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Acute rejection (AR) is a common and grave complication of liver

transplantation (LT). The diagnosis of AR is challenging because it has

nonspecific clinical features and requires invasive procedures. Since

extracellular vesicles (EVs) are promising candidates as indicators for

diagnosis of various diseases, this study aimed to identify serum EV

microRNAs (miRNAs) as potential biomarkers for AR in patients subjected to

LT. We collected clinical information and serum samples from the liver

transplant recipients with and without AR (non-AR). EVs from the serum

were isolated via ultracentrifugation and identified using transmission

electron microscopy, nanoparticle tracking analysis, and western blotting. EV

RNAwas extracted and sequenced on an Illumina HiSeq 2500/2000 platform to

identify differentially expressed miRNAs between the groups. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed on the target gene candidates of the differentially

expressed miRNAs to test their functions in biological systems. Then, we

validated 12 differentially expressed miRNAs by quantitative real-time PCR.

The results demonstrated that 614 EV miRNAs were significantly altered

(387 up regulated and 227 down regulated) between non-AR and AR

patients. GO enrichment analysis revealed that these target genes were

related to cellular processes, single-organism processes, biological

regulation, metabolic processes, cells, cell parts, protein-binding processes,

nucleoid binding, and catalytic activity. Furthermore, KEGG pathway analysis

demonstrated that the target genes of the differentially expressedmiRNAs were

primarily involved in ubiquitin-mediated proteolysis, lysosomes, and protein
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processing in the endoplasmic reticulum. miR-223 and let-7e-5p in AR patients

were significantly up-regulated compared to those in non-AR patients, whereas

miR-199a-3p was significantly down-regulated, which was consistent with

sequencing results. The expression of serum EV miRNAs (up-regulated: miR-

223 and let-7e-5p andmiR-486-3p; down regulated: miR-199a-3p, miR-148a-

3p and miR-152-3p) in AR patients was significantly different from that in non-

AR patients, and thesemiRNAs can serve as promising diagnostic biomarkers for

AR in patients subjected to liver transplant.
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Introduction

Liver transplantation (LT) has become the most effective

curative therapy for end-stage liver disease with an irreversible

degradation of liver function. However, serious postoperative

complications remain a major challenge limiting the long-term

success of LT (Meirelles Junior et al., 2015). Rejection is an

immune reaction in which a recipient lymphatic system

recognizes and activates graft-specific antigens and attacks and

damages grafts. Acute rejection (AR) is one of the most common

and intractable complications of graft introduction, with the one-

year incidence rate of 11.5% (age dependent range 9.4%–20.5%)

(Kim et al., 2016; Schütz et al., 2017). It usually occurs within the

first 3 months and affects the function of the transplanted liver

and the prognosis of patients. Traditional methods are affected

by many factors that lack specificity and sensitivity. The gold

standard for diagnosing AR is percutaneous liver biopsy;

however, it still faces the challenge of being invasive and

delayed. The accuracy of pathological diagnosis is affected by

factors, such as the experience level of the observing pathologists

and the sampling quality (Jadlowiec and Taner, 2016; Rastogi,

2022). The onset of symptoms marks the transition from

subclinical to clinical disease, and genetic changes occur

before the onset of clinical symptoms. Therefore, a method to

non-invasively identify early biomarkers at the cellular and

molecular levels is urgently needed to diagnose AR (Krenzien

et al., 2019).

Extracellular vesicles (EVs) are nano-sized membrane

vesicles carrying proteins, mRNAs, and other small RNAs

found in most biological fluids (Thery, 2011). They are

released into the extracellular region by most cell types and

act as mediators in cell-cell communication, modulating various

types of physiological processes, including immune disorders

(Obregon et al., 2006; Valadi et al., 2007; McLellan, 2009; van der

Vlist et al., 2012). They have also shown great potential as

diagnostic or therapeutic tools (Lin et al., 2015). Some studies

also highlighted the role of EVs in the alternation of the immune

response in the field of transplant immunology. T cells release EV

carrying miR-142-3p, which are transferred to endothelial cells

and impair endothelial integrity via down-regulation of

RAB11FIP2 during cardiac allograft rejection (Dewi et al.,

2017). Another study using high-throughput sequencing of

the EV microRNA (miRNA) profile in the peripheral blood

revealed 52 known and 5 conserved EV miRNAs as diagnostic

biomarkers specifically expressed in recipients with delayed graft

function (Wang et al., 2019).

