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Objective: This study aimed to design a weighted co-expression network and a breast cancer (BC) prognosis 

evaluation system using a specific whole-genome expression profile combined with epithelial-mesenchymal tran- 

sition (EMT)-related genes; thus, providing the basis and reference for assessing the prognosis risk of spreading 

of metastatic breast cancer (MBC) to the bone. 

Methods: Four gene expression datasets of a large number of samples from GEO were downloaded and combined 

with the dbEMT database to screen out EMT differentially expressed genes (DEGs). Using the GSE20685 dataset 

as a training set, we designed a weighted co-expression network for EMT DEGs, and the hub genes most relevant 

to metastasis were selected. We chose eight hub genes to build prognostic assessment models to estimate the 3-, 

5-, and 10-year survival rates. We evaluated the models’ independent predictive abilities using univariable and 

multivariable Cox regression analyses. Two GEO datasets related to bone metastases from BC were downloaded 

and used to perform differential genetic analysis. We used CIBERSORT to distinguish 22 immune cell types based 

on tumor transcripts. 

Results: Differential expression analysis showed a total of 304 DEGs, which were mainly related to proteogly- 

cans in cancer, and the PI3K/Akt and the TGF- 𝛽 signaling pathways, as well as mesenchyme development, focal 

adhesion, and cytokine binding functionally. The 50 hub genes were selected, and a survival-related linear risk 

assessment model consisting of eight genes ( FERMT2, ITGA5, ITGB1, MCAM, CEMIP, HGF, TGFBR1, F2RL2 ) was 

constructed. The survival rate of patients in the high-risk group (HRG) was substantially lower than that of the 

low-risk group (LRG), and the 3-, 5-, and 10-year AUCs were 0.68, 0.687, and 0.672, respectively. In addition, we 

explored the DEGs of BC bone metastasis, and BMP2, BMPR2 , and GREM1 were differentially expressed in both 

data sets. In GSE20685, memory B cells, resting memory T cell CD4 cells, T regulatory cells (T regs ), 𝛾𝛿 T cells, 

monocytes, M0 macrophages, M2 macrophages, resting dendritic cells (DCs), resting mast cells, and neutrophils 

exhibited substantially different distribution between HRG and LRG. In GSE45255, there was a considerable dif- 

ference in abundance of activated NK cells, monocytes, M0 macrophages, M2 macrophages, resting DCs, and 

neutrophils in HRG and LRG. 

Conclusions: Based on the weighted co-expression network for breast-cancer-metastasis-related DEGs, we screened 

hub genes to explore a prognostic model and the immune infiltration patterns of MBC. The results of this study 

provided a factual basis to bioinformatically explore the molecular mechanisms of the spread of MBC to the bone 
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Fig. 1. flowchart of this study. 
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ntroduction 

Breast cancer (BC) constitutes the leading cause of cancer-associated

atalities in women worldwide [1–3] . Metastatic breast cancer (MBC)

ccurs in most patients with advanced BC, with bone as the most com-

on site of distant metastasis [1–3] . Bone destruction often leads to

one-related complications, including pain, spinal cord compression,

ractures, severe hypercalcemia, etc., which negatively impact the qual-

ty of life of the patient [1–3] . 

BC metastasis to bones is an extremely complex multi-stage process

hat requires the primary BC cells to pass through the blood/lymphatic

ystem, survive in the bone microenvironment, and then proliferate in

one tissue [4 , 5] . Genomics studies have revealed that several molecular

vents are associated with each step of the metastasis [6 , 7] . However,

he key pathways and interaction networks of the molecular mecha-

isms related to BC metastasis have not been fully elucidated. 

On this basis, we constructed a weighted co-expression network and

C prognosis evaluation model using the whole-gene expression profile

ombined with epithelial-mesenchymal transition (EMT)-related genes

o provide a basis and reference for the prognostic risk of MBC. We

imed to establish a complete protein-interaction network to reveal the

olecular mechanisms of early BC metastasis. This study attempted to

urther explore the molecular biological mechanisms in the early stages

f BC metastasis. In addition, we evaluated the interconnection between

mmune cells and hub genes to create a bioinformatic base for discover-

ng possible molecular pathways and clinical predictors. We have drawn

 flowchart as a guide to help readers understand the analytical process

f the study ( Fig. 1 ). 

aterials and methods 

EO data download and preprocessing 

We downloaded GSE20685, GSE12276, GSE16446, GSE45255,

SE2034, and GSE124647 datasets of BC and BC metastasis chip data

rom the GEO database. Six samples without metastasis information

ere removed from each of GSE16446, and GSE45255, and GSE124647,
2 
nd only primary BC samples and samples with bone metastasis were re-

ained. 

