOPX

and HOX family genes were highly expressed in normal
hematopoietic stem/progenitor cells (HSPC), the expres-
sion patterns and associated clinical and biological features
between these two classes of homeobox genes differed
dramatically in AML settings. Taken together, our study
suggests that HOPX has a significant impact on various
clinical and biological aspects of AML, and that there is a
distinction between HOX family genes and HOPX in the
AML setting.

Methods

Patients

A total of 347 adult patients diagnosed with de novo AML
according to the 2008 World Health Organization classification in
the National Taiwan University Hospital (NTUH) who had cryop-
reserved bone marrow (BM) cells and complete clinical and labo-
ratory data available for analysis were retrospectively enrolled.
Among them, 227 patients received standard induction
chemotherapy. Non-M3 (acute promyelocytic leukemia, APL)
patients received idarubicin 12 mg/m’ per day for 2-3 days and
cytarabine 100 mg/m’ per day for 5-7 days, as described previous-
ly.” APL patients received concurrent all-trans retinoic acid and
idarubicin. The remaining 120 patients received palliative therapy
with supportive care or low-dose chemotherapy due to underlying
comorbidity or in accordance with patient decision. We also
prospectively enrolled another cohort of 56 newly diagnosed adult
de novo AML patients with adequate BM samples for more
detailed studies of the HOPX gene, including expression pattern of
HOPX isoforms in AML. The study was approved by the
Research Ethics Committee of the NTUH.

HOPX in AML e
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Table 1. Comparison of clinical manifestations between acute myeloid leukemia patients with higher and lower HOPX expression.

Total (n=347) Higher HOPX expression (n=174) Lower HOPX expression (n=173)

Sex’ 0.914

Male 196 99 97

Female 151 75 76

Age (years)* 60 (15-91) 53 (18-88) 0.023

Lab data*
WBC (x10%L) 145 (0.6-341.4) 25.1 (0.4-423.0) 0.011
Hb (g/dL) 82 (3.3-13.0) 8.0 (3.7-16.2) 0911
Platelet (x10%L) 55.5 (6-655) 41.0 (2-412) 0.008
Blast (x10%L) 6.5 (0.0-283.2) 10.8 (0.0-369.1) 0.182
LDH (U/L) 794 (202-7734) 1042 (242-13130) <0.001

FAB* <0.001
M0 6 5(83.3) 1(16.7) 0.099
Ml 67 42 (62.7) 25 (373) 0.021
M2 109 48 (44.0) 61 (56.0) 0.104
M3 28 4(14.3) 24 (85.7) <0.001
M4 103 58 (56.3) 45 (43.7) 0.126
M5 20 4 (20.0) 16 (80.0) 0.006
M6 8 7(87.5) 1 (12.5) 0.032
Undetermined 6 6 0

Induction response** 227 103 124 <0.001

CR 166 (73.1) 60 (58.3) 106 (85.5) <0.001

PR+refractory 45 (19.8) 35 (34.0) 10 (8.1) <0.001

Induction death 16 (7.0) 8 (7.8) 8 (6.5) 0.702

'Number of patients.'Median (range). “Number of patients (% with higher or lower HOPX expression in the AML subtype). **Number of patients (% in the total patients or sub-
group of patients with higher or lower HOPX expression). LDH: lactate dehydrogenase; CR: complete remission; PR: partial remission.

Cytogenetic and mutation analysis
Chromosomal abnormalities'® and mutation analyses were per-
formed as previously described.”’

Gene expression microarray datasets and data analysis

We profiled global gene expression of BM mononuclear cells
from the 347 patients (NTUH dataset) using Illumina HumanHT-
12 v.4 Expression BeadChip (Illumina, San Diego, CA, USA)
(GSE68469 and GSE71014).'* Two large microarray datasets of
AML with overall survival (OS) data, including The Cancer
Genome Atlas (TCGA) dataset (n=186)** and GSE12417 [all with
cytogenetically normal (CN) AML; n=162],% were utilized to vali-
date the prognostic significance of HOPX. We used TCGA-nor-
malized level-2 intensity and GSE12417 GPL96 data (profiled with
Affymetrix Human Genome UI133A Array), normalized as
described by Metzeler et al”® Gene expression profiles GSE12662
(n=91),%° GSE24006 (n=54),” and GSE24759 (n=211)*® were also
included to investigate the gene expression patterns in normal
hematopoiesis.