miRNAs play important roles in numerous cellular functions

by mediating gene expression post-transcriptionally. Recent

studies have shown that miRNAs showed different expression

profiles in patients subjected to organ transplantation (Afshari

et al., 2021; Boštjančič et al., 2021). Increasing publications suggests

that miRNAs may serve as potential non-invasive biomarkers for

AR during transplant (Hamdorf et al., 2017; Lin et al., 2021).

miRNAs could be detected in nearly all body fluids (serum, bile,

and urine) and have been proposed to be potential biomarkers for

diagnosis and therapy (Cortez et al., 2011). EV miRNAs may be

more stable and sensitive than circulating free miRNAs. However,

to our knowledge, hardly any studies have reported EVmiRNAs as

biomarkers for AR after LT. Hence, the present study investigated

the hypothesis that differentially expressed immune-related EV

miRNAs may provide key information about allograft status and

can be used as circulatingmarkers for diagnosingAR after LT. This

study also identified functions and signaling pathways of the

differentially expressed EV miRNA target genes. The findings

of this study contribute to the investigation of the feasibility of

EV miRNAs as liquid biopsy biomarkers for patients with AR

after LT.

Materials and methods

Patients and samples

Sixty patients who underwent LT at the First Affiliated

Hospital of Xi’an Jiaotong University between 2016 and

2019 were included in this study (Supplementary Table S1).

Thirty patients were diagnosed with T-cell mediated AR via liver

biopsy using the Banff criteria based on clinical suspicion.

Another 30 transplant patients without AR (non-AR) after

surgery were considered as controls and followed up regularly
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every 2–4 weeks. Every patient received a graft via donation after

a citizen’s death. Informed consent was obtained from all patients

or their legally authorized representatives. This study was

approved by the Ethics Committee of Xi’an Jiaotong

University. Serum samples of patients with AR were collected

immediately after onset, and then, the initial treatment was

carried out. Non-AR sera were obtained on the date matching

patients with AR as much as possible (7–55 days after LT). Serum

samples were divided into a test set (n = 10 each for AR and non-

AR) and a verification set (n = 20 each for AR and non-AR). All

serum samples were stored at −80°C until use.

Extracellular vesicle isolation

EVs were isolated using an ExoQuick™ Exosome

Precipitation Solution (System Biosciences, United States)

according to the manufacturer’s instructions. First, the serum

was centrifuged at 2000 × g for 15 min to remove the cells and cell

debris. The supernatant obtained was diluted in 500 μl

Dulbecco’s phosphate-buffered saline (DPBS) at equal

volumes and then mixed with 252 μl ExoQuick exosome

precipitation solution. After incubation at 4°C for 1 h, the

obtained mixture was centrifuged at 1,500 × g for 0.5 h.

Finally, the supernatant was discarded and EVs pellets were

diluted in 150 μl DPBS.

Extracellular vesicle identification

The EV suspension (10 μl) was loaded onto a copper grid and

was stained with uranyl acetate for 1 min. The grids were washed

and dried with filter paper for 10 min at room temperature, and

the morphology of the EVs was observed under a transmission

electron microscope (Hitachi, Japan) at a voltage of 100 kV. The

average concentration and size distribution of EVs were

determined using nanoparticle tracking analysis (NanoFCM,

China).

Dilutions of the EV suspension were also prepared. Briefly,

10 μl of the original EV suspensions were diluted at 1/10, 1/100,

and 1/1,000. Anti-mouse/rat CD81 antibodies fluorescently

labeled with PE (BioLegend, United States) and APC-

conjugated anti-mouse CD63 antibodies (BioLegend,

United States) were incubated with 100 μl of the diluted EVs

suspensions for 15 min at room temperature in the dark, and the

proportion of CD 81 and CD 63 positive cells was determined

using a flow cytometer (Beckman, United States).

RNA extraction from extracellular vesicle

RNA was extracted from the EV pellets using an Exosomal

RNA Isolation Kit (Norgen, United States), according to the

manufacturer’s protocol. RNA concentration was measured

using Nanodrop 2000 (Thermo Fisher Scientific, United States).

