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Abstract: The intricacy of the maternal immune system arises from its ability to prevent a maternal
immune response against a semi-allogenic fetus, while protecting the mother against harmful
pathogens. However, these immunological adaptations may also make pregnant women vulnerable
to developing adverse complications from respiratory viral infections. While the influenza and SARS
pandemics support this theory, there is less certainty regarding the clinical impact of SARS-CoV-2 in
pregnancy. In the current COVID-19 pandemic, vaccine development is key to public preventative
strategies. Whilst most viral vaccines are able to induce a seroprotective antibody response, in some
high-risk individuals this may not correlate with clinical protection. Some studies have shown that
factors such as age, gender, and chronic illnesses can reduce their effectiveness and in this review,
we discuss how pregnancy may affect the efficacy and immunogenicity of vaccines. We present
literature to support the hypothesis that pregnant women are more susceptible to respiratory viral
infections and may not respond to vaccines as effectively. In particular, we focus on the clinical
implications of important respiratory viral infections such as influenza during pregnancy, and the
pregnancy induced alterations in important leukocytes such as TFH, cTFH and B cells, which play an
important role in generating long-lasting and high-affinity antibodies. Finally, we review how this
may affect the efficacy of vaccines against influenza in pregnancy and highlight areas that require
further research.
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1. Introduction

It is interesting to consider whether a pregnancy-specific immune response increases the
susceptibility of pregnant women to adverse clinical outcomes in association with respiratory viruses
and, if so, what is the nature of this response? Furthermore, pregnancy-specific alterations of the
respiratory system may also play a role, contributing to increased morbidity and mortality when
compared to that of the general population. The severity of illness in pregnant women observed during
recent pandemics have served as important examples of why research in vaccinology in pregnancy is
required. The Mothers and Babies: Reducing Risk through Audits and Confidential Enquires across
the UK (MBRRACE-UK) report (2009–2012) described the devastating impact of widespread pandemic
influenza virus infection in pregnancy, and the subsequent recommendation to introduce an influenza
vaccination program in pregnancy was clearly needed [1,2]. Whilst ex vivo seroprotective antibody
production post vaccine has been shown in pregnancy, only a moderate reduction in influenza-like
illness has been achieved with this vaccination strategy [3,4]. This suggests that pregnancy may be
modifying post vaccination responses. In a recent study by our group, we show that whilst post
vaccination antibody titres are comparable between pregnant and non-pregnant women, low-level
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pregnancy related immune regulation leads to an altered post vaccination immune response [4].
Therefore, more research is pivotal in understanding the initial adaptive immune response as well as
the memory recall response.

However, inefficient antibody function may not be the cause. Data from the pertussis vaccine,
which is given to reduce the incidence of infant pertussis infection through trans-placental antibody
transmission, have been shown to be effective. This is both in terms of maternal antibody production
and neonatal antibody transfer, and reduced neonatal pertussis infection in those born to vaccinated
mothers [5–7]. Therefore, the antibodies generated by the mother’s immune system following
vaccination are clinically effective in the neonate. Irrespective, clinical data from recent coronavirus
infections i.e., Middle East respiratory syndrome-related coronavirus (MERS) and Severe Acute
Respiratory Syndrome (SARS) suggest that pregnant women are inherently at a greater risk of
respiratory infections, with higher rates of mechanical respiratory support and death [8].

Changes in pregnancy respiratory physiology and anatomy will also negatively affect the clinical
outcomes [9]. However, the pregnant lung may also be more susceptible to inflammation and tissue
injury [10]. Furthermore, one of the key drivers of clinical severity in these patients is thought to be a
heightened cytokine response, which has been reported during the H1N1 pandemic [11]. The cytokine
storm, in sepsis, has been shown to cause hypotensive shock by direct effects on the cardiovascular
system. For example, cytokines such as Tumor Necrosis Factor-α (TNF-α) and Interleukin-1β (IL-1β)
are associated with myocardial depression [12,13]. Furthermore, measurable levels of serum Troponin
T, I and B-type natriuretic peptide (BNP) have been shown to be increased with sepsis-associated
myocardial depression [14–16]. There may be a number of factors that contribute to the severity
of illness with respiratory viruses, their downstream effects, and the efficacy of vaccines against
them. Physiological changes may influence susceptibility and clinical severity of illness but altered
pregnancy-induced immune responses may also play a key role in attenuating antibody responses
in pregnancy.

In this perspective piece, we propose the hypothesis that immune responses unique to pregnancy
influence the natural history of respiratory viral infections in this population even after vaccination.
We present supportive data and highlight areas for further research.