Analysis of gene expression in next-generation
sequencing datasets

To investigate the absolute levels of gene expression in AML,
we analyzed expression data of 179 AML samples profiled with
Illumina Genome Analyzer RNA Sequencing in TCGA dataset.”
Reads per kilobase per million mapped reads (RPKM) levels of
gene expression were extracted from TCGA database.”

Gene signature analysis

The association of HOPX gene with stem cell characteristics
was analyzed by the Gene Set Enrichment Analysis (GSEA; a Java
application  that can be down-loaded at hup//

www. broadinstitute.org/gsea/index.jsp)” and as detailed in the Online
Supplementary Appendix. In order to examine whether genes are
involved in HSC quiescence, we employed another gene set
enrichment scoring method that averages z-values of all involved
genes.”

Methylation microarray datasets and analysis

DNA  methylation data from Illumina Infinium
HumanMethylation450 BeadChips of AML (n=194) were down-
loaded from the TCGA database.”® We transformed methylation
beta-values to normally distributed M-values for further analysis.*

Expression of HOPX isoforms

Human HOPX has five isoforms including HOPXa
(NM_032495), HOPXb (three variants including NM_139212,
NM_139211 and NM_001145459; abbreviated hereafter as b1, b2,
and b3, respectively), and HOPXc (NM_001145460) (UCSC
genomic database; wwiv.genome.ucsc.edu) (Online Supplementary
Figure S1). Analysis of HOPX isoform expression was performed
by quantitative real time-polymerase chain reaction as detailed in
the Ounline Supplementary Appendix, Online Supplementary Table S1
and Online Supplementary Figure S1.

Bisulfite treatment and methylation analysis of HOPX

We interrogated the methylation status of the CpG islands of
HOPX-b2 isoform NM_139211 from -15 to +109 bp region around
the transcription start site (TSS)."” Methods are described in the
Online Supplementary Appendix.

Statistical analysis
Statistical analysis was carried out as described previously;”**a
brief description is available in the Online Supplementary Appendix.
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Table 2. Association of HOPX expression levels with other genetic alterations.
N. patients with alteration (%)

Whole cohort Higher HOPX expression Lower HOPX expression
(n=347) (n=174) (n=173)
FLT3NTD 84/347 (24.2) 38/174 (21.8) 46/173 (26.6) 0.302
FLT3/TKD 32/347 (9.2) 13/174 (7.5) 19/173 (11.0) 0.258
N-RAS 59/347 (17.0) 21/174 (15.5) 32/173 (18.5) 0.460
K-RAS 15/347 (4.3) 5174 (2.9) 10/173 (5.8) 0.183
PTPNII 22/347 (6.3) 11/174 (6.3) 11/173 (6.4) 0.989
KIT 15/347 (4.3) 4174 (2.3) 11/173 (6.4) 0.063
DNMT3A 66/347 (19.0) 41/174 (23.6) 25/173 (14.5) 0.031
WIT 26/347 (1.5) 12/174 (6.9) 14/173 (8.1) 0.672
NPMI 99/347 (28.5) 41/174 (23.6) 58/173 (33.5) 0.040
CEBPAtemaion 21/347 (1.8) 5174 (2.9) 22173 (12.7) 0.001
RUNXI 50/347 (14.4) 39174 (22.4) 11/173 (6.4) <0.001
MLL/PTD 13/346 (3.8) 5173 (2.9) 8/173 (4.6) 0.424
ASXLI 52/347 (15.0) 34/174 (19.5) 18/173 (10.4) 0.017
IDHI 20347 (5.8) 10/174 (5.7) 10/173 (5.8) 0.989
IDH2 517347 (14.1) 31174 (21.3) 14/173 (8.1) 0.001
TP53 16/346 (4.6) 10/173 (5.8) 6/173 (3.5) 0.306
TET? 56/347 (16.1) 23/174 (13.2) 33173 (19.1) 0.138
Results ble mutations (P=0.001) and NPA1 mutation (P=0.040)

