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According to Fisher’s principles, an experimental field is typically divided into multiple blocks for local con‐
trol. Although homogeneity is supposed within a block, this assumption may not be practical for large blocks,
such as those including hundreds of plots. In line evaluation trials, which are essential in plant breeding, field
heterogeneity must be carefully treated, because it can cause bias in the estimation of genetic potential. To
more accurately estimate genotypic values in a large field trial, we developed spatial kernel models incorpo‐
rating genome-wide markers, which consider continuous heterogeneity within a block and over the field. In
the simulation study, the spatial kernel models were robust under various conditions. Although heritability,
spatial autocorrelation range, replication number, and missing plots directly affected the estimation accuracy
of genotypic values, the spatial kernel models always showed superior performance over the classical block
model. We also employed these spatial kernel models for quantitative trait locus mapping. Finally, using field
experimental data of bioenergy sorghum lines, we validated the performance of the spatial kernel models.
The results suggested that a spatial kernel model is effective for evaluating the genetic potential of lines in a
heterogeneous field.

Key Words: spatial kernel, field heterogeneity, variety evaluation trial, genetic potential, genomic selection,
bioenergy sorghum.

Introduction

Field heterogeneity can often be a confounding factor in
agronomical field experiments, such as variety evaluation
trials. Therefore, Fisher’s principles of experimental
design, namely (1) replication, (2) randomization, and (3)
blocking (local control), are essential for correctly inter‐
preting the results of field experiments (Fisher 1935).
According to Fisher’s principles, multiple plots assigned to
a variety are located in separate randomized blocks. In
genotype evaluation trials, large blocks containing plots of
all genotypes are often treated as a single replication unit
(i.e., the complete block design), and the effects of the
blocks are statistically estimated based on the assumption
that the field is homogenous within a block.

However, field heterogeneity can exist even within a
block (Gusmão 1986). Therefore, spatial analysis is neces‐
sary for capturing the heterogeneity within a block in addi‐
tion to that among blocks. A study by Cullis and Gleeson
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(1991) was the first to put forth a practical model for the
two-dimensional spatial analysis of field experimental data.
Subsequently, Gilmour et al. (1997) distinguished the com‐
ponents of field heterogeneity using an extended statistical
model. Their study revealed that spatial variations over a
field are mainly derived from (1) global heterogeneity, (2)
highly local (natural) heterogeneity, and (3) artificial (extra‐
neous) procedures. Although the contributions of these fac‐
tors might vary across trials, spatial correlation patterns
among neighboring plots can be captured using geostatisti‐
cal modeling.

Geostatistical modeling has been applied to spatial vari‐
ability analyses in agronomical fields since the 1980s
(Vieira et al. 1983). Several studies showed that spatial
analysis improved the interpretation of plant breeding trial
data, something that is crucial for highly efficient selection
(Duarte and Vencovsky 2005, Wu et al. 1998). To appropri‐
ately select superior genotypes, genotypic values must be
accurately estimated based on massive phenotypic data
obtained from breeding trials. In genomic selection (GS),
genotypic values estimated based on phenotypic data are
required for training a prediction model based on genome-
wide markers (Meuwissen et al. 2001), and such models
can then be used for predicting the genotypic values of
non-phenotyped genotypes. Lado et al. (2013) reported the
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efficiency of spatial analysis in obtaining better estimates
of genotypic values for GS. Similarly, Bernal-Vasquez et al.
(2014) examined the efficiency of spatial analysis as the
first stage of GS. Although these studies employed spatial
analysis to estimate the prerequisite genotypic values for
GS, they did not employ prediction models combined
directly with spatial analysis.

To the best of our knowledge, a study by Elias et al.
(2018) was the first to incorporate spatial analysis into GS
models for considering field heterogeneity. In their model,
a spatial kernel, transformed from physical distance on the
field, was simultaneously fit with a genomic kernel based
on genome-wide markers. GS models combining spatial
analysis significantly increase the prediction accuracy
based on simulated as well as real data. Because each field
has specific heterogeneity, which can be expressed using
approximate covariance structure, various spatial kernels
based on different covariance structures should be exam‐
ined for agronomical field experiments (Richter and
Kroschewski 2012). For the practical utilization of GS
models with spatial analysis, the effects of factors specific
to agronomical fields, such as trait heritability, spatial auto‐
correlation range, replication number, and missing plots,
should also be validated.

To this end, in the present study, we comprehensively
assessed the efficiency of GS models with spatial analysis
through a simulation study and validation with real data. As
opposed to the classical block model in which field homo‐
geneity is assumed within a block, we focused on the
robustness of the spatial kernel models. Furthermore, we
investigated whether GS models combined directly with
spatial analysis were more efficient than the ones combined
indirectly with spatial analysis, such as the models devel‐
oped by Lado et al. (2013) and Bernal-Vasquez et al.
(2014). Moreover, we proposed the application of the
developed spatial GS models for quantitative trait locus
(QTL) mapping. Finally, we validated the developed spatial
GS models using a dataset from a field experiment with
bioenergy sorghum [Sorghum bicolor (L.) Moench] lines.