2. The Effect of Pregnancy and the Burden of Viral Respiratory Infections

2.1. Pregnancy Related Immune Modulation

Pregnancy provides a complex challenge for the maternal immune system as it needs to protect
the mother against infections while creating immune tolerance for the paternal antigens and the
trophoblast [17–19]. The fetus is separated from the mother by a maternal–fetal interface and can be
described as semi-allogenic [20]. Medawar proposed that during pregnancy the maternal immune
system is systemically suppressed to avoid an immune response against the fetus [21]. This notion,
however, has now been replaced by the concept of pregnancy related ”immune modulation” [17,22].
Understanding the mechanisms behind immune modulation in pregnancy holds the key to developing
effective treatment plans in pregnancy and more effective vaccines.

The fairly simplistic view that pregnancy can be conceptualised as a single event is an outdated
concept [23]. There is increasing evidence to suggest that both cell-mediated and humoral responses
vary in different gestational periods and pregnancy can be defined as three separate biological
events [23,24]. The first trimester of pregnancy has been described as a ”pro-inflammatory phase”
promoting blastocyst implantation and placental development [24]. In fact, implantation within the
endometrial tissue, leads to the recruitment of pro-inflammatory Th1 cells and related cytokines,
such as IL-1, IL-6, IL-8, leukemia inhibitory factor (LIF), and tumor necrosis factor α (TNF α) [24–26].
In contrast, the second trimester has been described as an ”anti-inflammatory” state both systemically
and at the maternal–fetal interface with an increase in Th2 related cytokines such as IL-10, IL-4,
and TGFβ [21,24]. Parturition is the preparation and the onset of labour and is the third and final
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stage of pregnancy [21]. It is characterised by the infiltration of neutrophils and macrophages into the
myometrium and the upregulation of pro-inflammatory cytokines, such as IL-1β and IL-8, which are
associated with the onset of uterine contractions [21,23,24,26].

Tropism towards Th2 or ”anti-inflammatory” responses in pregnancy has been widely studied
to explain fetal tolerance [27]. This theory suggests that pregnancy is an anti-inflammatory state
induced by producing Th2 related cytokines such as IL-10 and that any shift from this could lead to
complications, such as miscarriage, during pregnancy [23]. Several studies looking at unexplained
recurrent pregnancy loss in the first trimester reported a decreased frequency of T regulatory cells
(Tregs) in circulation and in the decidua when compared to normal pregnancies [28,29]. Tregs, defined
as CD4 + CD25 high and expressing FOXP3, have been shown to have regulatory properties when
the expression of CD25 is maintained and are necessary to resolve the pro-inflammatory effects
of the immune system [30,31]. It has also been shown that T-helper 17 (Th17) cells increased in
women who suffered unexplained recurrent miscarriages, while Tregs were lower [32]. During labour,
the immune suppressive effects of Tregs are targeted towards Th2 subsets, thus appearing to support
inflammation [33,34]. This indicates the delicate balance which is needed to maintain a successful
pregnancy while also protecting the fetus.

Understanding the role of key antigen presenting cells (APCs), such as dendritic cells (DCs) is
important when discussing cell-mediated and humoral immunity in pregnancy. In particular, the total
number of DCs as well as their subsets are altered at different gestational stages when compared
to the non-pregnant state [19]. Two major DC subsets include myeloid dendritic cells (mDCs) that
migrate to the tissues and plasmacytoid (pDCs) that mainly reside in the peripheral blood and have
anti-viral functions [19,35]. A study by Bella et al. found that the absolute number of DCs was higher
during the first trimester when compared to non-pregnant women, but it progressively decreased
with each trimester [35]. Moreover, the authors also demonstrated a decline in pDCs as the pregnancy
progressed, and this is similar to another study which showed a lower percentage of pDCs in pregnant
women primarily in the third trimester [35,36]. Interestingly, both studies also showed an increase in
activated pDCs during the third trimester, which is parallel with the notion of increased inflammation
in the third trimester [19,35,36]. Using allogenic mice models, it has been shown that the production
of Type 1 interferons (IFN) is reduced in pregnant mice following H1N1 infection, and high levels
of progesterone (P4) may contribute to the decreased activation of DCs [37,38]. Vanders et al. also
demonstrated that in pregnancy there was an increased expression of an inhibitory ligand PDL1 in
pDCs following pH1N1/09 infection, which may suppress T cell mediated immunity [36]. While this
may be necessary for fetal tolerance, the increase in PDL1 could also account for dampened anti-viral
maternal T cell responses and the increased morbidity in pregnancy following influenza infection.
DCs are also crucial in building a bridge between the innate and adaptive immune system as they
can phagocytose pathogens and induce T cell activation and differentiation into effector subsets [39].
This, in turn, is important for antibody class switching, affinity maturation, and inducing an effective
humoral response [39].