Correlation of HOPX expression with clinical features

The 347 AML patients were divided into two groups
based on the HOPX expression levels above (higher
expression group) or below (lower expression group) the
median level of HOPX expression on the arrays. Higher
HOPX expression was associated with older age
(P=0.023), higher platelet counts (P=0.008), lower white
blood cell (WBC) counts (P=0.011), and lower lactate
dehydrogenase (LDH) levels (P<0.001) at diagnosis (Table
1). Patients with M1 and M6 according to the French-
American-British (FAB) classification more frequently had
higher HOPX expression (P=0.021 and P=0.032, respec-
tively), while those with M3 and M5 had significantly
lower levels of HOPX expression (P<0.001 and P<0.006,
respectively). The comparison of clinical features between
higher and lower HOPX expression groups in those
receiving standard chemotherapy (n=227) is shown in the
Ounline Supplementary Table S2. The association of higher
HOPX expression with higher platelet counts, lower LDH
levels, and FAB subtypes remained the same in this group
of patients as that of the total cohort.

Correlation of HOPX expression with cytogenetics and
molecular alterations

Chromosome data were available in 325 patients at
diagnosis (Online Supplementary Table S3). Higher HOPX
expression was negatively associated with favorable kary-
otypes, including t(8;21) and t(15;17) (both P<0.001). We
also analyzed the mutation status of 16 genes and found
that the patients with higher HOPX expression had signif-
icantly higher incidences of mutations in RUNX1
(P<0.001), IDH2 (P=0.001), ASXL1 (P=0.017), and
DNMTSA (P=0.031), but less frequently had CEBPA dou-

(Table 2).

Higher HOPX expression predicts poor clinical outcome
in de novo AML patients

Among the 227 patients who received standard
chemotherapy, those with higher HOPX expression had
a lower complete remission (CR) rate (58.3% vs. 85.5%;
P<0.001) (Table 1), shorter OS (median 23.7 months vs.
116.8 months; log-rank P<0.001) and disease-free sur-
vival (DFS) (median 5.9 months vs. not reached; log-rank
P<0.001) than those with lower HOPX expression after
a median follow up of 57.0 months (Figure 1A and B).
Univariate Cox proportional hazards analysis confirmed
the prognostic value of HOPX expression as a continu-
ous variable in predicting patients’ OS [Hazard Ratio
(HR): 1.44; 95%CI: 1.21-1.71; P<0.001] and DFS (HR:
1.55; 95%CI: 1.31-1.82; P<0.001). The prognostic sig-
nificance of HOPX expression could be validated in
another two independent cohorts: TCGA* and
GSE12417% (Figure 1C and D). The unfavorable prog-
nostic effects of higher HOPX expression were also seen
in the subgroup of patients with AML other than APL
(median OS 23.7 vs. 108.1 months; P<0.001) and those
with a normal karyotype (median OS 39.1 vs. 116.8
months; P=0.004) (Figure 1E and F). The results could
also be validated by the TCGA cohort (Online
Supplementary Figure S2A and B).