Materials and Methods

Marker data for the simulation study
For the simulation study, we utilized the marker score

data of diverse rice germplasm (Dilla-Ermita et al. 2017)
available at https://snp-seek.irri.org/ (accessed on June 25,
2021). The marker score data included 248 accessions and
40,840 markers with missing records. We imputed missing
genotypes using Beagle v4.0 (Browning and Browning
2007). After imputation, we filtered out the markers with
high heterozygosity (more than 20%) because the marker
genotypes of the germplasm were expected to be homozy‐
gous. From the 248 accessions, we selected 200 accessions
for a balanced design in the simulation study. Then, we fil‐
tered out markers with low minor allele frequency (below
5%) and those that exhibited a strong linkage (r2 > 0.8) to

other markers on the same chromosome, retaining markers
that appear earliest in ascending order of their physical
positions. Finally, the marker score data chosen for the sim‐
ulation study contained 200 accessions and 7,913 markers.

QTL settings for the simulation study
In the simulation study, QTLs were assumed to be

located on markers. The number of QTLs was fixed at 20
through all simulations because it did not influence the esti‐
mation accuracy of genotypic values in a preliminary anal‐
ysis. Although the detection power in QTL mapping might
be influenced by the number of QTLs, we performed all
simulations with 20 QTLs in this study to focus on the esti‐
mation of genotypic values. The markers on which QTLs
were located were randomly selected in each simulation.
Moreover, we did not consider linkage disequilibrium (LD)
among markers for QTL mapping (i.e., multiple QTLs in
LD could be included). The effect of each QTL was ran‐
domly generated to ensure a normal distribution (mean of 0
and standard deviation of 1). Only the additive effect was
considered at each QTL (no dominance and epistasis).
Genotypic values of the 200 rice accessions were calculated
based on the marker scores and simulated marker effects
and referred to as the “true” genotypic values. The follow‐
ing formula was used:

ɡi = ∑
j = 1

J
Qi ja j,

where ɡi is the true genotypic value of the ith accession; J is
the number of QTLs (n = 20); Qij is the score of ith acces‐
sion for the marker on which the jth QTL is located, which
is represented as [–1, 0, 1]; and aj is the genetic effect of
the jth QTL.

Simulated field layout
We simulated multiple blocks located in a field with each

block as a replication unit. A single block comprised 200
plots, arranged in 10 rows (Y-axis) and 20 columns (X-
axis). The rows and columns were assumed to have the
same scale. Each plot included a single accession, that is,
one set of 200 accessions was located in each block. In
each simulation, the 200 accessions were randomly
assigned to plots in each block using the randomized com‐
plete block design. To examine the effects of replication
numbers, simulation studies were performed with two or
four replication blocks. In the simulation study with two
blocks, the field comprised 10 rows and 50 columns, and
the two blocks were located along the X-axis (the space
between the blocks was 10 columns). In the simulation
study with four blocks, the field comprised 26 rows and 50
columns, and the four blocks were located along both X-
and Y-axes (the space between the blocks was 6 rows and
10 columns, respectively).

To investigate the effects of missing data on the model‐
ing of field heterogeneity, we performed simulations with
0%, 20%, and 50% missing plots. Missing plots were
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randomly selected from across the field in each simulation.
Simulations with missing data were only performed with
four replication blocks.

Simulation of field heterogeneity
Field heterogeneity was simulated using two variables,

namely heritability (h2) and spatial autocorrelation range. In
this study, low (20%) and intermediate (50%) heritability
estimates were examined because preliminary analysis
revealed that 80% heritability was rather high for spatial
analysis. We assumed that the phenotypic values were
affected by (1) random noise and (2) spatial autocorrela‐
tions in heterogeneity among neighboring plots, in addition
to heritability. Random noise represents any factors specific
to each plot that are not explicitly explained (e.g., the mea‐
surement error). Spatial autocorrelations in heterogeneity
represent fluctuations in biotic (e.g., insect damage) and
abiotic (e.g., fertilization and irrigation) conditions and are
the main target of this study. We assumed that the effects of
random noise explained 20% of the phenotypic variation
under 50% h2, while field heterogeneity explained other
non-genetic variations (30%). Under 20% h2, three condi‐
tions for random noise (20%, 40%, and 60%) were exam‐
ined, which corresponded to the proportion of spatial
variance (i.e., the degree of field heterogeneity) at 60%,
40%, and 20%, respectively.