The role of P4 in the immune system has been of interest especially in pregnancy, and very
little is known about its effect on the adaptive immune system. One study hypothesised that this
may be due to P4′s ability to block thymide in lymphocytes resulting in decreased cell-mediated
immunity [40]. There is a 5–10-fold increase in serum P4 in pregnancy and up to a 50–100-fold increase
in the maternal–fetal interface tissues [41]. High concentrations of P4 in the maternal tissue have
been shown to have immune modulating effects on local immune cells [40,42]. Interestingly, a study
by Lissauer et al. characterised the effect of P4 at 10 µM concentration, similar to that seen at the
maternal–fetal interface, and found that this altered the functional properties of both CD4 and CD8 T
cells in pregnancy [43]. There was also a marked reduction in IFN-γ and TNF-α by both CD4 and CD8
T cells, and an increase in Th2 associated cytokine IL-4, particularly by CD8+ T cells [43]. At lower
concentrations of 1 µM, which is similar to levels in the maternal serum, the effect on peripheral
immune cells may be more subtle [42,43]. P4 has also been shown to favour FOXP3+ Treg differentiation
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of cord blood T cells and suppress Th17 differentiation [44]. It should, however, be noted that the
authors did not find the same effect in adult PBMCs. P4 receptor positive T lymphocytes can synthesise
progesterone-induced blocking factor (PIBF), which can skew a shift to Th2 type from Th1 in the
periphery [45]. The immunological effect of P4 is complex and more work is needed to fully understand
its effects on the peripheral adaptive immune system and the mechanisms underpinning that effect.
P4 related immune modulation in pregnancy may be more pronounced in the maternal–fetal interface;
however, we cannot rule out any subtle effects on the peripheral immune cells [43,46].

2.2. Is Pregnancy Associated with a Modified Clinical Response to Respiratory Virus

Particular infections have been associated with a greater severity of illness in pregnancy; influenza
is infamous for its differential effect. The morbidity and mortality associated with the disease has
disproportionately affected women in pregnancy [47]. This has been notable with successive viral
pandemics (H1N1 between 1918–1919 and 2009 and also H2N2 in 1957–1958) [48–51]. The 1918–1919
pandemic was associated with a 27% case fatality rate, and in 2009, 6% of influenza infected ICU
patients that died were pregnant [52]. This is striking when you consider that pregnant women
constitute 1% of the population globally.

During an acute respiratory viral illness there are probably a number of factors that contribute
to the severity of illness. It is understood that physiological changes of pregnancy can facilitate
entry of the pathogen. For example, adaptations in the vaginal mucosal architecture in pregnancy,
associated with increased vascularity, have been implicated in the increased risk of ascending uterine
infection and/or transmission of pathogens to the circulation. A similar mechanism may be at work
in the respiratory epithelium of the nasopharyngeal cavity which is hyperaemic and oedematous in
pregnancy in response to elevated levels of circulating P4 [9]. With respect to the influenza vaccine,
while serum IgG is an established correlate of seroprotection, nasal IgA is emerging as another useful
measure of protection from influenza, as well as vaccine efficacy [53]. This may be more relevant in
pregnancy where susceptibility to respiratory infection and subsequent complications are greater than
in non-pregnant women [54].

Although hormonal influences predominate, advancing pregnancy leads to anatomical changes,
which may have a slight impact on respiration due to elevation of the diaphragm by the gravid
uterus. Residual volume and functional residual capacity are reduced; predisposing to a rapid
decrease in oxygenation in association with airway inflammation [55]. Sepsis can be associated with
increased pulmonary microvascular pressures and capillary permeability and the development of
acute respiratory distress syndrome (ARDS) [56]. Additionally, in line with that of the systemic
vasculature (due to nitric oxide and P4 reducing vascular tone), there is a reduction in pulmonary
vascular resistance and as plasma colloid pressure is reduced there is an increased risk in patients
“tipping” into pulmonary oedema [56,57]. Bhatia et al. have suggested that interstitial lung tissue may
have a higher fluid content in pregnancy [55]. P4 has been implicated in increased water retention
within the lung tissue, reducing the lung’s diffusion capacity, and potentially exacerbating hypoxaemia
in an already compromised airway [58]. Difficulties in mechanically ventilating patients in pregnancy
compound these issues in the critically ill.