The data preprocessing steps were as follows: if the data set was

ot log2 converted, then log2 conversion was performed; if data not

uantile-normalized, then the limma package normalizeBetweenArrays

ethod of R was used to quantile-normalize. The probe was mapped

o the gene, the empty probe removed, and multiple probes relative

o the same gene. We calculated the average value of gene expression.

he Wilcox rank-sum test was used for difference analysis, with a P -

alue < 0.05 as the filtering condition. 

andidate gene collection and data expression 

The differentially expressed genes (DEGs) between primary and

nvasive samples obtained by searching GSE20685, GSE12276, and

SE16446 and the EMT-related genes indicated by the dbEMT database

ere jointly investigated, and the intersection of the DEGs between pri-

ary and invasive samples of the three datasets from the GEO database

nd the EMT database was used [8] . 

unctional enrichment analysis of candidate genes 

Using R’s clusterProfiler software package, KEGG pathway and GO

unctional enrichment analyses were performed on the EMT-related

EGs between primary and invasive samples, and a p -value < 0.05 and

-value of < 0.2 were used as the filtering conditions. 

eighted co-expression network analysis 

Weighted co-expression network analysis (WGCNA) is a systematic

ethod that uses gene expression data to build a scale-free network. We

sed the WGCNA package of R to build a weighted co-expression net-

ork with the expression profile data of the candidate gene set obtained.

e then screened the modules related to BC metastasis, extracted the

enes, and selected the top 50 as hub genes based on their degree of

nter-gene connectivity. 



S. Liu, A. Song, Y. Wu et al. Translational Oncology 14 (2021) 100993 

R

 

a  

t  

g  

a  

p  

o  

s  

a  

R  

t  

G  

t  

t  

a  

p

I

 

t  

d  

t  

c  

d  

p  

y  

a  

R

S

 

a  

2  

s  

a  

1  

G  

g  

a

E

 

d  

e  

d  

p  

W

F

G

 

f  

D  

g  

a

C

 

G  

d  

w  

s  

t  

a  

w  

I

C

g

 

g  

t  

(  

t  

0  

𝛽  

p  

a  

l  

t  

c  

n  

n  

g  

t  

u  

(  

(  

m  

T  

a  

r  

n  

g  

B  

a  

t  

e  

a

P

 

p  

r  

u  

C  

s  

e  

l  

r  

(

(

(

(

P

 

G  

c  

1  

p  
isk prognosis model construction and model effectiveness evaluation 

The GSE20685 dataset was used as the training set, using univari-

ble Cox regression and a p -value of < 0.01 as the filtering condition,

o select genes related to prognosis. We then used the LASSO 

–Cox re-

ression model to screen out prognosis-related DEGs between primary

nd metastatic samples and obtain their correlation coefficients. A risk

rognosis model was built based on these genes and coefficients. Based

n the model, the risk score of each patient was estimated, the median

core was taken as the cut-off value, and the sample was divided into

 high-risk group (HRG) and low-risk group (LRG). A time-dependent

OC curve was used to predict the 3-, 5- and 10-year survival rates and

he survival curves of the HRG and LRG were analyzed. We used the

SE45255 dataset to verify the prognostic risk model. Subsequently,

he correlations between risk scores and other clinical prognostic fac-

ors were compared, and univariable and multivariable Cox regression

nalyses were used to evaluate the independent predictive ability of the

rognostic model. 

mmune cell abundance analysis 

CIBERSORT software ( http://CIBERSORT.stanford.edu/ ) was used

o predict the proportion of 22 immune cells in all samples of the

atasets. We used R’s CIBERSORT package to assess the abundance of

he 22 immune cells in HRG and LRG. We sorted the proportions of

ertain cell types for all samples to explore the clinical significance of

ifferent samples with different proportions of immune cells. The sam-

les were divided into high-ratio and low-ratio groups for survival anal-

sis using the median as the dividing line. Subsequently, Kaplan-Meier

nalysis was done on only those cases that had a CIBERSORT p < 0.05.

esults 

creening of DEGs 

We downloaded three sets of BC chip data, GSE20685, GSE12276,

nd GSE16446, from GEO, which had 244 vs. 83, 19 vs. 185, and 83 vs.

4 primary cancer vs metastasis samples, respectively. The Wilcox rank-

um test was used for differential analysis. Taking a P -value of < 0.05

s the threshold, we obtained 2950 DEGs in GSE20685, including

429 upregulated genes and 1521 downregulated genes; 1209 DEGs in

SE12276, including 719 upregulated genes and 490 downregulated

enes; and 830 DEGs in GSE16446, including 544 upregulated genes

nd 286 downregulated genes ( Fig. 2 ). 

