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Biomechanics

Vaulting mechanics successfully predict
decrease in walk – run transition speed
with incline

Tatjana Y. Hubel and James R. Usherwood

Structure and Motion Laboratory, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK

There is an ongoing debate about the reasons underlying gait transition in

terrestrial locomotion. In bipedal locomotion, the ‘compass gait’, a reduc-

tionist model of inverted pendulum walking, predicts the boundaries of

speed and step length within which walking is feasible. The stance of the

compass gait is energetically optimal—at walking speeds—owing to the

absence of leg compression/extension; completely stiff limbs perform no

work during the vaulting phase. Here, we extend theoretical compass gait

vaulting to include inclines, and find good agreement with previous obser-

vations of changes in walk–run transition speed (approx. 1% per 1%

incline). We measured step length and frequency for humans walking

either on the level or up a 9.8 per cent incline and report preferred walk–

run, walk–compliant-walk and maximum walk–run transition speeds.

While the measured ‘preferred’ walk–run transition speed lies consistently

below the predicted maximum walking speeds, and ‘actual’ maximum

walking speeds are clearly above the predicted values, the onset of compli-

ant walking in level as well as incline walking occurs close to the predicted

values. These findings support the view that normal human walking is con-

strained by the physics of vaulting, but preferred absolute walk–run

transition speeds may be influenced by additional factors.
1. Introduction
Terrestrial locomotion is characterized by distinctive gaits such as walking, trot-

ting and galloping in quadrupeds, or walking and running in bipeds. When

and why a change of gait occurs has been the subject of various studies, with

conflicting reports regarding the importance of energetic cost and mechanical

boundaries as the prevailing factor to induce gait transition [1–7]. Human

adults show a discrete switch from walk to run at a transition speed close to

a Froude number (Fr ¼ V2/(gL), where V is mean speed, g gravity and L leg

length) of 0.5 or a relative velocity V̂ð
ffiffiffiffiffi

Fr
p
Þ of 0.7 [2,3,5,7,8]. We continue to

explore the possibility of a mechanical boundary as gait determiner, following

a path first explored by Alexander [9] and later modified by Usherwood [4].

The compass-gait model is based on the inverted pendular motion of the

centre of mass (CoM) when vaulting over the stance leg. It is reductionist in

its assumption of a point mass representing the body, vaulting over a stiff,

massless leg of constant length and without double support [10]. It is effective

in accounting for midstance forces in walking humans [11]. Computational

analysis shows that under the reductionist conditions, the inverted pendular

motion is indeed the most economic way of walking at low speeds [12].

More level ‘compliant’ walking styles are theoretically [12,13] and demonstra-

bly [14,15] more costly than inverted pendular walking, because the legs

perform work as they deflect under load during much of stance (time when

foot is in contact with the ground).
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The maximum speed at which inverted pendular walking

is possible is restricted by gravity providing sufficient centripe-

tal force to prevent foot take-off or slipping. Alexander [9]

determined the critical speed to be at a Froude number of 1,

a prediction later modified by Usherwood [4] under consi-

deration that take-off conditions are most limiting at the

extremes of leg angle (early and late stance) owing to the com-

bination of increased centripetal force requirements (as the

body moves faster) and a reduced weight component along

an angled leg. Limitations to leg angles based on conditions

at early and late stance lead to a maximum achievable step

length related to speed. Consideration of critical take-off con-

ditions at the extremes of stance and incorporation of step

length lead to a reduction of predicted walk speed limit

down to a Froude number of around 0.5, close to the walk–

run transition not only in humans, but also in a number of

different sized birds [16,17]. Exceeding the boundaries of

inverted pendular walking requires a switch to either running

or a different—usually more compliant—walking strategy.