The effect of field heterogeneity, which was designated
as the spatial effect, was assessed for each plot. Phenotypic
values were calculated using the following formula:

yk = ɡk + qk + ek,

where yk is the phenotypic value of the kth plot across
blocks; ɡk is the genotypic value of the accession assigned
to the kth plot; qk is the spatial effect of the kth plot; and ek is
the unexpected effect of the kth plot. The vectors q and e
correspond to field heterogeneity and random noise, respec‐
tively.

The spatial effect q was assumed to be autocorrelated
among neighboring plots. In all simulations, we generated
spatial effects based on the variogram γ, which defines the
dissimilarity between two plots in a field. In the random
field (RF) approach, the variogram model γ can be derived
from a corresponding covariance function C:

γ ℎ = C0 1 − Cℎ ,

where h is the Euclidean distance between two plots along
the X- and Y-axes. Nugget effects, which are attributed to
non-spatial variance, were not included in the model.
Although we used C0 = 0.025 as the sill (the maximum
value of γ), the value did not reveal any importances in this
study, because the simulated spatial effect was scaled to
heritability. We examined variogram models based on three
covariance functions: exponential, Gaussian, and spherical,
which are described as follows:

Cℎ(exponential) = exp −ℎ
a ,

Cℎ(Gaussian) = exp −ℎ2

a2 ,

Cℎ spℎerical = 1 − 1.5 ℎ
a + 0.5 ℎ3

a3  if  ℎ ≤ a; else 0,

where a is the range parameter for adjusting the dissimilar‐
ity together with plot distance. We examined two range
parameters: “narrow” (a = 5) and “wide” (a = 30). The
larger the value of a is, the more correlated the spatial
effects between distant plots are. Only the 20 nearest obser‐
vations were used for the simulation instead of all plots
(i.e., local kriging). We assumed that heterogeneity is
stretched across the field with no tendencies toward rows or
columns (i.e., isotropy). Based on the variogram γ, the spa‐
tial effect q was generated, which was scaled to heritability
based on the variance of q. The variogram model was
implemented with gstat (Gräler et al. 2016) in R (R Core
Team 2019).

The random noise e was assumed to follow a normal dis‐
tribution with a mean of 0. As mentioned above, the stan‐
dard deviation of e was adjusted to correspond to the
heritability setting of each simulation.

Simulations of field heterogeneity were run 50 times for
each different condition (i.e., variogram models, blocks, the
levels of heritability, spatial autocorrelation ranges, and
random noises).

Statistical models for simultaneous estimation of marker
and spatial effects (one-step method)

To simultaneously estimate spatial and marker effects,
we employed the following formula:

yk = μ + ∑
z = 1

Z
Mkzaz + qk + ek, (1)

where yk is the phenotypic value of the kth plot across
blocks; μ is the mean value across all plots; Z is the number
of markers (n = 7913); Mkz is the scaled and centered
marker score of accession assigned to the kth plot at the zth

marker; az is the genetic effect of the zth marker; qk is the
spatial effect of the kth plot; and ek is the residual [where
e N(0, Iσe

2) ].
For estimation of the marker effect a, BayesB was used

as the prior (Meuwissen et al. 2001). In BayesB, the distri‐
bution of marker effects is assumed to follow two-
component mixtures, with a point of mass at zero and a
scaled t-slab. The proportion of markers with a non-zero
effect is specified by π, which follows the beta distribution
in the range [0, 1].

The spatial effect q, was assumed to follow the distribu‐
tion q ∼ N(0, Kσq

2) . K is an n × n spatial kernel matrix,
where n is the total number of plots in the field. Elias et al.
(2018) examined three kernel functions [Gaussian (gaus),
power, and spherical (sph)] for K. The three models reflect
a specific spatial correlation between plots, which were
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tested together in another study on field heterogeneity
(Richter and Kroschewski 2012). In addition to these ker‐
nels, we examined the exponential (expo) kernel. The expo
and power models are different parameterizations of essen‐
tially the same model (Piepho et al. 2015). The formulas
for these models are as follows:

expo = exp
−Skr

ℎ ,

gaus = exp
−Skr

2

ℎ2 ,

power = f Skr,

spℎ = 1 − 1.5
Skr
ℎ + 0.5

Skr
3

ℎ3 if Skr ≤ ℎ ; else 0,

where Skr is the component of an n × n spatial distance
matrix (S) and h or f is a hyperparameter for standardiza‐
tion. Skr was calculated as the Euclidean distance between
the kth and rth plots using the following formula:

Skr = rowk − rowr
2 − columnk − columnr

2,

where rowk and rowr are the row numbers and columnk and
columnr are the column numbers of the kth and rth plots.