RNA sequencing

Three micrograms of total RNAwas used for the construction of

a small RNA library by a NEBNext® Multiplex Small RNA Library

Prep Set for Illumina® (NEB, United States) according to the

manufacturer’s instructions. Index codes were added to the

attribute sequences of each sample. Agilent Bioanalyzer

2100 system with DNA High Sensitivity Chips was used for

quality check of the library. Clustering of the index-coded samples

was performed on a cBot Cluster Generation System using a TruSeq

SR Cluster Kit v3-cBot-HS (Illumina, United States) according to the

manufacturer’s instructions. After cluster generation, the library

preparations were sequenced on an Illumina HiSeq 2500/

2000 platform and 50-bp single-end reads were generated.

Data processing and bioinformatics
analysis

Briefly, clean reads were obtained from raw data by removing

reads containing adapter dimers, junk, and low-quality reads, and a

certain range of lengths from clean reads was chosen for further

analyses. The small RNA tags were mapped to search for known

miRNAs using miRBase 20.0 as reference. Custom scripts were used

to obtain the miRNA counts and base bias at the first position of the

identified miRNA with a certain length and at each position of all

identified miRNAs, respectively. Novel miRNAs were predicted using

two software packages (miREvo and mirdeep2) by exploring their

secondary structures. Differential miRNA expression analysis was

performed using the DEGseq (2010) R package. A q value <0.01 and
log2 (fold change) > 1 were set by default as the threshold for

significant differential expression. To predict the genes targeted by

the most abundant miRNAs, computational target prediction

algorithms (miRanda 3.3a) were used to identify miRNA-binding

sites. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses were performed to reveal

functions and pathways.

Quantitative real-time PCR

To validate the sequencing results, qRT-PCR was performed

using the SYBRGreen PCR kit (GenStar, China), according to the

manufacturer’s instructions. Assays were performed on AR and

non-AR samples (n = 20 each) for 12 immune-related miRNAs

that met the defined criteria. Each reaction was performed in a

20 μl volume containing 2 μl cDNA, 1 μl each primer, 10 μl SYBR

Green, and 6 μl RNase-free water. All reactions were performed

in triplicate using an IQ5 Multicolor Real-Time PCR Detection
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System (Bio-Rad, United States). The 2−ΔΔCt method was used for

quantitation and U6 was used as the miRNA control. The Ct

value range of qRT-PCR is from 14 to 32, and fold

change <0.5 or >2 was considered to be significantly down-

regulated or up-regulated, respectively. The primer sequences

used are listed in Supplementary Table S2.

Statistical analysis

All experiments were performed in triplicate and statistical

analyses were performeded using GraphPad Prism (San Diego,

United States). For miRNA expression, Student’s t-test was used

to analyze the differences between two independent groups. Data

were reported as the mean ± SD, and p-values < 0.05 was

considered statistically significant.

Results

Clinical information

Immunosuppressive treatment consists of tacrolimus/

cyclosporine, mycophenolate mofetil, and prednisone was

administered to recipients after transplantation to prevent AR.

Basic information regarding the liver transplant recipients is

shown in Supplementary Table S1. We found that the AR and

non-AR patients did not differ significantly in terms of sex,

etiology, Child-Pugh score, model for end-stage liver disease

scores (MELD scores), cold/warm ischemia time, and ABO

compatibility. However, the mean immunosuppressive

concentration in AR patients during the first week of

treatment was significantly lower than non-AR patients (p <
0.05) (Supplementary Table S1). Selected serum samples were

then collected for EV isolation and sequencing analysis to screen

potential biomarkers for the diagnosis of AR (Figure 1).

Extracellular vesicle isolation and
validation

We isolated EV from the serum of all participants by

ultracentrifugation as previously reported (Thery et al., 2006)

(Figure 2A). Transmission electron microscopy revealed the

morphology of the EV isolated from patient serum (Figure 2B),

which was consistent with previous reports. Nanoparticle tracking

analysis revealed an average diameter of approximately 85.52 nm

(Figure 2C), suggesting sufficient EV purification. Flow cytometry

was also performed to detect two commonly used EV protein

markers: CD63 and CD81. The results showed that both protein

markers were highly expressed in the isolated EV (Figure 2D). Taken

together, we confirmed the successful purification of EV from all

serum samples.