Here, we expand the compass-gait model of vaulting

stance to walking up a slope, and consider whether reported

[5] and observed decreases in transition speeds with incline

are consistent with the constraints predicted by this exceed-

ingly reductionist model. If this is indeed the case, it would

further support the hypothesis of a simple mechanical limit-

ation as being one of the causal determinants of gait selection.
a

Figure 1. Stance according to the compass-gait model for (a) level and
(b) incline. The CoM (grey circle) vaults over a massless rigid leg of constant
length. Centripetal force requirement (Fcp,blue), the force necessary to keep
the CoM on its circular arc. The component of weight in line with the leg
(mg, red) decreases with leg angle (f ). Slope angle (a); instantaneous CoM
velocity (v); mass (m) and leg length (L). In this example, net speed is the
same on level and incline; however, the weight component along the leg is
only sufficient to maintain compression throughout stance on the level (a),
whereas leg tension is required during early stance (thus compass-gait
walking is impossible) on the incline (b).
2. Material and methods
(a) Compass gait on incline
In compass-gait walking, gravity provides the centripetal

acceleration required to keep the CoM on its arcing trajectory,

and this requirement is most extreme at the limits of stance,

when the gravity component along the leg is also at a

minimum; non-take-off conditions are [4]

v2

L
� g cosf; ð2:1Þ

where v2/L is the centripetal acceleration, v is instantaneous

CoM velocity and f leg angle (angle between stance leg

and vertical).

The compass-gait model can be extended to incline

walking (figure 1). Again assuming that stance follows an

inverted pendulum motion, and the leg does not change

length during vaulting, leg angles must be symmetrical

about the perpendicular to the surface (not gravity). How-

ever, maximum step angles still relate to angles from

vertical (defined by gravity). Thus, maximum step lengths

fall for both incline and decline walking. With similar con-

straints on step frequency, top walking speeds are,

therefore, predicted to decline with greater slope angles.

The non-take-off condition becomes

v2

L
� g cosðfþ aÞ; ð2:2Þ

where a is the slope angle. Exceeding this condition on an

incline is clearly detrimental (see the electronic supplemen-

tary materials, figure S1), resulting in greater collision

losses, and potentially short and brief steps owing to take-

off in early stance. This condition is not expected to constrain

decline walking, both because the implications of take-off are

not detrimental if they occur late in stance, and the benefit of
inverted pendular walking—its economy—may not apply in

cases where energy dissipation is actually desirable.

(b) Experimental set-up
Ten subjects, free of any known pathological disorders, were

studied while walking on a treadmill at increasing speed. The

subjects ranged in age from 19 to 36 years (28.5 + 5.8 years,

mean + s.d.), in body mass from 57 to 99 kg (75.25 + 12 kg),

and in leg length (measured as distance from floor to greater

trochanter of the femur during standing) from 0.87 to 1.04 m

(0.95 + 0.07 m), with five males and five females. Data were

recoded in two sessions. All subjects had previous experience

with treadmill walking and running and had performed 2–3

training trials prior to the day of data collection.

The subjects walked on the treadmill on level and incline

(slope: 9.8%; 5.68). The speed of the treadmill was slowly

increased over time by accelerating the belt at 0.04 m s22 for

1 s every 2 s (mean acceleration over time: 0.015 m s22 ). The

participants were asked to walk at level and incline under

two conditions: (i) switching between walking and running

at their preferred transition speed and (ii) walking as fast as

possible. Five consecutive trials were performed for each
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condition, with conditions selected in random order. A triaxial

accelerometer was positioned at the small of the back of the

participants and data sampled at 600 Hz. Treadmill belt

speed was simultaneously continuously recorded.

(c) Analysis
MATLAB (MathWorks Inc., MA, USA) was used for data proces-

sing. Accelerometer data and speed were filtered using a

Butterworth bandpass filter (cut-offs: 1 Hz, 7 Hz). The amplitude

of vertical acceleration was used to determine gait transitions.

Amplitude increased slightly with walking speed and showed

a distinct increase when switching to running (see the electronic

supplementary material, figure S2a). When walking faster than

preferred, the amplitude reached a maximum, then decreased

sharply, indicating the switch to compliant-walking; it then

increased dramatically at the onset of running (see the electronic

supplementary material, figure S2b). Peak detection was used to

determine an amplitude envelope. A moving average of 15 steps

was applied to the amplitude envelope, and the change from

positive to negative gradient in amplitude envelope defined the

transition to compliant-walking.