A large amount has been documented concerning the clinical impact in pregnancy of influenza.
It is interesting to consider whether other respiratory viruses such as SARS, MERS, and SARS-CoV-2
are also particularly virulent in pregnancy and, if so, why? What is known, is that in pregnancy,
the risk of developing subsequent respiratory complications following infection with viral pneumonia
are far greater when compared to the general population. It is possible that these outcomes are likely
to be made worse by the compressive effect of the gravid uterus on the maternal lungs and a greater
chance of basal atelectasis during late pregnancy [9]. SARS has been associated with a disproportionate
clinical impact on pregnant women and a recent literature search reported a case fatality rate of 15%,
and a comparative analysis of morbidity and mortality of SARS positive pregnant and non-pregnant
women reported both higher ICU admission rates and mortality rates. The same study reported that
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for MERS infection, 64% of pregnant women were admitted to the ICU, and the case fatality rate
was reported to be as high as 27%. It is these data that alerted the global community to the potential
risks in pregnancy of the novel coronavirus SARS-CoV-2. There may be a number of factors that
contribute to this. While physiological changes of pregnancy may facilitate entry of the pathogen,
an altered pregnancy-induced immune response may play a key role in the modulation of the normally
well-coordinated antibody response to the initial adaptive response phase as well as to the recall
response, which in pregnancy, might be pivotal.

It is likely to be too early to determine accurate case fatality rates for the ongoing SARS-CoV-2
pandemic [59]. Estimates, initially, have been as high as 3%–5%. Critical cases are predominantly
complicated by severe respiratory failure and the systemic effects of the cytokine storm lead to
multi-organ failure [60]. Pregnancy-specific adaptations of the immune response may impact the
host response, altering the natural history of infection. In pregnancy, patients do not have a greater
morbidity and mortality than their non-pregnant counterparts. Patients have been predominantly
affected in the third trimester. While a great number of infected patients have been asymptomatic or
suffered mild–moderate symptoms, admissions to ICU have been documented, as well as the escalation
of treatment for extracorporeal membranous oxygenation (ECMO) [59].

What we know from the data thus far surrounding COVID-19 infection is that males, patients
over 70, Black, Asian, or minority ethnic origin (BAME) patients, those with obesity, and those with
comorbidities are at the greatest risk of ICU admission and death following infection with SARS-CoV-2.
However, at the outset of the SARS-CoV-2 pandemic, pregnant women were placed in the high-risk
category with respect to the expectations of the severity of illness that they would experience if they
contracted the virus. This public health measure was extrapolated from our knowledge of influenza in
pregnancy. As events have unfolded, the current consensus is that there may not be an increased risk
of adverse maternal clinical outcome although our view, in agreement with others, is that the available
data, to date, are limited [61,62]. The consensus, thus far, is based predominantly on published case
series and it would be expected that a more definitive assessment can be made following analysis of
the results of large population studies from around the world.

Of note, Knight et al., performed a prospective cohort study in the UK of 427 women and
reported the incidence of hospital admissions for confirmed SARS-CoV-2 as 4.9 in 1000 maternities
(95% CI 4.5–5.4) [63]. This study used data obtained from the UK Obstetric Surveillance System
(UKOSS), which is a national reporting system in the UK. In line with the trends seen in the general
population, specific sub-groups of pregnant women were at increased risk of admission; these included
advanced maternal age (aOR 1.35, 95% CI 1.01–1.81), those with comorbidities (aOR 1.52, 95% CI
1.12–2.06), and BAME women (aOR 4.49, 95% CI 3.37–6.00), which were the highest risk pregnancy
group. The UKOSS data also showed that most hospitalised women were in the second half of
their pregnancy. In these patients, 40 women (9%) required critical care, 4 women (1%) required
extracorporeal membranous oxygenation (ECMO) and there were 5 fatalities (1%). While the majority
of women were well and discharged home, at completion of the study, there were 30 (7%) remaining
inpatients. Consistent with studies performed in other populations, fetal and neonatal transmission
was uncommon and neonatal admissions in the 427 women were <1.5%. Despite this, there has been
an association of adverse pregnancy outcomes with maternal infection [64].

The UKOSS reporting appears to suggest that hospitalisation in the pregnant population is
uncommon. It is difficult to determine what role early public health interventions to protect pregnant
women may have had on these findings. Given that the majority of adverse clinical outcomes occurred
in patients that were older, males and/ or BAME, we believe that an improved understanding of the role
of pregnancy in the host response to this infection may be aided by studies comparing the rates of level
3 critical care admission and death in pregnancy with that of demographically matched non-pregnant
females. If pregnant patients are more susceptible than their non-pregnant counterparts to developing
COVID-19, what are the proposed mechanisms of SARS-CoV-2 virulence in pregnancy.
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2.3. ACE-R and Pregnancy