MT-related DEG set 

The DEGs and the EMT-related genes obtained from the EMT

atabase were jointly investigated, and the intersections of the differ-

ntial genes obtained from the three sets of GEO data and the EMT

atabase were analyzed to obtain 304 genes ( Fig. 2 ). We took the ex-

ression data of these 304 genes in GSE20685 and used them for the

GCNA. 

unctional enrichment analysis of EMT-related DEGs (KEGG pathway and 

O analysis) 

Using R’s clusterProfiler software package, KEGG pathway and GO

unctional enrichment analyses were performed on the EMT-related

EGs ( Fig. 2 ). These genes were mainly found to be related to proteo-

lycans in cancer, the PI3K/Akt and TGF- 𝛽 signaling pathways, as well

s mesenchyme development, focal adhesion, and cytokine binding. 

onstruction of protein interaction network of differential genes 

The DEGs from three datasets (GSE20685, GSE12276, and

SE16446) were uploaded to the string protein database ( https://string-
3 
b.org/ ), which was used for protein interaction analysis. The species

as set as Homo sapiens, and the minimum interaction threshold was

et as 0.4 (the medium confidence), and other parameters remained at

he default settings. Among them, 288 genes interact with each other,

nd a total of 3121 edges and 288 nodes are obtained. The top 10 genes

ere GAPDH, VEGFA, FN1, CDH1, STAT3, Notch1, CD44, ERBB2, ESR1,

TGB1 . See Supplementary file 1 and 2 for more details. 

andidate gene set weighted co-expression network construction and hub 

ene screening 

We designed a weighted co-expression network for the candidate

ene set using the WGCNA software package of R. Research has shown

hat the co-expression network follows a scale-free network, i.e., the log

k) of a node with a connection (k) is inversely related to the log of

he probability of the node (P [k]), and the correlation coefficient >

.85. To ensure that the network was scale-free, we chose the optimal

= 6 ( Fig. 3 A, “𝜷”: power value, “point ”: a set of soft-thresholding

ower) . In the next step, the expression matrix was converted into an

djacency matrix; then, the adjacency matrix was converted into a topo-

ogical matrix. Based on topological overlap measure (TOM), we used

he average-linkage hierarchical clustering method to cluster genes ac-

ording to a hybrid dynamic shear tree standard and set the minimum

umber of genes for each gene network module to 30. After using dy-

amic shearing to determine the gene modules, we calculated the eigen-

enes of each module once and then performed cluster analysis on

he modules to merge the modules that were closer to the new mod-

le and a set height of 0.25. A total of two modules were obtained

 Fig. 3 C). We calculated Pearson’s correlation coefficient of the ME

module eigengene) of each module and the sample characteristics (pri-

ary vs. metastatic) (the higher the module, the more important it was).

he row in Fig. 3 B represents the feature vector gene of each module,

nd the column represents the sample classification information. From

ed to blue, the correlation coefficients decrease from high to low. The

umbers in each small box indicate the correlation coefficients of the

ene modules and corresponding features (BC metastasis and primary

C), and the numbers in parentheses indicate the P-value. From Fig. 3 B

nd Fig. 3 C, we can conclude that there is one module marked with

urquoise in the cluster dendrogram with a total of 72 genes most rel-

vant to the metastasis. The top 50 genes were selected as hub genes

ccording to the degree of connection (Supplementary file 3). 

rognostic factor screening and model construction 

For the 50 hub genes obtained from the previous step, we first

erformed a univariable Cox regression analysis, selected 10 genes

elated to prognosis according to P -values < 0.01 ( Fig. 4 A), and then

sed the minimum absolute contraction and selection operator (Lasso)-

ox penalty regression model to select genes related to prognosis. We

elected the Lambda.min as the critical point according to the param-

ter Lambda value ( Fig. 4 B) and, finally, selected a survival-related

inear risk assessment model consisting of eight genes ( Fig. 4 C). The

isk score model was Risk Score = (0.341711734325434 ∗ FERMT2) +
0.047360511272754 ∗ ITGA5) + (0.0274687909333705 ∗ ITGB1) + 

0.193677760524873 ∗ MCAM) + (0.0779279290392332 ∗ CEMIP) + 

 − 0.278104212976493 ∗ HGF) + (0.0732296389625441 ∗ TGF1) + 

 − 0.123123692280744 ∗ F2RL2). 

rognostic risk model evaluation 

Using the model to calculate the risk score of each patient in the

SE20685 dataset, taking the median of all patients’ risk score as the

utoff value, the sample was divided into HRG and LRG. There were

63 samples in the HRG and 164 samples in the LRG. Using R’s survival

ackage for survival analysis, the survival curves ( Fig. 5 C) showed that

http://CIBERSORT.stanford.edu/
https://string-db.org/
https://string-db.org/
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Fig. 2. (A-C) Differentially expressed genes 