The extent of correlation in kernel structures changes
with the hyperparameters (Elias et al. 2018). Generally,
correlations are closer to zero under small hyperparameters
in any model and vice versa. The extent of dependence on
hyperparameters is relatively strong for the gaus and power
kernels but mild for the expo and sph kernels. The value of
h ranges from 0 to the maximum value of the factors of S
(max

k, r
Skr) , while the value of f ranges from 0 to 1. The

optimal values of h and f depend on datasets. Based on pre‐
liminary analysis, we selected three values covering the
ranges of h and f, which were sufficient for determining the
appropriate hyperparameter. For h, we examined three val‐
ues, H1–H3, which were calculated using the following for‐
mula

ℎ = max S
32 x2,

where x = 1, 2, or 3. Similarly, for f, we examined three val‐
ues, F1–F3, which were calculated using the following for‐
mula

f = 1.001 − x
3

3
,

where x = 3, 2, or 1. When h or f→0, the correlation is close
to zero even between neighboring plots. On the contrary,
when ℎ max

k, r
Skr or f 1, even farther plots are closely

correlated with one another.
For comparison with the field heterogeneity models

based on the spatial kernel K, we also examined the perfor‐

mance of a classical block model that treats each block as a
single replication unit. The model is described using the
following formula:

yk = μ + ∑
z = 1

Z
Mkzaz + be + ek, (2)

where be is the random effect of the eth block when the kth

plot is located in the eth block. The block effects b follow
the multivariate Gaussian distribution N 0,  Iσb

2  , where σb
2

follows a scaled inverse chi-square distribution.
The genotypic value of the ith accession, ɡi , was calcu‐

lated as ɡi = μ + ∑z = 1
Z Mizaz . The estimation accuracy of

genotypic values is the average value of correlation coeffi‐
cients between ɡ and ɡ with 50 simulations. In the simula‐
tion study, the optimum value of the hyperparameter (h or
f) can be determined based on estimation accuracy because
ɡ is obvious.

To infer the QTL detection power, we used the estimated
marker variances, which were calculated as the variance of
the genotype score × estimated effects of markers, v
[vz = var(Mzaz)]. The total genetic variance was calculated
as the variance of estimated genotypic values. Only mark‐
ers over the 99.5 percentile of the empirical distribution of
the estimated variances of marker effects, which corre‐
sponded to the top 40 markers with high variances, were
selected to examine associations with QTLs. Considering
LD around QTLs, we assumed that QTLs were detected
when the top 40 markers were located within 500 kbp from
the true QTL. If several QTLs were located within 500 kbp
from the markers, we judged that all QTLs in the region
were detected. Other markers located away from any QTL
were classified as false positives. We used the average val‐
ues of QTL detection power (%, detected QTLs/20 simu‐
lated QTLs) and the false-positive rate (%, markers not
associated with any QTL/the top 40 markers) over 50 simu‐
lations.

Statistical models for the estimation of spatial effects fol‐
lowed by marker effects (two-step method)

The one-step method described above can be divided
into two steps, i.e., (1) the estimation of block effects and
(2) the estimation of marker effects, in that order. To evalu‐
ate the efficiency of the one-step method, we examined the
performance of the two-step method. The formulas for the
first step are as follows:

yk = μ + dk + qk + ek spatial kernel models , (3)

yk = μ + dk + be + ek block model , (4)

where dk is the genotype effect assigned to the kth plot. The
genotype effect d was assumed to follow the multivariate
normal distribution N 0, Wσd

2  . W is an n × n (where n is
the number of plots) binary matrix, in which the factor Wkr
is 1 when the same genotype is assigned to the kth and rth

plots, while Wkr is 0 in other cases. The estimated line
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value p is calculated as pi = μ + dk (the ith genotype is
assigned to the kth plot).

The second step can be solved using the elements of p as
the values of a response variable, as follows:

pi = μ + ∑
z = 1

Z
Mizaz + ei. (5)

The estimated genotypic value ɡ can be calculated in the
same manner as in the one-step method. All one-step and
two-step methods were implemented using the BGLR
package in R (Pérez and de los Campos 2014). The poste‐
rior density was calculated based on 15,000 sampling itera‐
tions, in which the first 5,000 samples were discarded.

Field experimental data of bioenergy sorghum lines
To validate the performance of the developed spatial ker‐

nel models, we applied the one-step method to field experi‐
mental data of bioenergy sorghum lines. The experiment
comprised a breeding line evaluation trial on marginal
lands located in Mexico (Ishimori et al. 2020). Although
the experiment was performed for 3 years (2013 to 2015),
field data obtained in 2014 alone were used in this study.
Sorghum plants were grown under standard fertilization
conditions [N:P:K = 17:60:50 (kg·ha–1)] for bioenergy
sorghum.