Highly expressed in type II alveolar epithelial cells (as well as arterial/ venous endothelium
and arterial smooth muscle cells), the angiotensin converting enzyme-2 (ACE-2) receptor has been
identified as the gateway to infection for the SARS and SARS-CoV-2 coronaviruses, with SARS-CoV-2
having a 10-fold increased affinity than its predecessor [65–67]. The binding of the SARS-CoV-2 spike
(S) protein to ACE-2 receptors initiates the fusion of the viral membrane (composed of a lipid bilayer
and transmembranous proteins) with the host alveolar cell membrane and facilitates the passage of the
viral RNA which then hijacks the host mechanisms of protein synthesis for replication [68]. Li et al.
used RNA-Seq to determine the tissue expression of ACE-2 receptors across a number of human tissue
compartments [69]. While the data did not show any differences in ACE-2 receptor expression with
gender, age, or ethnicity, correlations between ACE-2 and immune signatures in the lungs showed a
positive correlation in older patients. In addition, Smith et al. looked specifically at ACE-2 expression in
the lung in smokers and reported an upregulation of ACE-2 receptors in these patients [70]. However,
while ACE-R expression is important, variation within the amino-acid sequence of the ACE-2 receptor
binding domain is associated with differing binding affinity, and receptor polymorphisms may correlate
with clinical severity of infection [66]. Therefore, evaluating these features may be more relevant in
determining the risk of viral entry. Furthermore, SARS-CoV-2 infection leads to the up-regulation of
ACE-2 receptors in the lung [71]. Using a method of gene expression interpretation called Gene Set
Enrichment Analysis (GSEA), the same group propose that ACE-2 may mediate post-infection immune
regulation via innate and adaptive responses [71]. More specifically, they investigated the ACE-2
expression in SARS-CoV-2 infected epithelial cells and found elevated ACE-2 expression and cytokine
secretion (IL-1, IL-10, and IL-6) in association with B and T cell activation and an increase in T-cell
cytokine secretion [71]. Additionally, there was an increase in viral cell entry and transcription [71].

Research is required in pregnant women to determine how ACE-2 receptor expression in the
respiratory tract compares to non-pregnant individuals, and whether this contributes to an increased
susceptibility to severe illness with the coronaviruses. In any event, as discussed, this may not
play a significant role in the natural history of the infection. While there does not appear to be
differential viral transmission among adults, males, the elderly, and BAME groups, patients appear to
be disproportionately affected by infection. Thus, although tissue expression in pregnancy may be a
moot point (but an important evaluation), analysis of pregnancy-specific variations of the receptor
binding domain amino-acid sequence and its affinity for the SARS-CoV-2 S protein would be of value.

3. What Is the Current Knowledge on Antibody Producing B Cells and Where is More
Research Required?

Antibody secreting cells (ASCs), which comprise plasma cells or memory B cells, arise from
activated B cells that have previously entered the germinal centre (GC) [72]. ASCs are vital for the
production of effective antibodies and are terminally differentiated plasma cells or plasmablasts [73].
GC B cell maturation and antibody production is very much dependent on a specialised group of
helper T cells [74]. T follicular helper cells (TFH) are a specialised subset of effector CD4 T cells that
induce B cell activation, and differentiation into class-switched and antibody secreting long-lasting
plasmablasts [75–79]. This support provided by TFH cells is vital for an effective humoral response
during natural infection and/or following vaccination [80,81]. In humans, TFH cells are currently
defined by their high expression of CXCR5, inducible co-stimulator (ICOS), and Programmed cell
death protein-1 (PD-1 and CD279) [81,82]. However, there is also a subset of circulatory TFH (cTFH)
that express ICOS, PD-1, and CCR7, and these markers have been used to phenotype subtypes of
cTFH [82,83]. One noticeable difference observed between tissue TFH and cTFH cells is that cTFH have a
lower expression of ICOS and PD-1, and do not express Bcl-6. Furthermore, they produce an increased
amount of interleukin-2 (IL-2), which makes them an important subset for B cell activation [80]. ICOS in
particular has been shown to consistently reflect cTFH activation after parenteral vaccination [84].
Furthermore, it has been reported that CXCR3+ TFH1 like cells increase after influenza vaccination with
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the expression of ICOS and PD-1 also increasing [75]. This has been shown to strongly correlate with an
increase in the avidity of antibodies secreted from the memory B cell pool by potential selection of high
affinity B cells at extrafollicular sites [75,85]. Whilst our knowledge of TFH cells is rapidly improving,
very little is still known about their function in the circulation and how these subsets compare to TFH

cells in the germinal centres [77].
To date, only one study has looked at the frequency of circulatory TFH (cTFH) and their activation

in pregnancy. This study showed that the frequency of CD45RO+ CXCR5+ expressing cTFH cells, which
are thought to represent the circulatory counterpart to GC TFH with similar functions, are increased in
pregnancy and these cTFH also express more ICOS when compared with non-pregnant controls [86,87].
No difference was observed with PD-1 expression, but this study concluded that pregnancy favours an
expanded functional cTFH subset, which will favour an enhanced humoral response. This is particularly
useful, as it would suggest that in spite of a pro-inflammatory biased response to infection during
pregnancy, the maternal immune system still has the capacity to respond to vaccinations and produce
functional high affinity antibodies. Interestingly, ageing studies have also found that the frequency
of cTFH cells are increased in the elderly when compared to younger groups [88,89]. However, these
cells display a lower level of activation [88,89]. There have been contrasting findings in other studies.
For example, one study showed a 35% decrease in cTFH cells in an elderly cohort, but these cells also
showed an increase in ICOS expression [75,79,85]. The authors hypothesised that the increased ICOS
expression may be due to non-specific inflammation, and in fact the reduced proportions of cTFH cells
was in keeping with a less efficient antibody response.