(Volcano plot) of breast cancer in situ and 

breast cancer with metastasis from the analy- 

sis of three datasets in the GEO database (Red: 

upregulated; Blue: downregulated; Black: no 

significant change). (D) Venn diagram of dif- 

ferentially expressed genes and EMT-related 

genes from GEO. (E) KEGG signal pathway en- 

richment analysis diagram of differentially ex- 

pressed EMT-related genes. (F) GO enrichment 

analysis diagram of differentially expressed 

EMT-related genes. 
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he overall survival rate of patients in the HRG was low, and the differ-

nce between the two groups was statistically significant, indicating that

he model can predict survival well. At the same time, the ROC curve

as drawn using the survivalROC package of R. The AUCs of the 3-, 5-,

nd 10-year survival rates were 0.68, 0.687, and 0.672, respectively,

ndicating that the model had good predictive ability ( Fig. 5 A). There

ere significant differences in survival time between the HRG and LRG,

nd there was no significant difference in age or TNM (Tumor, Node,

etastases) stage ( Fig. 5 E). 

Model verification was performed using the GSE45255 dataset. The

edian risk score of all patients in the GSE20685 dataset was also used

s the cut-off value, and the samples were divided into HRG and LRG.

here were 52 samples in the HRG and 81 samples in the LRG. The sur-

ival curves of HRG and LRG ( Fig. 5 D) indicate that the overall survival

M  

4 
ate of patients in the HRG was low, and the difference between the two

roups was statistically significant, indicating that the model can accu-

ately distinguish between the patients in HRG and LRG. The AUCs of

-, 5-, and 10-year survival rates were 0.675, 0.636, and 0.725, respec-

ively, indicating that the model has good predictive ability ( Fig. 5 B). 

ifferences in immune cell infiltration between HRG and LRG 

We used the CIBERSORT package of R (an analysis tool that uses

ene expression data to assess the abundance of 22 immune cells in a

ample) for HRG and LRG of the GSE20685 and GSE45255 datasets. In

SE20685, the abundance of memory B cells, resting memory CD4 T

ells, T cells regulatory (T regs ), 𝛾𝛿 T cells, monocytes, M0 macrophages,

2 macrophages, resting DCs, resting mast cells, and neutrophils were
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Fig. 3. The results of weighted co-expression 

network analysis. (A) The optimal 𝛽 value re- 

sult graph. (B) The Pearson’s correlation coeffi- 

cient for each module’s ME and sample features 

(primary vs. metastatic). (C) The clustering re- 

sult of the modules shows the one marked as 

turquoise in the cluster dendrogram with a to- 

tal of 72 genes most relevant to the metasta- 

sis ME: module eigengene. The “𝛽” stands for 

power value, “point ” stands for a set of soft- 

thresholding power. 
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ubstantially differentially expressed between HRG and LRG ( Fig. 6 A).

n GSE45255, the abundance of activated NK cells, monocytes, M0

acrophages, M2 macrophages, resting dendritic cells, and neutrophils

as substantially different between HRG and LRG ( Fig. 6 B). 

isk score prognostic performance and correlation with other clinical 

rognostic factors 

Risk score analysis of the clinical characteristics of age and TNM

tage revealed that HRG and LRG were considerably different in the

tage I and stage II, and stage I and stage III groups, but were not sub-

tantially different among the other groups ( Fig. 7 A, B). The prognosis

odel had higher prediction accuracy than age and was basically con-

istent with the prognostic efficacy of TNM staging ( Fig. 7 C). Comparing

he differences in survival between HRG and LRG of each TNM stage,

he survival rates of HRG and LRG of TNM stage II were substantially

ifferent ( Fig. 7 F-I). 

Univariate Cox regression analysis showed that TNM staging and the

rognosis models had prognostic value, while age had no association

ith prognosis ( Fig. 7 D). The age, TNM stage, and prognosis models

ere included in the multivariate Cox regression analysis. The results
5 
howed that the TNM stage and prognosis models were independent

redictors of prognosis ( Fig. 7 E). 

creening of DEGs in bone metastasis and enrichment analysis of KEGG 

ignaling pathway 

GSE2034 and GSE124647 BCE chip datasets were downloaded from

EO. There were 217 vs. 69 and 19 vs. 11 primary cancer vs. bone metas-

asis samples. The Wilcox rank-sum test was used to assess the differ-

nces. When a p -value of < 0.05 was taken as the threshold, GSE2034

ontained 2363 DEGs, including 1424 upregulated genes and 939 down-

egulated genes, while GSE124647 consisted of 1706 DEGs, including

88 upregulated genes and 818 downregulated genes. There were 368

EGs shared between GSE2034 and GSE124647. Using R’s clusterPro-

ler software package, KEGG Pathway enrichment analysis was per-

ormed on the DEGs in the GSE2034 and GSE124647 datasets. The en-

ichment results of the first 20 signal pathways are shown in Fig. 8 A-B;

he enriched signaling pathways mainly included Th17 cell differentia-

ion, the PI3K/Akt signaling pathway, and the TGF- 𝛽 signaling pathway.