The experiment included 598 genotypes (inbred lines
and F1 hybrids). We employed the randomized complete
block design without check varieties in the experiment;
however, the design could be treated as an incomplete
block design because there were some missing plots. We
set two blocks (A and B) in the experimental field, each
including 598 plots (totaling 1,196 plots), with one variety
assigned to each plot. The block comprised 23 rows (Y-
axis) and 27 columns (X-axis). The two blocks were
aligned along the X-axis, with three additional columns
arranged between the blocks. Each row comprised a ridge
across the blocks for drip irrigation. To reduce border
effects, we planted one genotype between rows and around
the borders of the blocks.

Each plot included five plants. The phenotypic value was
calculated as the mean value of two healthy plants from
each plot. Although the spatial distance between the plots,
S, was calculated in the same manner as that in the simula‐
tion study, we used a real scale (m) along both X- and Y-
axes on a two-dimensional field as follows:

Skr = Xk − Xr
2 + Y k − Y r

2 .

The distance between two neighboring plots was
0.9 × 1.5 m, measured from the center of the plots. The
minimum and maximum distances between two plots over
the field were 0.9 and 60.2 m, respectively.

Because the true genotypic values are unknown for the
real dataset, the optimal hyperparameter (h or f) is also
unknown for the estimation of genotypic values. Therefore,
we used the kernel averaging approach proposed by de los

Campos et al. (2010). The formula for a one-step method is
as follows:

yk = μ + ∑
z = 1

Z
Mkzaz + ∑

t = 1

T
qkt + ek, (6)

where qkt is the spatial effect of the kth plot evaluated by the
spatial kernel Kt with the tth value of the hyperparameter
qt ∼ N 0, Ktσqt

2  . The kernel averaging approach is equiv‐
alent to a model (1) with a single kernel for the spatial
effect if variance components are known, suggested by de
los Campos et al. (2010). We used the kernel averaging
approach with the three values of the hyperparameter (H1–
H3 or F1–F3). The performance of the kernel averaging
approach was also validated in the simulation study.

To validate the optimal spatial kernel model for field het‐
erogeneity in the real dataset, we performed 20 simulations
of 5-fold cross-validation (CV). All genotypes, but not
plots, were randomly divided into five subsets. Each subset
included two plots to which a genotype was allocated when
there were no missing data. In one CV round, four subsets
were used for training the model and one subset was used
for validation. A set of predicted phenotypic values across
all plots was obtained after the completion of a CV round.
The predicted phenotypic values of plots y  were calcu‐
lated as follows:

yk = μ + ∑z = 1
Z Mkzaz + qk (the spatial kernel models)

yk = μ + ∑z = 1
Z Mkzaz + be (the block model).

The correlation coefficients between phenotypic values
from the real dataset and the predicted phenotypic values
from each CV round were calculated, and then mean values
across 20 simulations were used to decide the optimal spa‐
tial model. Using the optimal model, we estimated the spa‐
tial and marker effects on data from all plots. Other
procedures were following the simulation study. In this
study, two traits, culm juice Brix and culm length, were
used for model validation.

Detailed descriptions of marker score data are available
in Ishimori et al. (2020). For this study, we modified the
conditions to filter out markers under high LD; the thresh‐
old of r2 > 0.95 between two markers (the original paper)
was changed to r2 > 0.8. The number of markers was 4,642
in this study.

Results

Effects of heritability, spatial autocorrelation range, and
replication number

The simulation of field heterogeneity based on the expo‐
nential variogram model, with four replication blocks, is
illustrated in Fig. 1. We also simulated field heterogeneity
based on the Gaussian and spherical variogram models
(Supplemental Fig. 1).
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The results of simulations based on the exponential
variogram model are shown in Fig. 2. The effects of h2 and
replication number on the estimation accuracy of genotypic
values were evident. With 50% h2 and four replications, the
estimation accuracy was high using all one-step models.
The estimation accuracy generally decreased when either
condition was changed (20% h2 or two replications). More‐
over, the spatial autocorrelation range affected the estima‐
tion of genotypic values. The estimation accuracy increased
when the spatial autocorrelation range was wide. In particu‐
lar, the effect of spatial autocorrelation range was observed

with 20% h2 and two replications.
With any condition of these factors, the four spatial ker‐

nel models always represented higher estimation accuracy
than the block model (Fig. 2). With 20% h2, the spatial ker‐
nel models were evidently superior to the block model.
Meanwhile, with 50% h2, the difference in estimation accu‐
racy between the block and spatial kernel models was rela‐
tively small. There were no evident differences in accuracy
among the four spatial kernel models.

In simulations based on the Gaussian and spherical vario‐
gram models, the influences of h2, replication number, and

Fig. 1. Spatial analysis of field heterogeneity in a simulation based on an exponential variogram model. The example field has four experimen‐
tal blocks (A–D) for replication. The true value, which was generated in each simulation, is shown in the upper left panel. In the block model
(the upper central panel), the spatial effect of plots was estimated to be identical within a block. In spatial kernel models [exponential (expo),
Gaussian (gaus), power, and spherical (sph)], the spatial effect is estimated for each plot.