Step frequency was calculated using peak detection on

horizontal acceleration; vertical acceleration is inappropriate

as, unlike horizontal, its relationship with phase of step

changes with gait. Step frequency at transition speeds for

walking, compliant-walking and running was defined as

the mode over the 3 s prior to transition. Step length was cal-

culated by dividing treadmill speed by step frequency and

subsequently normalized by leg length. For simplicity, we

do not distinguish here between horizontal and belt-based

speeds or step lengths as, at an incline of 5.68, they differ

by less than 0.5 per cent. Values were averaged within indi-

viduals and subsequently averaged over all participants,

and standard errors are displayed based on the number of

participants. Statistical significance is determined using

ANOVA with participants as random effect conducted in

SPSS (v. 20, IBM, NY, USA). Significance levels were deter-

mined at 95% (see the electronic supplementary material,

tables S1 and S2).
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Figure 2. Compass-gait limits of relative velocity and relative step length for
level (solid black curve) and inclines (dashed and coloured curves), and
various transition speeds. (a) Predicted and all observed transition speeds are
reduced significantly on the incline. Preferred walk – run transition speeds
(diamonds) fall somewhat below the limiting boundaries. Maximum walking
speeds exceed the predicted boundaries (squares, a), but are only achieved
with reduced vertical accelerations indicating compliant-walking. Walk –
compliant-walk transition speeds, and their decrease with incline (circles, a)
are well predicted by compass-gait mechanics. f̂ : multiples of the passive step
frequency assuming a point mass pendular swing-leg of leg length. L̂:
normalized step length (step length/leg length). (b) A more extensive
previous study [5] shows somewhat lower step length at preferred walk – run
transition speed over a range of inclines, but (c) the change in relative
velocity lies within the prediction if either f̂ or L̂ are treated as constant.
3. Results and discussion
The walk–compliant-walk transition indicates the maximum

speed people can achieve without deviation from inverted

pendular walking (red circles, figure 2b). It is remarkably con-

sistent with the boundary predicted by compass-gait

mechanics, despite the many deviations of a human from a

point mass on a stiff stick-leg. Higher speeds (up to blue

squares) are achievable, but are accompanied by a discrete

reduction in vertical acceleration amplitude, indicating a tran-

sition to more CoM flattened, compliant-walking. This gait is

able to exceed the compass-gait speed limit by avoiding the

centripetal acceleration requirements through flattening the

arc taken by the CoM about the foot during each stance.

The extension of the compass-gait model (equation (2.2))

quantitatively accounts for the observed reduction in walk–

compliant-walk transition speed with incline (filled to open

red circles, figure 2a). Preferred walk–run transition speeds

fall well within the compass-gait boundary, perhaps suggesting

some form of ‘safety margin’ as the consequences of exceeding

the limit—potentially a slip and suddenly brief stance resulting

in a trip—may be highly detrimental. That the compass-gait
limits, and the extension to incline walking, is informative to

preferred walk—run transition speeds is supported by the

measurements of Minetti et al. [5]. Again, measured transition

speeds fall well within the predicted boundaries (figure 2b),
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albeit at somewhat different positions from those reported here,

presumably owing to details of methodology. However, changes
in transition speed are not only consistent with the extended

compass-gait boundaries, but are also well and parsimoniously

predicted if step frequency is assumed to be constant. With this

assumption, using level walking conditions as inputs, preferred

transition speed is predicted to fall by approximately 1 per cent

per 1 per cent incline (yellow squares, figure 2b,c); Minetti et al.
observed 5.2 per cent over 5 per cent.
.or
To conclude, gait transitions on an incline provide further

support that ‘normal’ human walking parameters are con-

strained by the mechanics of vaulting, and demonstrate

that treating walking as an ‘inverted pendulum’ gait has

predictive—not merely descriptive—power.
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Laboratory, Kyle Roskilly and John Lowe for their expertize on iner-
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financial support.
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