The humoral response in pregnancy is a delicate balance between protecting the fetus and the
mother, as an influx of auto-antibodies, such as antiphospholipid antibodies (aPL), can lead to severe
complications including preeclampsia and intrauterine fetal death [90,91]. Having said that, Taylor
and Hancock in the 1970s demonstrated that, in the absence of maternal IgG, cultured trophoblasts
were vulnerable to cell-mediated cytotoxicity [90].The anti-paternal IgG may provide protection for
the growing fetus. Our knowledge of B cell subsets and the generation of antibodies in natural
infection and/or through vaccination is still deficient in pregnancy and more research is required in
this area. There has, however, been some work on the regulatory B cell subset (Bregs). This subset
of B cells can suppress inflammatory responses, in particular responses during autoimmune disease
and organ transplant [92]. Lima et al., showed that Bregs, defined as CD24high CD38high, increased
during the first and third trimester when compared to non-pregnant women [91]. This may be
necessary to dampen the T cell mediated responses, which could result in the rejection of the fetus [91].
Bregs proportions also appeared to peak in the postnatal period, and these cells may function to
suppress the pro-inflammatory state following labour and during the recovery phase. In contrast,
the frequency of other B cell subsets decreased during the third trimester, suggesting an attenuated B
cell response during late pregnancy [91]. Similarly, in both ageing and HIV-1 infection, the number
of B cells have been shown to decrease, and this has been attributed to the reduced expression of
transcriptional factors, such as E12 and E47, which influence B cell maturation [93]. Additionally,
it has also been observed that the number of GCs is reduced during ageing and this in turn leads to a
reduction in high-affinity antibodies [94]. In pregnancy, there has been a suggestion that the number of
GCs is decreased alongside thymic atrophy [95]. Together, these data suggest that antibody responses
in pregnancy are enhanced in some respects, but some features may also be suppressed. Clearly more
research is needed in antibody and B cell function in pregnancy.

4. Benefits of Maternal Immunisation and the Immunogenicity of Vaccines in Pregnancy?

Vaccination during pregnancy can not only protect the mother against harmful pathogens, but also
protect the neonate after birth [96]. Immunisations during pregnancy are usually classified into
three groups: routinely administered, administered based on medical need when there is significant
benefit to the mother or fetus, or avoided due to potential risks [97]. Major types of commercially
available vaccines include live attenuated, inactivated, toxoid, and subunit, recombinant and conjugate
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vaccines [98]. Live attenuated vaccines contain an altered or weakened live pathogen, which mimics
exposure to natural infections and generates long-lasting immunity [98]. In theory, live attenuated
vaccines can also revert to virulent wild-type strains and so these vaccines are not usually administered
to either immunocompromised individuals or pregnant women due to the risk of severe infection
and perinatal infections, respectively [98,99]. Inactivated and toxoid vaccines are manufactured by
inactivating or killing the pathogen, and the immune response to these vaccines is often less potent
than live attenuated vaccines and titres of newly produced antibodies in response to the vaccine tend
to decline over time and boosters are usually required [98]. Subunit vaccines are composed of at
least one antigen or fragments from the pathogen of interest, which can invoke a sufficient immune
response [98,99]. Finally, conjugate vaccines rely on the same principle as recombinant vaccines, but
they combine pieces of bacterial coat with a carrier protein. The carrier protein is essential in mounting
an adaptive immune response to generate long term immunity [98].