Small RNA sequencing analysis

We obtained 13,067,031 and 15,270,653 total reads from non-

AR and AR patients with solexa high-throughput sequencing. After

removing the reads containing poly-N, length <15 or >35, and low-
quality reads, 11,982,753 (91.7%) and 13,990,228 (91.6%) high-

quality clean reads were extracted from the two groups,

FIGURE 1
Schematic illustration of the workflow: From blood collection to analysis and validation.
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respectively (Table 1). The distributions of sequence length were

then analyzed, and a certain length range was selected. The lengths

of the clean reads peaked at 21–22 nt, which are within the range for

miRNAs (Figures 3A,B). Approximately 62% and 18.78% of sRNA

could be mapped to the genome in non-AR and AR patients using

Bowtie software (Langmead et al., 2009) (Table 2). In addition,

density statistics of the reads of each chromosome on the genome of

each sample were determined, and the distribution of the reads on

each chromosome was checked using Circos mapping (Figures

3C,D). Next, the reads of rRNA, tRNA, snoRNA, and other

snRNAs were annotated and removed for subsequent analysis

(Supplementary Figure S1; Supplementary Table S3).

Differentially expressed miRNAs

Mapped small RNA tags and miRBase 20.0 were used to

identify known miRNAs. A total of 515 and 397 mature miRNAs

were identified, respectively (Table 3). miRNA expression levels

were estimated as transcript per million (TPM) and differential

expression analysis was performed between the non-AR and AR

patients (Supplementary Figure S2; Supplementary Table S4;

Supplementary Table S5). Compared to the non-AR patients,

387 miRNAs (including miR-96-5p, miR-1290, miR-19b-3p, and

miR-30b-5p) were significantly upregulated, whereas

227 miRNAs (including miR-134-5p, miR-455-5p, miR-10a-

5p, and miR-194-5p) were downregulated in patients with AR

(Figures 4A,B).

Gene ontology analysis of the candidate
target genes of differentially expressed
miRNAs

Target genes of miRNAs were predicted using RNAhybrid

and miRanda. The distribution of candidate genes of

differentially expressed miRNAs in GO was compared with

that of the references, and the number of genes of the

FIGURE 2
Characterization of EVs. (A)The procedures for EVs isolation used in this study. (B)Morphological characterization of EVs isolated from serum by
transmission electron microscopy. Typical EVs were amplified with red arrows. Scale bar = 100 nm (upper). (C) Average size distribution of EVs was
revealed by nanoparticle tracking analysis. (D) EVs protein markers (CD 63 and CD 81) were identified by flow cytometry.

TABLE 1 Raw data quality control.

Sample Total reads Containing “N”
reads

Low quality Length<15 Length>35 Clean reads

non-AR 13,067,031 0 134 821,015 263,129 11,982,753

AR 15,270,653 0 107 858,714 421,604 13,990,228
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significantly enriched GO terms was counted to determine the

biological functions that were significantly correlated

(Supplementary Table S6). The enrichment results showed

that the target genes were related to cellular processes,

single-organism processes, biological regulation, metabolic

processes, cells, cell parts, protein binding processes,

nucleoid binding, and catalytic activity (Figure 5;

Supplementary Figure S3).

Kyoto encyclopedia of genes and
genomes pathway analysis of the
candidate target genes of the differentially
expressed miRNAs

The target candidate genes were mapped to reference pathways

recorded in the KEGG database to identify the biological pathways

through which the differentially expressed miRNAs were involved

FIGURE 3
The length distribution of the clean reads sequence and location of clean reads on each chromosome. (A,C) non-AR patients. (B,D) AR patients.

TABLE 2 Reads mapping to the reference sequence.

Sample Total reads Mapped reads Mapped reads (+) Mapped reads (−)

non-AR 6,934,287 4,299,581 2,134,476 2,165,105

AR 5,868,860 1,102,076 849,059 253,017

TABLE 3 Known miRNAs obtained.

Sample Mapped Known-miRNAs Mapped Novel-miRNAs Mapped total miRNAs

non-AR 515 862 1,377

AR 397 554 951
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in AR (Supplementary Table S7). KEGG pathway analysis revealed

20 major pathways occupied by the most abundant target genes of

differentially expressed miRNAs. In patients with AR, the target

gene enrichment pathways included ubiquitin-mediated proteolysis,

lysosomes, and protein processing in the endoplasmic reticulum

(Figure 6). These results revealed the potential function of miRNA

targets, whichmay form a regulatory network and play a vital role in

the disease process of AR.