Fig. 2. Effects of replications on the estimation accuracy of genotypic values (one-step method). The simulation study was performed with
different conditions for three factors: replication number (two or four), spatial autocorrelation range (narrow or wide), and heritability (20% or
50%). Here, the variogram model (exponential) and random noise (20%) were fixed. For each simulation, genotypic values were estimated with
five statistical models. The estimation accuracy is the mean value of 50 simulations. Error bars show the standard error. h2: heritability. block,
block model; expo, exponential model; gaus, Gaussian model; power, power model; sph, spherical model.
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spatial autocorrelation range on genotypic value estimation
were similar to simulations based on the exponential vario‐
gram model (Supplemental Fig. 2). Likewise, the spatial
kernel models had higher estimation accuracy than the
block model. The differences among the spatial kernel
models were small. The influences of spatial variance size,
missing plots, and estimation method were also similar
among simulations based on different variogram models
(data not shown). Therefore, we only describe the results of
simulations based on the exponential variogram model in
the following sections.

Influences of spatial variance size
To determine if spatial analysis depends on the size of

spatial variance, we performed simulations with different
spatial variance sizes under 20% h2. The estimation accu‐
racy of genotypic values using the spatial kernel models
was positively related to the size of spatial variance (Sup‐
plemental Fig. 3). In contrast, the estimation accuracy
using the block model was similar upon using different spa‐
tial variance sizes.

Robustness of the one-step method with missing plots
Compared with simulations without missing plots, the

estimation accuracy of genotypic values decreased with
missing plots in all one-step models (Fig. 3). The missing
plot rate directly affected the estimation accuracy. The esti‐
mation accuracy decreased to a much greater extent when
50% of the plots were missing than when 20% of the plots
were missing. Similarly, h2 affected the estimation accu‐
racy; estimation accuracy was lower with 20% h2 than with
50% h2.

Under the narrow spatial autocorrelation range, the dif‐
ference in estimation accuracies under different missing
plot rates between the block and spatial kernel models was
small. In contrast, under a wide spatial autocorrelation
range, the missing plot rate negatively affected the estima‐

tion accuracy of the block model to a greater extent than
that of the spatial kernel models.

In two conditions with the same plot numbers (i.e., the
same sample size), the spatial kernel models with no miss‐
ing plots showed better performance in the estimation of
genotypic values (Supplemental Fig. 4).

Comparison between one-step and two-step methods
To compare the performances of the one-step and two-

step methods in the estimation of genotypic values, we
examined their estimation accuracy (i.e., the correlation
coefficient) and root mean square error (RMSE) under the
same conditions. There was no difference in estimation
accuracy based on the correlation coefficient of the two
methods under any condition (statistical model, h2, and spa‐
tial autocorrelation range) (Fig. 4A). In contrast, the one-
step methods had smaller RMSE values than the two-step
methods (Fig. 4B). Using the two-step methods, the esti‐
mated genotypic values could be more severely shrunk than
using the one-step methods (Supplemental Fig. 5).

QTL detection power of the one-step method
Using the spatial kernel models developed in this study,

spatial and marker effects were simultaneously estimated.
In the simulation study, the QTL detection power was cal‐
culated by analyzing the estimated marker variances of
simulated QTLs (Fig. 5A). h2, spatial autocorrelation range,
and replication number directly affected QTL detection
power and the false-positive rate (Fig. 5B, 5C). Under all
conditions, the spatial kernel models showed higher QTL
detection power and a lower false-positive rate than the
block model.

Spatial analysis of real sorghum data
To examine whether the spatial kernel models can cap‐

ture unknown field heterogeneity in real data, we employed
the spatial kernel models to a sorghum dataset obtained

Fig. 3. Robustness of the one-step method in the presence of missing plots. We examined two plot missing rates (20% or 50%). Missing plots
were randomly introduced across four blocks. Here, the variogram model (exponential), replication number (four), and random noise (20%)
were fixed. Genotypic values were estimated with the one-step method. The estimation accuracy of genotypic values (%) was calculated and
compared between the presence or absence of missing plots. The accuracy difference is the mean value of 50 simulations. Error bars show the
standard error. h2: heritability. block, block model; expo, exponential model; gaus, Gaussian model; power, power model; sph, spherical model.
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from a field experiment with two blocks (A and B). In this
experiment, two important traits of bioenergy sorghum,
namely culm juice Brix and culm length, were examined.
The kernel averaging approach was comparable to the
single spatial kernel model for the estimation of genotypic
values in the simulation study (Supplemental Fig. 6).
Therefore, we employed the kernel averaging approach to
investigate the sorghum data. We calculated the correlation
coefficients between true phenotypic values from real data
and predicted phenotypic values from five CV rounds to
evaluate the spatial kernel models. The spatial kernel mod‐
els explained the phenotypic variations more accurately
than the block model did (Fig. 6A). Although the spatial
kernel models except sph exhibited similar correlation
coefficients, the gaus model was the optimal model for
both Brix and culm length. The spatial effects estimated by
the gaus model are depicted in Fig. 6B. For both traits, the
spatial effects changed continuously along the X-axis over
the field. In particular, high field heterogeneity was observed
within block B. Manhattan plots were used to present
marker variance estimated by the block and gaus models
(Fig. 6C). No distinct biases between the two models were
observed in terms of the estimation of marker variance,
although the estimates were slightly different (Fig. 6D).