t the same time, we used Ingenuity Pathway Analysis (IPA) software

o focus on the BMP signaling pathway in GSE2034 and GSE124647.
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Fig. 4. Prognostic factor screening and model 

construction. (A) Forest map of the results of 

univariable Cox regression analysis, screening 

out 10 genes related to prognosis. (B) The 

determination of Lambda coefficient by Lasso 

regression. (C) Regression coefficients (coeffi- 

cient values) of the eight genes constructed by 

the model. 

Fig. 5. Prognostic risk model evaluation chart. 

(A) GSE20685 ROC curve. (B) GSE45255 ROC 

curve. (C) Survival curve of GSE20685. (D) 

Survival curve of the verification dataset of 

GSE45255. (E) Modeled gene expression heat 

map of the high- and low-risk groups and the 

analysis of the differences in different clini- 

cal indicators between the high- and low-risk 

groups ( ∗ ∗ indicates P < 0.01). 

6 
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Fig. 6. Abundance comparison charts of 22 im- 

mune cells in high- and low-risk groups. 

Table 1 

BMP-related genes. 

Symbol Entrez Gene Name Location 

BMP8B bone morphogenetic protein 8b Extracellular Space 

BMP2 bone morphogenetic protein 2 Extracellular Space 

BMP3 bone morphogenetic protein 3 Extracellular Space 

BMP4 bone morphogenetic protein 4 Extracellular Space 

BMP5 bone morphogenetic protein 5 Extracellular Space 

BMP6 bone morphogenetic protein 6 Extracellular Space 

BMP7 bone morphogenetic protein 7 Extracellular Space 

GDF2 growth differentiation factor 2 Extracellular Space 

BMP10 bone morphogenetic protein 10 Extracellular Space 

BMP15 bone morphogenetic protein 15 Extracellular Space 

BMP2K BMP2 inducible kinase Nucleus 

BMP8A bone morphogenetic protein 8a Extracellular Space 

BMPR2 bone morphogenetic protein receptor type 2 Plasma Membrane 

GDF10 growth differentiation factor 10 Extracellular Space 

GDF7 growth differentiation factor 7 Extracellular Space 

GDF11 growth differentiation factor 11 Extracellular Space 

GDF5 growth differentiation factor 5 Extracellular Space 

GDF6 growth differentiation factor 6 Extracellular Space 

DAND5 DAN domain BMP antagonist family member 5 Extracellular Space 

BMPER BMP binding endothelial regulator Extracellular Space 

BAMBI BMP and activin membrane bound inhibitor Plasma Membrane 

CER1 cerberus 1, DAN family BMP antagonist Extracellular Space 

GREM1 gremlin 1, DAN family BMP antagonist Extracellular Space 

GREM2 gremlin 2, DAN family BMP antagonist Extracellular Space 

HJV hemojuvelin BMP co-receptor Plasma Membrane 

MICOS10 NBL1, DAN family BMP antagonist Nucleus 

KCP kielin cysteine rich BMP regulator Extracellular Space 

CRIM1 cysteine rich transmembrane BMP regulator 1 Extracellular Space 

RGMA repulsive guidance molecule BMP co-receptor a Plasma Membrane 

RGMB repulsive guidance molecule BMP co-receptor b Plasma Membrane 

TWSG1 twisted gastrulation BMP signaling modulator 1 Extracellular Space 

NBL1 NBL1, DAN family BMP antagonist Nucleus 
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SE124647 was also enriched in the BMP signaling pathway, while the

athway was inhibited in GSE2034 ( Fig. 8 D). 

Using IPA software to search for genes related to the BMP family, a

otal of 32 genes were obtained ( Table 1 ). In the GSE2034 dataset, there

ere four differentially expressed BMP genes, including BMPR2, BMP6,

MP2 , and GREM1 . In the GSE124647 dataset, there were five differ-

ntially expressed BMP genes, including BMPR2, BMP2, GREM1, BMP7 ,

nd BMP8A . In both data sets, BMPR2, BMP2 , and GREM1 ( Fig. 8 C) were

imultaneously differentially expressed. 