4.1. Routinely Administered Vaccines in Pregnancy

4.1.1. Tetanus, Diphtheria, and Acellular Pertussis (Tdap)

Rates of infant pertussis-related complications (pulmonary, neurological, and nutritional) and
even infant death have persisted in developed countries with rates increasing in recent years [97,100].
Pertussis vaccines are licensed for use after 6 weeks of age; however, most vaccines are not administered
till at least 8 weeks of life [100]. A study conducted in the US highlighted that 64% of all pertussis-related
infant deaths during 1991–2008 occurred in infants younger than 6 weeks old, and therefore, newborns
are at most risk [101]. The first infant dose may only induce partial immunity and therefore additional
measures of protection are required [101]. Alternative strategies to control the disease in infants
includes ”cocooning” the neonates for an appropriate period of time and maternal immunisation [102].
Maternal immunisation of pertussis was originally recommended within a narrow window in the third
trimester, ideally between 27 and 36 weeks of gestation, and this has now been adopted by more than
20 countries including the US and the UK [100,102]. Protective antibodies have been shown to transfer
from the mother to the fetus trans-placentally and this can provide protection to infants too young for
a primary immunisation course [103]. However, the optimal timeframe for transferring the antibodies
is vital as the half-life of pertussis-specific antibodies is relatively short [100]. A study by Ebenhardt
et al. compared maternal Tdap immunisation during the second trimester (GW 13–25) vs. the third
trimester (≥GW 26) and found that the increase in geometric mean concentrations (GMC) of cord blood
antibodies to recombinant pertussis toxin (PT) was greater in the second trimester when compared to
the third. The authors proposed recommending Tdap from the second trimester to increase uptake of
the vaccine [100]. Since these data were published, UK recommendations now suggest vaccination
between 16 and 32 weeks of gestation as this has been shown to maximise neonatal seroprotection and
provide protection to babies born preterm [100]. Safety of any vaccination during pregnancy is of the
utmost concern. Several studies have shown that Tdap was safe to administer during pregnancy and
was not associated with preterm or still births following the vaccination [104,105].

4.1.2. Influenza Vaccine

The World Health Organisation (WHO) characterises the following groups of people as high
risk: elderly, pregnant women, children under 5 years, individuals with chronic medical and
immunosuppressive conditions, and healthcare workers [106]. During the 2009 H1N1 pandemic,
pregnant women were seven times more likely to suffer severe influenza-associated complications
and twice as likely to die than non-pregnant women [38]. Furthermore, one study showed that of
all women hospitalised during the first wave of the H1N1 pandemic in California, 42.6% were either
pregnant or postpartum. A total of 22% of these patients required intensive care and 8% died [107,108].
Our understanding of the underlying mechanisms behind why pregnant women have increased
mortality and mobility following influenza infections remains unclear [38]. Studies have reported
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that following influenza infection, pregnant mice showed higher viral loads, reduced body weight,
and increased damage to the lungs when compared to non-pregnant mice [109]. Increased infiltration
of pulmonary neutrophils and macrophages may contribute to tissue injury in their lungs resulting in
an increased mortality rate in pregnant mice [110]. Therefore, WHO recommends that all pregnant
women should receive the seasonal influenza vaccine.

Vaccination programs are the most effective method of preventing the community spread of
influenza and it has been shown that influenza vaccines, in particular, reduce the risk of influenza-like
illness in both mothers and neonates [111,112]. A study by Blanchard-Rohner et al. demonstrated that
84%–86% of newborns of vaccinated women showed seroprotective levels depending on the strain [113].
Additionally, they showed that mothers who were vaccinated against influenza at least two weeks
prior to delivery had 5–17 times higher geometric mean titres in the umbilical cord blood depending
on the strain and interval between vaccination and delivery [102,113]. However, in vaccination studies,
the incidence of influenza-like illness is still greater in pregnancy when compared to non-pregnant
women [3]. There is limited research available on the immunogenicity and efficacy of influenza
vaccination in pregnant women when compared to non-pregnant individuals. Currently, there are
26 licensed inactivated vaccines for influenza with trivalent inactivated virus (TIV) being the most
frequently distributed. However, new WHO recommendations are shifting towards quadrivalent
vaccines (QIV) [111,114]. TIV vaccines are composed of three strains, which include two strains from the
influenza A subtype (H1N1 and H3N2), and one from the influenza B subtype [111]. QIV contains an
additional strain from influenza B subtype, which commonly includes B/Yamagata or B/Victoria [111].
Inactivated influenza vaccines (IVs) are produced by propagation of the influenza virus in hens′ eggs
and the virus is inactivated using formaldehyde or b-propiolactone [115]. The vaccine is available
in three main manufacturing formulations: whole virus, split (chemically disrupted), and subunit
(purified HA and NA proteins) [114,115]. The intranasal live attenuated influenza vaccine (LAIV)
is rarely administered to pregnant women as any associated risks to the mother or fetus are largely
unknown [116]. A study examining 834,999 pregnancies in the US found that only 138 pregnant
women (0.017%) were given the LAIV and any incidences reported following the vaccination were at a
similar rate to unvaccinated pregnant women [116]. Therefore, while it may be best to avoid LAIV in
pregnancy, it may not cause harm if used for medical reasons.

Influenza vaccines primarily work by inducing a protective immune response against the HA
glycoprotein, and the vaccines are licensed on over seventy percent of individuals achieving a HAI titre
>1:40 or a 4-fold increase in over forty percent of individuals [111,114]. A vaccines’ ability to induce an
antigen-specific HAI titre may not be a correlate for protection in the community, and studies have
shown that factors such as age, gender, chronic infections, and illnesses can reduce the effectiveness of
vaccines for clinical protection [117]. Seroprotection may not always translate into clinical protection
for populations with poor immune responses. Additionally, the degree of protection after vaccination
is also dependent on matching the antigenic strains to the ones circulating correctly [111].