Discussion

Field heterogeneity can occur due to various natural factors
and artifacts, creating spatial variations. Eccleston and Chan
(1998) proposed a model to detect field heterogeneity,
while considering several sources of spatial variations, such
as the effects of rows and columns as well as other smooth
trends. In fact, appropriate models for individual trials must
be evaluated due to the complexity of field heterogeneity.
Stefanova et al. (2009) emphasized that diagnostic investi‐
gations are necessary to select appropriate models.

In the present study, four spatial kernel models (expo,
gaus, power, and sph) were developed and their perfor‐
mances were examined. These spatial kernel models were
always superior to the classical block model in the simula‐
tion studies. Although specific factors in agronomical field
experiments greatly affected the estimation accuracy of
genotypic values, the robustness of the developed spatial
kernel models was evident, specifically under unfavorable
conditions (low heritability and few replications) (Fig. 2).
In the spatial kernel models, a decrease in the estimation
accuracy due to missing plots was also suppressed to some
extent, particularly under a wide autocorrelation range

Fig. 4. Comparison of the estimation accuracy (A) and root mean square error (B) of genotypic values between the one-step and two-step
methods. Here, the variogram model (exponential), replication number (four), and random noise (20%) were fixed. The estimation accuracy is
the mean value of 50 simulations. Error bars show the standard error. RMSE: root mean square error, h2: heritability. block, block model; expo,
exponential model; gaus, Gaussian model; power, power model; sph, spherical model.
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(Fig. 3). Therefore, the developed spatial kernel models
appear to be more advantageous in the presence of high
field heterogeneity within a block. Such a situation is often
observed in fields with large blocks or block misalignments
(Stroup et al. 1994). In plant evaluation trials with numer‐
ous genotypes (varieties/lines), an experimental design with
no replications might be schemed (Wu et al. 2013). The
developed spatial kernel models can capture field hetero‐
geneity even under these conditions, which cannot be sim‐
ply solved using the classical block model.

We simulated field heterogeneity based on three vario‐
gram models: exponential, Gaussian, and spherical (Fig. 1,
Supplemental Fig. 1). These variogram models correspond

to the covariance function of three spatial kernel models:
expo, gaus, and sph. Nevertheless, we did not observe the
advantage of corresponding spatial kernel models (e.g., the
expo kernel models under simulations based on the expo‐
nential variogram model). In addition to variogram models
used in simulation studies, the degrees of heritability and
spatial variance might influence the superiority of spatial
kernel models in different ways (Elias et al. 2018).

For the missing plots, spatial kernel models also had the
advantage over the block model (Fig. 3). The effect of
missing plots was not only due to the decrease in plot num‐
ber (i.e., sample size) but also other factors (Supplemental
Fig. 4). Field heterogeneity might increase in a large field

Fig. 5. QTL detection power of the one-step method. (A) Estimation of marker variances in a simulation study. QTLs were randomly located
on 20 markers across chromosomes (vertical dashed lines). Simulated (red circles) and estimated (blue, exponential model; green, block model)
marker variances are shown as the relative values to total genetic variance. (B) QTL detection power of the one-step method. (C) False-positive
rate for the QTL study. The QTL detection power and false-positive rate are the mean values of 50 simulations. Error bars show the standard
error. h2: heritability. block, block model; expo, exponential model; gaus, Gaussian model; power, power model; sph, spherical model.
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with missing plots in comparison with that in a small field
with no missing plots even if the same sample size is main‐
tained. Additionally, the replication number may be un‐
balanced for a genotype in fields with missing plots. Our
results show the potential of the spatial kernel models in
experiments with many missing plots.

Spatial analysis has been incorporated into GS indirectly
(Bernal-Vasquez et al. 2014) as well as directly (Elias et al.