By univariate analysis, HOPX expression levels and sev-
eral parameters exhibited a significant impact on OS
(Online Supplementary Table S4). When we combined all
these prognostic factors together in a multivariate analy-
sis, higher expression of HOPX remained a poor prognos-
tic factor for OS (P=0.005) (Table 3), independent of age,
WBC counts, karyotypes, mutation statuses of FLT3,

haematologica | 2017; 102(6) -
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Figure 2. HOPX expression levels, its correlation with treatment response, and its

dominant expression of isoform HOPXb2 (NM_139211) (left, isoforms a+b1+c; m

natures.

nificant difference in HOPX levels between patients with (n=166) and without (n=
is also much higher in non-APL patients. (C) Real-time PCR of HOPX in the cohort of 56 acute myeloid leukemia (AML) patients prospectively recruited showing pre-

role as a stem cell marker by gene set enrichment analysis. (A) There was a sig-
61) complete remission (CR) after induction chemotherapy. (B) HOPX expression

iddle, b2; right, b3). (D, E, and F) GSEA plots of curated HSC and LSC signatures

in the NTUH dataset.**** Red-to-indigo bars denote the genome-wide gene list ranked based on their P-values (t-test) between samples with high (top quartile) and
low (bottom quartile) expression of HOPX. Significant positive GSEA enrichment scores indicate that HOPX expression is positively associated with HSC and LSC sig-

CEBPA, MLL, TP53, WT1, and RUNX1 and expression lev-
els of HOXA9.

Further analysis showed much higher HOPX expression
in those patients who failed to achieve CR than those who
obtained a CR (by array signal intensity; P<0.001) (Figure
2A) suggesting a tight association of higher HOPX expres-
sion and drug resistance. Furthermore, HOPX expression
was lower in APL, which consisted mainly of leukemic
cells that are blocked at the differentiation stage of
promyelocytes, indicating a possible relationship between
HOPX expression and maturation stages of AML cells
(Figure 2B).

Comparisons between HOPX expression and published
prognostic gene signatures in predicting prognosis

Several gene expression-based prognostic predictors
have been developed from various study designs in AML.
To compare the performance of prognostic prediction of
HOPX expression with those published predictors, we
performed pairwise multivariate Cox analysis between
HOPX expression and each of the 3-gene, 7-gene, 11-gene,
and 24-gene predictors in three datasets.”** Remarkably,
the HOPX expression remained independent (with Cox
multivariate analysis P<0.05) in most of the comparison
settings (11 of 12 comparisons) (Table 4). Our data sug-
gest HOPX to be a simple and powerful alternative for
prognostication in AML.

The expression pattern and promoter methylation of
HOPX isoforms in AML patients
The pattern of expression of the 5 isoforms of HOPX

- haematologica | 2017; 102(6)

Table 3. Multivariate analysis (Cox regression) on overall survival.*
Overall survival

95% CI

HR Lower Upper

Total cohort (n=227)
Age 1.017 1.002 1.031 0.021
WBC/1000 1.004 1.001 1.006 0.012
Karyotype 3.725 2273 6.105 <0.001
FLT3-ITD 1.522 0.968 2391 0.069
CEB PAtuttetaion 0.299 0.114 0.785 0.014
RUNXT 1.542 0.849 2.800 0.155
MLL-PTD 3.150 1438 6.902 0.004
Wri1 1.804 0.993 3.278 0.053
TP53 3.085 1.151 8.267 0.025
HOPX 1172 1.050 1.307 0.005
HOXA9 1.142 0.815 1.600 0441

*The model was generated from a stepwise Cox regression model that included age,
WBC, karyotype (unfavorable cytogenetics vs. others), gene mutations of FLT3, WT1,
CEBPA, RUNXI, MLL, TP53 and expression level of HOXA9 and HOPX. HR: Hazard
Ratio; CI: Confidence Interval.

and CpG methylation status in primary AML are still
unknown. Because of the low levels of expression and the
impossibility of separating isoforms a, bl, and c, we
merged these three together for quantification. We quan-
tified the expression levels of these isoforms in prospec-
tively recruited AML patients’ marrow by real time-PCR
and found that HOPXb2 (NM_139211) was the predomi-
nant isoform in human AML cells; the other four variants
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Figure 3. Comparison of expression patterns, clinical and biological features among subgroups of NTUH AML patients based on hierarchical clustering of HOPX
and HOX family genes. (A) Heatmap of HOPX and HOX family genes in NTUH data. We identify 4 groups of patients based on a 2-step hierarchical clustering:
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the best overall survival (0S), followed by HOX*"/HOPX"¢", HOX"¢"/HOPX"*, and HOX"¢"/HOPX"¢" (P<0.001).