Three differentially expressed BMP genes in GSE2034 were EMT-

elated genes, including BMP6, BMP2 , and GREM1 ; three differentially

xpressed BMP genes in GSE124647 were EMT-related genes, including

MP2, GREM1 , and BMP7 . 

omparison of risk score between primary cancer and bone metastasis 

The prognostic model was used to calculate the risk score values of

ll samples in the GSE2034 and GSE124647 datasets. The Wilcox rank-

um test found that the risk score differences between primary cancer
7 
nd bone MBC samples of the two data sets were not substantially dif-

erent ( Fig. 9 ). 

ifference in immune cell infiltration in GSE2034 and GSE124647 between

RG and LRG 

The CIBERSORT package of R was used to evaluate the abundance

f 22 immune cells in the GSE2034 and GSE124647 datasets. The abun-

ances of resting NK cells, M0 macrophages, and M2 macrophages be-

ween HRG and LRG were substantially different in GSE2034 ( Fig. 10 ).

o-expression analysis of immune cells and key genes 

Based on the model constructed above, GSE20685 and GSE45255

ere divided into HRG and LRG, respectively. Pearson’s correlation co-

fficient demonstrated the correlation between the heat map of EMT-

elated DEGs and 22 types of lymphocytes in BC samples ( Fig. 11 ).

igs. 11 A-C show the correlation between genes and immune cell abun-

ance, genes in HRG and immune cell abundance, genes in LRG and
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Fig. 7. Risk score prognostic performance and 

correlation with other clinical prognostic fac- 

tors. (A) Comparison of age group risk score 

differences. (B) Comparison of risk score dif- 

ferences between TNM stages. (C) Risk scor- 

ing model, age, and TNM stage ROC curve; (D) 

Univariable Cox analysis for age, TNM stage, 

and risk assessment model. (E) Multivariable 

Cox analysis for age, TNM stage, and risk as- 

sessment model. (F) Survival curve of the high- 

and low-risk groups in TNM stage I. (G) Sur- 

vival curve of high- and low-risk groups TNM 

stage II. (H) Survival curve of high- and low- 

risk groups in TNM stage III. (I) Survival curve 

of high- and low-risk groups in TNM stage IV. 
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mmune cell abundance in GSE20685. Figs. 11 D-F show the correlation

etween genes and immune cell abundance, genes in HRG and immune

ell abundance, genes in LRG and immune cell abundance in GSE45255.

ere we specifically analyzed the correlation between plasma cells,

aïve CD4 + T cells, and the EMT-related genes and found that plasma

ells and eight genes, Naïve CD4 + T cells and eight genes were nega-

ively correlated. 

iscussion 

BC constitutes one of the most common malignant tumors in women

nd is the primary cause of cancer death in women [1–3] . Among pa-
8 
ients with MBC, bone metastasis occurred as the first metastatic site in

bout 83% of patients [1–3] . The median survival time of patients with

C with bone metastasis only is 24–40 months, which is longer than the

edian survival time for patients with metastasis in all other tissue types

3 , 9] ; however, when bone metastasis occurs, the patient may present

ith severe bone pain, pathological fractures, nerve compression symp-

oms, hypercalcemia, or bone-related events (skeletal-related events),

hich seriously affect the quality of life of patients with advanced

C. 

About 95% of BC cells are of epithelial origin, and their metastasis

nd invasion are the main causes of cancer death [3 , 10] . With in-depth

tudies of BC, people gradually realized the importance of EMT in the
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Fig. 8. (A) The enrichment of GSE2034 dif- 

ferentially expressed gene signaling pathways. 

(B) Enrichment of GSE124647 differentially ex- 

pressed gene signaling pathways. (C) GSE2034 

differentially expressed genes, GSE124647 dif- 

ferentially expressed genes, and Venn diagram 

of BMP-related gene family. (D) BMP signaling 

pathway was inhibited in GSE2034. 

Fig. 9. (A) Comparative result of risk score 

between GSE2034 primary cancer and bone 

metastatic breast cancer samples. (B) Compar- 

ative result of risk score between GSE124647 

primary cancer and bone metastasis breast can- 

cer samples. 
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p  

B  
ccurrence and metastasis [6 , 7 , 10–12 ]. Tumor cells often need to lose

heir epithelial-like phenotypic characteristics, such as polarity and in-

ercellular contact via EMT to invade normal tissues and metastasize

6 , 7 , 10–14 ]. The metastasis of BC epithelial cells, the development of

reast ductal carcinomas in situ into invasive BC, the poor efficacy of BC

reatment, and the resistance of patients to chemotherapy drugs are all
9 
losely related to the EMT process [6 , 7 , 10–14 ]. In this study, we used

ioinformatics analysis methods to construct a full-genome expression

rofile of BC metastasis samples combined with an EMT-related gene

eighted co-expression network and BC prognosis evaluation model to

rovide the basis and reference for calculating prognostic risk values for

C patients. Several studies have confirmed that genes, such as BMP-2,
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Fig. 10. The abundance of 22 immune cells of 

high- and low-risk groups in GSE2034 (A) and 

GSE124647 (B) datasets. 