Validation of the potential extracellular
vesicle miRNA biomarkers for acute
rejection

To narrow down the potential candidates, miRNAs were

screened from immune-related literatures published on PubMed

first. Then, 12 hsa-miRNAs with a significant and consistent fold-

change were selected for further validation by RT-qPCR. Notably,

three of these miRNAs (miR-223, let-7e-5p, and miR-486-3p) were

up regulated, whereas miR-199a-3p, miR-148a-3p, andmiR-152-3p

were significantly down regulated, exhibiting a similar trend from

the RNA sequencing data (Figure 7). We then analyzed the

correlation between these differentially expressed miRNAs and

clinical information, and found that miR-223 was positively

correlated with lymphocytes in patients with AR (Table 4).

Discussion

AR is a complex immunological process mediated by a

variety of cells (including lymphocytes, dendritic cells, and

macrophages) and antibodies (Charlton et al., 2018). The

main mechanism for AR may be defined as when the

recipient lymphatic system recognizes and activates graft-

specific antigens, attacks and damages grafts, while humoral

immunity gradually develops (Dogan et al., 2018). Most

biomarkers are proinflammatory factors, immunomodulatory

cytokines, and inflammation-related proteins that could

overlap across diseases (Naesens and Anglicheau, 2018;

Mirzakhani et al., 2019; Kohut et al., 2020). For example, IL-2

promotes proliferation and differentiation of T cells and its

subsets, stimulates the maturation of B cells, and mediates

graft rejection (Holzknecht and Platt, 2000). Cytotoxic T

lymphocytes act as effector cells that mediate graft rejection.

The CD4/CD8 ratio can be used to monitor immune function

since a low CD4/CD8 ratio in graft tissues or serum is associated

with AR (Shenoy et al., 2012). Many clinical trials have shown

that intracellular ATP levels in CD4+ T cells can act as markers

for identifying infection or allograft rejection (Israeli et al., 2008).

However, iATP seems to be more effective in identifying over-

immunosuppressed patients with infection than rejection, and

should be used in combination with other biomarkers to improve

the efficacy of diagnosis (Millan et al., 2009). With the

development of technology, some relatively noninvasive and

continuous detection methods have been developed, such as

cytokines, CD families, and proteomics, among others

(Perottino et al., 2022). Lun et al. (2002) and Chae et al.

(2018) found that IL-2, IL-6, and IL-17 production by T cells

significantly increased during AR. Massoud et al. (2011)

previously screened and found 41 highly expressed proteins

(such as Hsp60, Hsp70, CC1q, CC3, CC4, CD33, and other

immune-activating mediators) in the serum of patients with AR

FIGURE 4
Volcano plot and heat map of differential expressed miRNAs obtained from the comparison of non-AR and AR patients. (A) Each point in the
volcano plot represents onemiRNA. Red points represent upregulated ones, green points represent downregulated ones, and dark points represent
no significant changes inmiRNAs. (B) The abscissa represents different groups, the ordinate represents the differentmiRNAs compared in the groups,
and the color blocks at different positions represent the relative miRNA expressions.
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after LT compared to those with non-AR. After verifying

independent samples, complement C4 was found to be a good

predictor of AR in liver transplant recipients. Besides, many

studies found that graft-derived cell-free DNA acted as a non-

invasive early rejection and graft damage marker for LT (Schütz

et al., 2017; Baumann et al., 2022; Levitsky et al., 2022). However,

these studies are still in the experimental research stage; hence

their detection efficiency is relatively limited and they have not

yet been applied in large-scale clinical practice.

Mounting evidence has proven that miRNAs play critical

roles in immune cell development, immune responses, and

immune tolerance. As novel diagnostic markers, miRNAs

found in EV can be used as noninvasive sensors for acute

and chronic transplant rejection (Hamdorf et al., 2017). The

significance of this potential value in liver transplant rejection

is supported by an animal study conducted by Morita et al.

(2014) They investigated the miRNAs involved in the AR of

liver allografts in mice and found that levels of miR-146a, -15b,

-223, -23a, -27a, -34a, and -451 were significantly increased in

the grafts, while those of miR-101a, -101b, and -148a were

decreased. A study on human renal transplantation that

detected differentially expressed miRNAs found that miR-

223 was overexpressed in AR biopsies compared with that

in normal allograft biopsies (Ledeganck et al., 2019). Indeed,

among the miRNAs overexpressed in AR biopsies, miR-223

levels were the highest; they were also highly expressed in

normal human peripheral blood mononuclear cells (PBMCs).