were markedly under-represented (Figure 2C). In addition,
quantification of the CpG methylation in HOPXb2 pro-
moter regions revealed low levels of methylation in most
AML patients (Online Supplementary Figure S3). This find-
ing seemed to differ from that in some studies of solid can-
cers in which hypermethyation of HOPX in this region
caused gene silencing and was associated with poor prog-
nosis.”" Further studies are needed to confirm this
hypothesis.

Correlation of HOPX expression with stem cell
signatures

We curated xenotransplantation-derived HSC and
leukemia stem cell (LSC) gene signatures and a recently
up-dated LSC signature from previous reports®® and
employed the gene set enrichment analysis (GSEA)
method”to analyze their associations with HOPX expres-
sion. GSEA tests the enrichment of each gene signature in
the list of global genes ranked by HOPX-associated differ-
ential expression. Higher HOPX expression was associat-
ed with upregulation of HSC and LSC genes in the NTUH
dataset (enrichment scores, 0.79, 0.61, and 0.89; P<0.0005,
P=0.006, and P<0.0005, respectively) (Figure 2D-F).
Concordant significant enrichments were identified in
TCGA and GSE12417 AML datasets (all P-values <0.015)
(Online Supplementary Figure S4). Seventeen and five genes
appeared as leading-edge genes (ie. a subset of core-
enrichment genes) of the HSC and LSC signatures (Figure
2D and E), respectively, in all the three cohorts (Online
Supplementary Table S5). Interestingly, an ATP-binding-
cassette (ABC) transporter gene, ABCB1, was a common
leading-edge gene of HSC signature (Online Supplementary
Table S5). ABC transporter genes were reported to be asso-

ciated with chemoresistance in AML, with higher ABCB1,
ABCG1, ABCG2 expression levels being independently
poor prognostic factors.” Expression of these three ABC
genes was significantly higher in samples with higher
HOPX expression (all P-values <0.001) (Online
Supplementary Table S6), but the mechanistic link between
ABC and HOPX expression still has to be explored in fur-
ther studies.

Expression patterns of HOPX and HOX genes in normal
hematopoietic cells

HOPX and HOX family genes all encode homeodomain
proteins and HOX genes are well-known HSC markers.*®
“ To further delineate the similarities and the distinctions
between HOPX and the HOX gene family, we first ana-
lyzed their expression patterns in normal hematopoietic
cells using arrays derived from public data. We curated
three public gene expression datasets derived from normal
hematopoietic cells**and we chose 12 HOX genes with
at least moderate expression levels (RPKM> 5 according to
TCGA RNA seq data) for further analysis.** In GSE24006”
and GSE12662,* HOPX and HOX genes were generally
expressed in a concordant manner (mean correlation coef-
ficient 0.37 and 0.35, respectively) (left panels, Online
Supplementary Figure S5A and B). We further analyzed a
dataset of 9 distinct normal hematopoietic cell populations
(GSE24759) (Online Supplementary Figure S6).** HOPX and
HOX family genes were all highly expressed in normal
CD34" hematopoietic cells (average z-values = 0.82 and
0.75; 1-sample t-test both P<0.001) (Online Supplementary
Figure S6). The concordant expression patterns between
HOPX and HOX family suggest their shared roles in nor-
mal hematopoiesis.