Fig. 11. (A) Correlation between genes and 

immune cell abundance in GSE20685. (B) 

Correlation between genes in high-risk group 

and immune cell abundance in GSE20685. 

(C) Correlation between genes in low-risk 

genes in group and immune cell abundance in 

GSE20685. (D) Correlation between genes and 

immune cell abundance in GSE45255. (E) Cor- 

relation between genes in high-risk group and 

immune cell abundance in GSE45255. (F) Cor- 

relation between genes in low-risk group and 

immune cell abundance in GSE45255. 
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MPR2, GREM1, CEMIP, HGF, ITGA5, ITGB1, MCAM , and TGFBR1 , are

losely related to the EMT process in BC cells, which is also consistent

ith our research results [6 , 7 , 10–17 ]. 

Bone morphogenetic proteins (BMPs) are important members of the

GF- 𝛽 superfamily. At present, more than 20 BMPs have been discov-

red, and their biological functions are very extensive, including pro-

oting bone and cartilage production, regulating cell proliferation and

ifferentiation, and regulating the growth and development of various

rgans [18–23] . Studies have found that BMP-2 can activate Smad-

ndependent pathways in tumor cells, including in the cancers of the

reast, stomach, colon, and pancreas; for example, the PI3K/Akt signal-

ng pathway to promote tumor cell invasion and metastasis [24] . How-

ver, the relationship between BMP-2 gene expression and BC metastasis

o bones needs to be further explored. Researchers have detected BMP-2

RNA in many BC cell lines and found that it has different levels of ex-

ression in some primary BC tissues [20] . In addition, rhBMP-2 induces

MT in three BC cell lines (MCF-7, MDA-MB-231, and mouse BC cell

ine 4T1) and enhances cell migration and invasion ability both in vivo

nd in vitro [19 , 22] . Aberrant expression of BMP-2 has been observed
10 
n various tumors and is known to be closely related to EMT induction

nd tumor invasion [ 18–20 , 22 , 23] . 

In a further in-depth study, we conducted a differential analysis of

he GEO datasets GSE2034 and GSE124647 in relation to bone metasta-

is of BC and applied KEGG pathway analysis to the differential genes,

hich were found to be mainly related to Th17 cell differentiation, the

I3K/Akt and the TGF- 𝛽 signaling pathways. In GSE2034, the BMP sig-

aling pathway was in an inhibitory state. In both data sets, BMPR2,

MP2 , and GREM1 were differentially expressed. This further confirms

he importance of BMP-2 in the process of BC metastasis to bones. Our

esearch also found that multiple Hub genes (including MCAM, HGF,

GFBR1, BMPR2 ) closely related to BC metastasis are biologically linked

o BMP-2, which confirms that BMP-2 and its pathway might be involved

n BC metastasis or bone metastasis. However, the occurrence and de-

elopment of tumors are both influenced by multiple factors. BMP-2

as a complex and extensive effect on tumors, and different types of

umors show different responses. There have been in-depth studies of

MP-2 in tumor tissues, and the functions of BMPs have been further

xplored. 
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The BMP2-mediated decrease in E-cadherin levels and increased lev-

ls of Snai1 and vimentin further indicate that BMP2-activated signaling

s related to EMT-mediated morphological changes in these cells [21–

5] . Based on the results of in vivo and in vitro experiments, Huang

t al. [14] established the EMT process of the induction of BC stem

ells through Rb and CD44 signaling pathways by rhBMP-2, by which

t promotes the complete mechanism of BC metastasis. Zhang et al.

19] showed that BMP-2 induced EMT in BC stem cells through Rb and

D44 signaling pathways [14 , 19] . They showed that both PI3K/Akt and

mad signaling regulated rhBMP-2-mediated RB and CD44 expression.

n vitro and in vivo results highlighted the important roles of BMP-2,

b, and CD44 in BC metastasis, which could be used for diagnosing

nd treating advanced BC [14 , 19] . Also, BMP-2 is known to be closely

elated to BC calcification in orthotopic breast tumors [21–25] . The pro-

ess of BC calcification requires high expression levels of BMP-2 and the

iological behavior of BC cells. However, high concentrations of BMP-2

nhibit the proliferation, migration, and invasion of BC cells [21–25] . 

Current research on BC has found a relationship between EMT-

elated signaling pathways and TGF- 𝛽, NF- 𝜅B, Notch, Wnt, PI3K/AKT,

APK signaling pathways [5 , 26] . The signaling pathways involved in

C metastasis are extremely complex, and there are close interactions

mong the BMP-2 pathway, TGF- 𝛽 pathway, and PI3K/Akt signaling

athway [27] . TGF- 𝛽1 can phosphorylate Akt/PKB and activate the

kt signaling pathway, which, in turn, participates in TGF- 𝛽 signaling

athway-mediated EMT process of breast epithelial cells. Thus, inhibi-

ion of PI3K/Akt signaling pathway concomitantly facilitates the inhibi-

ion of TGF 𝛽− 1-induced Smad2 phosphorylation and the promotion of

C cell migration [28] . 

