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Reasoned debate

G protein-coupled receptors and heterotrimeric G proteins can 
diffuse laterally in the plasma membrane such that one receptor 
can catalyze the activation (GdP/GtP exchange) of multiple G pro-
teins. In some cases, these processes are fast enough to support 
molecular signal amplification, where a single receptor maintains 
the activation of multiple G proteins at steady-state. amplification 
in cells is probably highly regulated. It depends upon the identities 
of the G receptor and G protein - some do and some don’t - and 
upon the activities of GtPase-activating proteins, membrane scaf-
folds, and other regulatory partners.

The idea that a single G protein-coupled receptor (GPCR) 
can sequentially activate multiple heterotrimeric G proteins on 
the surface of the plasma membranes derived from 2 separate 
experimental arguments made prior to 1990, and is now gener-
ally accepted. GPCRs catalyze GDP/GTP exchange to promote 
G protein activation, and the definition of a catalyst demands 
turnover of multiple substrate molecules. Massively catalytic 
G protein activation is best demonstrated in the mammalian 
photoreceptor membrane, where the majority of the membrane 
protein is the GPCR rhodopsin and the vast majority of GTP 
binding sites is the G

t
 (see essays by Arshavsky, Liebman, ...). In 

other cells, where both GPCR and its G protein targets may be 
well below 0.1% of plasma membrane protein, catalytic turnover 
by GPCRs remains hard to quantitate. In what membranes it 
occurs, which receptors and G proteins do it, if and how it is 
regulated, and which protein(s) is (are) the diffusing species are 
all variables.

The first suggestion that GPCRs and/or G proteins diffuse 
laterally and that a receptor can activate multiple G proteins 
came from the work of Levitzki and coworkers,1-3 who used ade-
nylyl cyclase activity as a surrogate measure of G

s
 activation; G

s
 

was itself discovered at about the same time. They showed that 
covalent inactivation of β-adrenergic receptors in erythrocyte 
membranes progressively decreased the apparent first-order rate 
of activation of adenylyl cyclase by non-hydrolyzable GTP ana-
logs at a fixed agonist concentration without decreasing maximal 
stimulation. Such inactivation also shifted the EC

50
 for agonist 

to higher concentrations. The number of catalytic turnovers for 
each receptor before cyclase was fully activated could be esti-
mated from these data to be about 10. With the work of Selinger 
and coworkers,4-7 who showed that β-adrenergic agonists pro-
mote the GDP/GTP exchange step in the receptor-stimulated 
GTPase cycle, the idea of exchange catalysis by receptors entered 
the review literature by 1980,8 if not earlier. Even at this point, 
however, it was also clear that not all receptors recycle freely. 
Braun and Levitzki9 showed that an adenosine receptor appeared 
by the above criteria to be tightly coupled to G

s
, with no sign of 

multi-molecular turnover.
Accurate quantitation of catalytic turnover of G proteins by 

GPCRs is difficult in intact cells or isolated plasma membranes, 
but became possible when the purified proteins were reconsti-
tuted into phospholipid vesicles. In an early effort, Pedersen and 
Ross10 found that a β-adrenergic receptor could catalyze nucleo-
tide exchange on about 6 G

s
 molecules, and Asano et al.,11 using 

more accurate quantitation, demonstrated at least 8 turnovers. 
A kinetic analysis of Asano’s data similar to that performed by 
Levitzki and coworkers argued that a single receptor could turn 
over about 50 G

s
 molecules. Using a reconstituted system simi-

lar to that of Asano et al., Cerione et al.12 also found that the 
α

2
-adrenergic receptor could catalyze GDP/GTP exchange on 

about 7 molecules of G
i
. Mirroring Braun, Senogles et al.13 then 

found that the reconstituted D
2
 dopamine receptor did not turn 

over multiple G
i
 molecules. Some receptors do; some don’t. It is 

uncertain whether receptors that do or do not regulate multiple 
G protein molecules in phospholipid vesicles might behave dif-
ferently in cells, although some co-fractionation studies have 
argued that these behaviors are consistent.

Given that a receptor can sequentially catalyze GDP/GTP 
exchange on multiple G proteins, at least in some cases, the 
more relevant physiologic question is whether it does so within 
the lifetime of the G protein’s GTP-activated state. If it can, 
then a single agonist-liganded receptor can maintain the acti-
vation of multiple G proteins at steady-state, leading to molec-
ular amplification of the signal. Catalytic amplification can 
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also increase agonist potency (decrease EC
50

) because fewer 
agonist-bound receptors can activate the same number of G 
proteins.

Even with catalytic turnover, though, amplification will 
only occur if the rate of receptor-catalyzed GDP/GTP exchange 
is faster than the rate of hydrolysis of G protein-bound GTP. 
Rate constants for G protein deactivation, with or without 
stimulation by GTPase-activating proteins (GAPs), have not 
been measured directly in living cells or in intact membranes 
other than the photoreceptor disc. The deactivation rate con-
stant for G

s
 and G

i
 in cells is estimated to be ~0.05–0.1 s-1, 

based on the rates of signal termination,14,15 and the rates of 
hydrolysis of GTP bound to purified Gα

i
 and Gα

s
, are similar 

to this value. Other G proteins are slower: ~0.02 s-1 for Gα
q
16 

and ~0.002 s-1 for Gα
z
,17 Gα

12
 and Gα

13
.18 GAPs can increase 

these rates as much as 2000-fold.19,20 Somewhat faster rates of G 
protein activation and deactivation in cells have been estimated 
according to effector activation/deactivation rates (above) or 
with f luorescent G protein activation biosensors.21,22 While 
they provide a beautiful insight into the time course of signal-
ing, on/off kinetics has not clarified the amplification ques-
tion. To do this would require stoichiometric information that 
is not available from ensemble f luorescence data. In general, 
stoichiometric relationships among the protein components of 
plasma membrane signaling networks are poorly understood. 
They are central to issues of molecular amplification, and they 

also dictate whether these networks act as first-order (linear) or 
non-first-order (nonlinear) transducers.

Beyond the not-so-simple activation/deactivation kinetic 
issues are the questions of cellular constraints on receptor and 
G protein diffusion. Clearly some receptors and G proteins are 
highly constrained in their motion. Constraints include stable 
binding to scaffolding proteins on the molecular scale (1–2 nm) 
and membrane domain restrictions on the 100–1000 nm scale. 
Other mechanistic constraints may also arise. For example, we 
have proposed that one way in which G protein modules use 
GAPs to accelerate response rates is to promote long-term (10 s vs 
0.1 s) receptor-G protein binding.20,23 This mechanism overcomes 
inhibition by the GAP, but at the cost of molecular amplification.

If catalytic amplification occurs at the initial receptor-G pro-
tein step in the signaling pathway, we have to know the absolute 
rate constants for actual nucleotide exchange and GTP hydroly-
sis, and we don’t for any system I know of. One can envision dou-
ble-label, single-molecule approaches to the problem even though 
the technology is not now available. I predict that the question 
of molecular amplification in cells will depend on such optical 
techniques perfected to give us both kinetic and stoichiometric 
data, as well as molecular-scale location. Imaging technology is 
pushing toward this goal.
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