HOPX in AML e
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Expression patterns of HOPX and HOX family genes in AML

We investigated the absolute gene expression levels of
HOPX and the HOX family in AML from the TCGA RNA
sequencing dataset. Among them, HOPX was the second
highest expressed gene (average RPKM = 25.6 in TCGA
RNA sequencing dataset; n=179), after the most abundant
gene HOXA9 (RPKM = 43.3). We then compared the
expression patterns between HOPX and HOX family
genes in AML cells. The concordance of expression pat-
terns shown in normal hematopoietic cells were no longer
present in AML cells (correlation in GSE24006 and
GSE12662 -0.31 and 0.07, respectively) (Online
Supplementary Figure S5A and B). We sought to investigate
the similarities/distinctions between HOPX and HOX
family genes by clustering of AML patients in our dataset
(NTUH) according to their expression levels. Because of
the unequal numbers of genes between HOPX and HOX
family (1 vs. 12), we performed a 2-step hierarchical clus-
tering to balance the potential bias in unsupervised cluster-
ing. Briefly, patients were first clustered only by the 12
HOX family genes. Subsequently, each cluster was sub-
ject to the second round of clustering with inclusion of
HOPX. As aresult, we were able to identify and focus on
4 distinct groups of patients for further analysis
(HOX"™'/HOX" by HOPX"'/HOPX"") (Figure 3A) in
whom the high/low expressions of HOX and HOPX were
confirmed significant in each cluster (comparisons of aver-
age z-scores against zero; 1-sample t-test P<0.0001) (Figure
3B). The 4 groups also showed a significantly different
prognosis: HOX*/HOPX"" patients had the longest OS,
while HOX""/HOPX"" patients had the poorest outcome
(P<0.0001) (Figure 3C).

To further compare the clinical and biological character-
istics among AML patients with different expression levels
of HOPX/HOX family genes, we analyzed patients' gene
mutations, cytogenetic abnormalities, and other clinical
and lab parameters. WBC counts and LDH levels varied
significantly among groups (ANOVA P=0.026 and 0.0009,
respectively) (Figure 4A and B). HOX*"/HOPX"" patients
had the lowest WBC counts and LDH levels (median
5765/uL vs. 24,720/uL and 643 U/L vs. 1027 U/L, respec-
tively; both P<0.001). Each subgroup also had distinct bio-
logical characteristics, including CD34 expression, gene
mutations of FLT3, NPV 1, CEBPA, RUNX1, DNMT3A,
IDH1/2 (all P<0.0001) and ASXL1 (P=0.0002) (Figure 3A
and 4C). FLT3-ITD and mutations in NPA1 and DNMT3A
are more common in HOX"" patients regardless of HOPX
expression levels; RUNX1 mutation is more frequent in
HOPX"" regardless of HOX expression levels; CEBPA dou-
ble mutation is predominantly seen in HOX*/HOPX""
patients; ASXL{ mutation is mainly present in
HOX"*"/HOPX"#" subgroup; IDH1/2 mutations are particu-
larly rare in HOX®"/HOPX"™" patients; CD34"blasts are low
in HOX""/HOPX"" patients. Compared with other
patients, HOX"'/HOPX"" patients had higher incidences
of FAB MO (4 of 76 vs. 1 of 185; P=0.011), CD34 expression
on leukemic cells (64 of 71 vs. 104 of 175; P<0.001), and
mutations in ASXL1 (23 of 76 vs. 16 of 185; P<0.001),
RUNX1 (21 of 76 vs. 15 of 185; P<0.001), and IDH1/2 (25
of 76 vs. 30 of 185; P=0.003), while HOX"/HOPX""
patients, when compared with others, had more FAB M5
(8 of 57 vs. 2 of 204; P<0.001) and mutations in NPV 1 (47
of 57 vs. 19 of 204; P<0.001), FLT3 (FLT3-ITD) (26 of 57 vs.
38 of 204; P<0.001), MLL
(MLL-PTD) (5 of 57 vs. 2 of 203; P=0.001), PTPN11 (8 of

Table 4. Comparisons of HOPX to published prognostic gene signa-
tures.