Currently, a key issue regarding immunotherapy for BC patients is

he limited understanding of the complexity of the tumors, tumor het-

rogeneity, and immune escape mechanisms. In addition, there is a lack

f precise biomarkers to evaluate the efficacy of tumor immunother-

py, and the development of new immunotherapy targets and prog-

ostic markers is necessary [29] . Wei et al. [30] found that BMP-2-

nduced osteogenesis might regulate the local bone immune environ-

ent. The active role of BMP-2 in regulating the immune response

akes it possible to use the immunomodulatory properties of BMP-

 to regulate the bone immune environment to promote bone regen-

ration [30] . Thus, here, we compared the abundance of 22 immune

ells in a HRG and LRG. In GSE20685, the abundances of memory B

ell, resting memory T cells CD4, Tregs, gamma delta T cells, mono-

ytes, M0 macrophages, M2 macrophages, resting DCs, resting mast

ells, and neutrophils were substantially different between HRG and

RG. In GSE45255, the abundances of activated NK cells, monocytes,

0 macrophages, M2 macrophages, resting dendritic cells, and neu-

rophils were substantially different in HRG and LRG. In a study of

he characteristics of immune infiltration in BC bone metastasis sam-

les, we compared the abundance of 22 immune cells in HRG and LRG

f the GSE2034 dataset. We found that the abundances of resting NK

ells, M0 macrophages, and M2 macrophages were substantially differ-

nt between HRG and LRG. In addition, many international studies have

hown that BMP2, BMPR2, GREM1, HGF, MCAM, TGFBR1, and other

enes might promote distant metastasis and the local progression of BC

29–35] . 

Gremlin1 ( GREM1 ) is a member of the bone morphogenetic protein

BMP) antagonist family [31] . It binds with BMP-2, BMP-4, BMP-7, and

ther members of the BMP family to exert its antagonistic role; thus,

nhibiting the binding ability of these ligands to receptors [31] . Recent

tudies have confirmed that GREM1 regulates the feedback signals from

pithelial cells to mesenchymal cells [36 , 37] . GREM1 plays an indepen-

ent role in promoting angiogenesis and tumor formation, which may

egulate the proliferation and invasion of tumor cells by acting on the

MP signaling pathway and plays a vital role in many tumor biological

rocesses. GREM1 is a bone morphogenetic protein antagonist, which

lays a specific role in the EMT process [6 , 31 , 36–38 ]. The EMT phe-

omenon induced by GREM1 is vital for organ fibrosis and tumor pro-
11 
ression. It has been reported that GREM1 regulates the occurrence of

MT and promotes cell proliferation and migration by activating TGF-

/Smad pathway [16 , 39] . The knockout of the GREM1 gene inhibits the

nvasion and EMT process of glioma cells. However, the role of GREM1

n EMT of human BC cells and the exact effect of GREM1 on EMT is un-

lear. The exact mechanism of GREM1 activation, its relationship with

C bone metastasis, and its role in BC angiogenesis needs further inves-

igation. 

This study had several limitations. First, all data was collected from

estern countries, so caution should be exercised when applying this

onclusion to patients in Asian countries. The inadequate availability of

ublic information limited the comprehensive analysis of clinical and

athological parameters, which might lead to bias in analysis. Thus, we

ried to minimize bias by assessing the gene and protein expression of

ey biomarkers at the cellular and tissue levels. The results show that

he key biomarkers in our model have undergone significant changes in

C metastasis or bone metastasis. However, despite these limitations,

ur study first applied bioinformatics methods to explore changes in

he key genes related to BC metastasis and predict the prognosis of BC

atients based on tumor-infiltrating immune cells of BC metastasis or

one metastasis. 

onclusions 

Based on the construction of a weighted co-expression network for

MT-related DEGs in MBC, we screened hub genes to explore a prognos-

ic model and the immune infiltration patterns of MBC. The results of

his study provide a solid basis to bioinformatically explore the molec-

lar mechanisms of BC metastasis and enable the prediction of patient

urvival. We also found that BMP2, BMPR2 , and GREM1 were differen-

ially expressed in both data sets of BC bone metastasis. Based on the

esults of bioinformatics analysis in this study, we speculated that BMP-2

ight regulate the immune infiltration process in BC tissues through the

I3K/Akt signaling pathway, thereby affecting the prognosis of cancer. 
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