A recent study carried out by Tregoning et al. investigated the effect of pregnancy on the
transcriptomic response after vaccination in pregnant and non-pregnant mouse models and from
humans. They also found no difference between the pregnant and non-pregnant state at the level
of individual genes, and found similar levels of inflammation post vaccination in both mice models
and humans [118]. Kay et al., also demonstrated that pregnant women were able to induce a robust
plasmablast response following vaccination as these women had an equivalent rate of post vaccination
HAI titres and seroprotection when compared to non-pregnant women [119]. It should, however,
be noted that this study had a limited number of samples, which may have reduced the statistical
power of the study. In people over 65, the vaccine efficacy against influenza A virus is predicted to be
around 20%, and this may be linked to increased inflammation as a result of immunosenescence [120].
The increase in inflammatory markers during the first and third trimester may resemble some features
of immunosenescence, but we do not have enough data to support the hypothesis that pregnancy
alone reduces the effectiveness of influenza vaccine responses. Pregnant women are at a greater risk for
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developing complications from respiratory viral infections, and more research is needed in determining
whether the efficacy and immunogenicity of vaccination in pregnancy are attenuated.

4.2. Vaccines Available during Pregnancy if Medically Necessary

The following vaccines may be given to pregnant women if medical staff deem them necessary
to protect the mother and the fetus: Hepatitis B vaccine, Hepatitis A vaccine, pneumococcal vaccine,
meningococcal vaccine, poliomyelitis vaccine, Japanese encephalitis vaccine, yellow fever vaccine,
typhoid fever vaccine, anthrax vaccine, and smallpox vaccine [97]. Hepatitis A is transmitted through
the faecal–oral route via contaminated food or drink or close contact with an infected person [102].
Hepatitis A vaccine is an inactivated vaccine and is classified as low risk and given if clinically
necessary [102]. In the case of yellow fever, if pregnant women are travelling to, or live in, endemic
areas, a live attenuated vaccine may be given as the risk of the vaccine outweighs the risk of infection
to the mother and fetus [121]. The immunogenicity and efficacy of these vaccines is largely unknown
and needs to be investigated further.

4.3. Vaccines Avoided during Pregnancy

Live attenuated vaccines have the potential to cross the placental barrier and cause infection to
the fetus, thus their administration is contraindicated during pregnancy [97]. The Measles, Mumps,
and Rubella (MMR) vaccine is often given to children and clinical staff are advised against giving it to
women who are either planning on getting pregnant or are already pregnant [97,98]. The potential risk
to the fetus is theoretical; however, the consequences of severe infection during pregnancy outweigh
the benefit of the vaccine [98].

4.4. Maternal Vaccines being Developed

RSV infects almost 100% of children by 2 years of age and is a major cause of lower respiratory tract
illness in infants from 6 weeks to 6 months [122]. Risk factors associated with increased morbidity and
mortality include preterm infants, underlying chronic lung or heart disease, and immunogenicity [123].
Reinfections of RSV are common as immunological memory to the virus is low, thus the development
of a vaccine is imperative to create long term immunity. In order to reduce the disease burden in
infants, maternal immunisation is a plausible strategy to boost serum neutralising antibody responses
during the second and third trimester that could be transferred to the fetus through the placenta [122].
A recombinant RSV vaccine is currently in phase II clinical trials in non-pregnant women with plans
of extending research in pregnant women and entering phase I trials [124]. High concentrations of
maternal antibodies after maternal immunisation are essential for the maximum transfer of maternal
antibodies to the fetus [125]. Therefore, the question of whether vaccine immunogenicity is altered in
pregnancy is an important one and needs to be studied further in a wider range of vaccines.

5. Summary

In this perspective, we show that pregnancy is a unique state where physiological and
immunological adaptations may increase the risk of severe infection. Important leukocytes such
as TFH, cTFH, and B cells, that are important for antibody production, may behave differently in
pregnancy. Despite this, antibody titres post influenza vaccination are comparable between pregnant
and non-pregnant women. However, the influenza and coronavirus pandemics have highlighted
the vulnerability of pregnant women to developing serious complications from these infections.
Whilst pregnant women, alongside other risk groups, have been at the forefront of vaccination efforts
due to their high-risk status, there is emerging evidence that vaccine efficacy might be negatively
influenced by pregnancy. New methods of measuring vaccine efficacy in high risk groups, including
pregnancy, may help to determine if these responses are indeed altered. In the long term, research
focused on pregnancy immune responses to vaccines is certainly required.
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