Predictor NTUH TCGA GSE12417
(n=227) (n=186) (n=162)
HOPX <0.001% 0.003 <0.001
(1.39;1.17-1.65)  (L34L.11-1.61)  (1.52;1.22-1.89)
3-gene score 0.001 0.005 0.601
(Wilopetal™  (146;1.17-1.82)  (1.34;1.10-1.65)  (1.06;0.85-1.33)
HOPX 0.048 0.017 0.002
(1.22;1.00-149)  (1.30;1.05-1.62)  (1.43;1.14-1.78)
T-gene score 0.001 0.305 0.132
(Marcucci et al*®) (1.23;1.09-140)  (1.07;,0.94-1.20)  (1.13;0.96-1.33)
HOPX 0.086 0.014 0.009
(1.20,0.98-147)  (1.33;1.06-1.68)  (1.35;1.08-1.68)
11-gene score 0.001 0.597 0.010
(Chuangetal™) (1.06;1.03-1.10)  (1.01;0.96-1.07)  (1.05;1.01-1.10)
HOPX 0.011 0.032 <0.001
(127;1.06-1.52)  (1.22;1.02-147)  (1.47;1.21-1.80)

24-gene score <0.001 <0.001 0.051
(Lietal™) (1.10;1.05-1.16)  (1.12;1.06-1.19)  (1.04;1.00-1.08)

*Multivariate P-value [Hazard Ratio (HR); 95% Confidence Interval of HR] compar-
ing HOPX expression levels and the respective gene scoring system.

57 vs. 8 of 203; P=0.005), and WT1 (8 of 57 vs. 11 of 204;
P=0.026) (Figure 3A and data not shown). These results
demonstrated marked distinctions between HOPX and
HOX family genes in their association with genetic alter-
ations and clinical features in AML.

Distinct associated HSC gene signatures between
HOPX and HOX family genes

Although all HOPX and HOX family genes are stem cell
markers, our data showed that the two were associated
with distinct features in AML. Stem cell signatures could
be divided into two groups with either quiescence or pro-
liferation characteristics.” The low LDH levels and WBC
counts in the AML patients with high HOPX and low
HOX family gene expression (Figure 4A and B) raises the
possibility that expression of HOPX may favor quiescence
of stem cells. To test this hypothesis, we examined the
expression profiles of each subgroup of our AML patients
by a gene set scoring” based on a known quiescence sig-
nature in HSC.*" A positive signature score denotes a ten-
dency toward a quiescent HSC state. The significance
level of a score against zero (representing no tendency)
was tested by 1-sample r-test. Patients with high expres-
sion of HOX family genes did not exhibit a significant ten-
dency toward the quiescence state regardless of the abun-
dance of HOPX expression (P=0.22 and 0.45 for
HOX"'/HOPX"" and HOX"/HOPX"", respectively)
(Figure 4D). However, when HOX expression is low,
HOPX"" and HOPX"" were significantly associated with
quiescence and non-quiescence, respectively (P=0.0007
and 0.0003, respectively) (Figure 4D). Overall, our data
suggested a fundamental difference between HOPX and
HOX family genes in their stem cell properties in the AML
setting.

Comparison of methylation patterns between HOPX
and HOX family genes in AML
Besides the different expression patterns and associated
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Figure 4. The distinct clinical and genetic features among acute myeloid leukemia (AML) patients stratified by expression of HOPX and HOX family genes. (A and
B) Box plots of white blood cell (WBC) counts and serum lactate dehydrogenase (LDH) levels. There is a significant difference in both variables among the 4 clusters.
The highest median of WBC count appears in HOX"™"/HOPX*"* group, while that of HOX*"/HOPX"¢" falls to the bottom of all clusters. Similar trends are seen in LDH
levels. Statistical significance were tested by ANOVA tests. (C) The 4 clusters are associated with distinctive gene mutations. FLT3-ITD and mutations in NPM1 and
DNMT3A are more common in HOX"" patients regardless of HOPX expression levels; the RUNX1 mutation is more frequent in HOPX"®" regardless of HOX expression

levels; the CEBPA double mutation is predominantly seen in HOX/HOPX"* patients

; the ASXL1 mutation is mainly present in HOX®/HOPX"¢" subgroup; IDH1/2 muta-

tions are particularly rare in HOX*"/HOPX"* patients. CD34" blasts are low in HOX"¢"/HOPX"" patients. (D) Association of quiescence HSC signature with expression
of HOPX and HOX family genes. We employ a gene set enrichment scoring to quantify the overall activity of the gene signature in each sample; a positive/negative
score represents a tendency toward quiescent/proliferative HSC state. Inter-group changes are tested by an ANOVA test. Asterisks denote significant differences from

zero assessed by one-sample t-tests (***P<0.001).