2018). Our results showed that the differences between the
one-step (direct) and two-step (indirect) methods were
small for the estimation accuracy of genotypic values based
on the correlation coefficient in field simulations (Fig. 4A).
The estimated genotypic values from the two-step methods,
however, had larger RMSE than the estimated values of the
one-step methods due to the shrinkage effect (Fig. 4B, Sup‐
plemental Fig. 5). Nevertheless, the spatial kernel models

Fig. 6. Spatial analysis of experimental field data of bioenergy sorghum. (A) Decision of the optimal model based on five-fold cross-validation
(5-CV). The mean values of 20 simulations are shown with the standard errors. The optimal model was gaus for both Brix and culm length,
respectively. (B) The estimated spatial effects with the gaus model. Missing plots are shown by the background color. (C) Manhattan plots of
estimated relative marker variances. Marker variances estimated by the block (upper panels) and gaus (lower panels) models are shown. (D)
Comparison of estimated marker variances between the block (X-axis) and gaus (Y-axis) models. block, block model; expo, exponential model;
gaus, Gaussian model; power, power model; sph, spherical model.
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always outperformed the block model across the one-step
and two-step methods, supporting the use of spatial analy‐
sis for GS.

In the two-step method, large records derived from multi-
environmental trials (METs) can be integrated into a single
dataset (Bernal-Vasquez et al. 2014). However, the influ‐
ence of shrinkage effects due to two-step methods needs to
be considered for METs. In contrast, the one-step method
cannot be easily implemented in METs. However, Elias
et al. (2018) proposed the use of this model as the first ana‐
lytical step of METs. The GS model proposed by Lopez-
Cruz et al. (2015) estimates the genotype–environment
interaction and can be theoretically extended with spatial
kernels, which may be an alternative for applying the one-
step method in METs.

We applied the spatial GS models for direct QTL map‐
ping (Fig. 5). The spatial kernel models outperformed the
block model in terms of QTL detection power and false-
positive rate, representing the effectiveness of spatial analy‐
sis in QTL mapping. Ho et al. (2002) incorporated spatial
analysis into QTL mapping to reduce the effects of field
heterogeneity. In QTL mapping, an experimental design
with no or few replications is often employed to increase
the number of lines, because the sample size directly affects
QTL detection power. However, the detection power might
be lowered in the presence of high field heterogeneity. To
retain high QTL detection power in heterogeneous fields,
spatial analysis should be incorporated into QTL mapping.

Finally, we validated the performance of the spatial ker‐
nel models using real data of bioenergy sorghum (Ishimori
et al. 2020). We focused on the following three questions:
(1) can the kernel averaging approach explain phenotypic
variations better than the block model?; (2) can real field
heterogeneity be successfully captured by spatial kernel
models?; (3) are the results based on spatial kernel models
(e.g., GWAS) different from the results based on the block
model?

In the real sorghum dataset, the kernel averaging
approach could predict phenotypic variations of both tested
traits more accurately than the block model (Fig. 6A). We
expected that the spatial kernel models would be advanta‐
geous when field heterogeneity was high within each block.
The estimated spatial effects suggested that field hetero‐
geneity was mainly spread between the columns (i.e., along
X-axis), with both decreasing (culm length) and increasing
(Brix) trends, particularly in block B (Fig. 6B). Anisotropic
bias along rows or columns is often caused by extraneous
variations (Gilmour et al. 1997). Therefore, irrigation ir‐
regularity may have been larger within rows than between
rows, although other extraneous stresses might have also
contributed to heterogeneity. However, the distribution of
the estimated spatial effects seemed to be different from the
normal distribution that we expected in this study (Fig. 6B).
If extraneous variations specific to a field were expected,
reasonable explanatory variables might be incorporated into
statistical models (e.g., the effect of columns for irrigation

irregularity in this study).
The effects of spatial modeling on QTL mapping were

not distinct in our real dataset (Fig. 6C, 6D). Unfortunately,
we could not verify the results because true QTLs in the
real dataset were unknown. Nevertheless, spatial analysis
can be used in trial designs without replications (Ho et al.
2002). To offer precise insight into the usefulness of spatial
kernel models, additional studies on real datasets are
required. Furthermore, the influence of the range of the
hyperparameter in the kernel averaging approach should be
tested with each real dataset. Although the kernel averaging
approach might be an alternative to the optimization of the
hyperparameter (Supplemental Fig. 6), a reasonable range
for the hyperparameter needs to be defined (Pérez and de
los Campos 2014).

Spatial analysis is particularly crucial for ensuring the
precision of selection in plant breeding trials (Sripathi et al.
2017). However, the appropriateness of spatial models
should be carefully verified, because they can bias the
result (Stefanova et al. 2009). Nevertheless, differences in
accuracy among the four spatial kernel models (expo, gaus,
power, and sph) were not discussed in detail in the present
study. The appropriate spatial model may differ with the
extent of field heterogeneity in each trial (Richter and
Kroschewski 2012). Therefore, multiple spatial models
should be examined for each field trial. To compare param‐
eters estimated from different spatial kernels directly, the
proposed method by Legarra may be necessary (Legarra
2016). An appropriate spatial model is anticipated to help
understand the causes of field heterogeneity which could
otherwise lead to inaccurate interpretations of agronomical
trials.
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