Further investigation showed that the activation of PBMCs

with the mitogen phytohemagglutinin resulted in a reduction

in miR-223 expression (Anglicheau et al., 2009). Let-7, as a

highly conserved miRNA family, plays an anti-inflammatory

role. Intranasal administration of let-7 mimics reduced IL-13

levels in allergic lungs and alleviated asthma features, such as

airway hyper responsiveness, airway inflammation, and goblet

cell metaplasia (Kumar et al., 2011). In hematopoietic stem cell

transplantation, the study performed by Rachel et al. revealed

that miR-199 expression was lower in the EV fraction of

patients who subsequently developed acute graft-versus-host

FIGURE 5
GO function classification target genes of known differential expressed miRNAs in AR patients compared with non-AR patients. Abscissa: class
classification. The three different classifications represent the three basic classifications of GO terms. From left to right they are biological process,
cellular component, and molecular function.
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disease (aGvHD), verifying the capacity of circulating miR-

199 as a diagnostic and prognostic aGvHD biomarker

(Crossland et al., 2016). To our knowledge, for the first

time in patients subjected to LT, the present study showed

a significant elevation in miR-223 and let-7e-5p levels and a

reduction of miR-199a-3p levels in EV from serum of patients

FIGURE 6
KEGG pathway analysis of the target genes of known differential expressed miRNAs in AR patients compared with non-AR patients. Horizontal
axis: Rich factor. The larger the point, the higher the enrichment degree, the more candidate target genes in this pathway, and the color of the point
correspond to a different q value range. Vertical axis: The definition of the pathway.

FIGURE 7
Validation of differential expressedmiRNAs by qRT-PCR. miRNA expression of fold change detected by qRT-PCR in AR patients compared with
non-AR patients (n = 3, p* < 0.05, p** <0.01, p*** <0.001, ns = no significance).
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with those in AR compared with non-AR. This was consistent

with the results of other studies of immune disorders; hence,

we propose that these EV miRNAs might be novel diagnostic

biomarkers for AR.

Selecting one or more closely associated miRNAs would be

helpful in exploring the role of EV miRNAs in the mechanism

of AR. It is well known that miRNAs regulate gene expression

by targeting mRNAs and act as master regulators of various

signaling pathways. Therefore, the first principle is to select

miRNAs that closely match the genetic background of the

target diseases. AR has been shown to be closely related to

immune disorders. Based on the results of GO enrichment

analysis, we selected 12 miRNAs closely related to immunity

for further experimental validation, of which 3 (miR-223, let-

7e-5p, and miR-199a-3p) were significantly associated with

AR. Second, the choice should be based on KEGG enrichment

analyses. Our present data showed that ubiquitin-mediated

proteolysis, a widespread and important type of protein

regulation at the post-translational level is a reliable

pathway. Thus, miR-223 and miR-199a should be chosen

for further study, as they have been associated with

esophageal squamous cell carcinoma (Kurashige et al.,

2012) and human end-stage dilated cardiomyopathy

(Baumgarten et al., 2013). However, this study had some

limitations. First, we did not examine the correlation

between the target genes and candidate miRNAs in patients

with AR. This may help explain how EV miRNAs affect the

expression of target genes and potential signaling pathways,

and will be addressed in our future research. Second, the

sample size was relatively limited, so further research

involving more samples or establishing multicenter

collaboration would be beneficial. Moreover, single

biomarkers have insufficient sensitivity and specificity.

Therefore, multiple biomarker panels, such as patient

clinical manifestations, laboratory results, and other

biomarkers, could provide a more robust diagnosis of AR

in LT. We hope that our results may provide a reliable serum

biomarker for diagnosing AR and uncovering its potential

molecular mechanisms in the future.

Conclusion

In conclusion, this study was the first attempt to screen

EVs-based biomarkers for patients with AR after LT, and we

analyzed the analyzing differential miRNA expression profiles

through high-throughput sRNA sequencing and experimental

validation. The expression levels of serum EV miRNAs (up-

regulated: miR-223 and let-7e-5p and miR-486-3p; down

regulated: miR-199a-3p, miR-148a-3p and miR-152-3p) in

patients with AR are significantly different from those in

patients with non-AR and can serve as promising

diagnostic biomarkers for AR in patients subjected to liver

transplant.
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miRNAs and Clinical Information.

Parameter miR-223 let-7e miR-199a-3p

r p value r p Value r p value
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