clinical and biological features in HOPX compared with
HOX family genes, we also sought to find out whether
there was any difference in their methylation patterns by
analyzing the TCGA epigenome-wide microarray dataset
(n=194). Generally, these genes formed 3 clusters accord-
ing to the methylation patterns (Online Supplementary
Figure S7A). HOPX was largely unmethylated in most
AML patients (mean methylation M-value -1.63; 1-sam-
ple r-test against zero P<0.001; area under curve with neg-
ative M 69.05%) (Online Supplementary Figure S7B).
Methylation levels of HOXA3, HOXA4, HOXA5, and
HOXB3 were generally high, while other HOX genes,
including HOXA7, HOXA9, and HOXB4, were uniformly
hypomethylated (Online Supplementary Figure S7A and B).
Taken together, our data highlighted the different molec-
ular and clinical features that distinguish between HOPX
and HOX family genes in AML.

Discussion

To our knowledge, this is the first report regarding the
prognostic significance of HOPX expression in de novo
AML patients and the direct comparison between HOPX
and the HOX family in normal and malignant
hematopoiesis. The prognostic significance of HOPX
expression is independent of common known clinical and

genetic factors as well as several published gene signa-
tures. We also showed that the promoter region was bare-
ly methylated in leukemic cells from AML patients, in con-
trast to heavy methylation in solid cancers,”"***"** indicat-
ing that CpG methylation is not one of the main mecha-
nisms of regulation of HOPX gene expression in primary
human AML cells. Finally, HOPX appeared to be a distinct
homeobox gene in AML cells when compared with HOX
family genes.

Studies have shown that HOPX is a stem cell marker
of hair follicle, intestine, and lung alveolar cells.”” Through
functional annotation, our current study showed that
HOPX expression was associated with HSC and LSC sig-
natures in AML cells from our cohort and also two other
validation cohorts, indicating that HOPX was an LSC
marker in AML. Stemness is an established property per-
taining to drug resistance and poor prognosis in cancer
patients.” LSC signature is associated with unfavorable
prognosis in AML patients. The underlying mechanisms
by which stem cell signatures in AML cells predict poor
treatment outcome have been postulated to be related to
their association with chemotherapy resistance,” probably
due to the quiescent nature of these cells. The tight asso-
ciation between HOPX expression and stem cell proper-
ties is likely a major reason for the unfavorable prognosis
in AML patients with higher HOPX expression shown in
this study. In addition, higher HOPX expression was sig-
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nificantly associated with the expression of some ABC
transporters, a family of proteins that bind ATP as energy
source to transport the endogenous or exogenous mole-
cules through the cell membranes.** They are abundant
in stem cells, including HSCs and LSCs, and are responsi-
ble for multidrug resistance in cancer treatment.”

Therefore, leukemia patients with higher HOPX are less

likely to obtain CR after induction chemotherapy. Further
functional studies are needed to throw light on its signifi-
cance in leukemia stemness and drug-resistance.

We showed that HOPX had distinct expression pattern

and associated clinical and biological features when com-

pared with other homeobox genes such as the HOX fam-
ily in the AML setting. While they were both enriched in
normal CD34* HSPCs, their expression in AML was asyn-
chronous. The findings that higher HOPX expression,
accompanied with lower HOX expression, was closely
associated with FAB MO subtype, CD34 expression on
leukemic cells, lower WBC counts, LDH levels, and quies-
cence stem cell signature indicates its relationship with
more immature and quiescent stem cell characters.

Our study was mainly based on a retrospective cohort
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