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Abstract: Plant-specific WRKY transcription factors (TFs) have been implicated to function as
regulators of leaf senescence, but their association with postharvest leaf senescence of economically
important leafy vegetables, is poorly understood. In this work, the characterization of a Group
IIe WRKY TF, BrWRKY65, from Chinese flowering cabbage (Brassica rapa var. parachinensis) is
reported. The expression of BrWRKY65 was up-regulated following leaf chlorophyll degradation
and yellowing during postharvest senescence. Subcellular localization and transcriptional activation
assays showed that BrWRKY65 was localized in the nucleus and exhibited trans-activation ability.
Further electrophoretic mobility shift assay (EMSA) and transient expression analysis clearly revealed
that BrWRKY65 directly bound to the W-box motifs in the promoters of three senescence-associated
genes (SAGs) such as BrNYC1 and BrSGR1 associated with chlorophyll degradation, and BrDIN1,
and subsequently activated their expressions. These findings demonstrate that BrWRKY65 may
be positively associated with postharvest leaf senescence, at least partially, by the direct activation
of SAGs. Taken together, these findings provide new insights into the transcriptional regulatory
mechanism of postharvest leaf senescence in Chinese flowering cabbage.

Keywords: Chinese flowering cabbage; WRKY; postharvest leaf senescence; senescence-associated
genes; chlorophyll degradation

1. Introduction

As the final phase of leaf development, senescence is an important biological process
accompanying the cessation of photosynthesis, chlorophyll breakdown, leaf proteins degradation,
amino acids removal, as well as the mobilization of nitrogen, carbon and other minerals [1–4]. Although
senescence is necessary to maximize a plant’s resource use, premature or abnormal senescence induced
by biotic and abiotic stress often causes a decrease in crop yield and produce quality, as well as a
decline in shelf-life during postharvest transportation and storage [5–7]. Therefore, the underlying
regulatory mechanisms of postharvest leaf senescence would be beneficial for many biotechnological
applications to prevent postharvest loss [8].

During senescence, leaves undergo a series of programmed molecular changes mediated by
senescence-associated genes (SAGs) [1,5,9], which in turn, are controlled by transcription factors
(TFs) [3,7,9–12]. The Arabidopsis thaliana genome encodes ~2,000 TFs, among which more than 200 TFs
are related to leaf senescence [10,13]. In particular, WRKY, NAC (NAM/ATAF1/2/CUC2), MYB, C2H2
zinc-finger, bZIP, and AP2/ERF represent the largest families of senescence-associated TFs [3,9–11,14].
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WRKYs form a major family of plant-specific TFs, with more than 70 and 100 members in
model species Arabidopsis thaliana and rice, respectively [15,16]. WRKYs include one or two highly
conserved DNA-binding motifs, termed WRKY domain, characterized by WRKYGQK sequences,
following a specific C-terminal zinc-finger motif [15,16]. The first WRKY gene is identified from sweet
potato [17], and subsequently from many other plants [18]. WRKYs have been suggested to act as
major regulators of leaf senescence. For example, the Arabidopsis thaliana wrky53 mutant displays
delayed leaf senescence, while its over-expression results in precocious senescence, demonstrating that
WRKY53 is positively involved in leaf senescence [19,20]. Besides WRKY53, other well-characterized
WRKYs that are involved in leaf senescence include WRKY6, WRKY22, WRKY33, WRKY53, WRKY54,
WRKY70, and WRKY75 from Arabidopsis thaliana [3,9,11,12,21], OsWRKY23, OsWRKY42, OsWRKY80,
and OsWRKY26 from rice [22–24], and TaWRKY7 from wheat [25]. To date, however, little is known
about the molecular aspects of senescence-associated WRKY TFs in non-model plants, especially in
economically important leafy vegetables.

The Brassica rapa L. comprises many economically important worldwide cultivated leafy
vegetables, such as Chinese cabbage (B. rapa ssp. pekinensis), bok choy (B. rapa ssp. chinensis),
and Chinese flowering cabbage/choy sum (B. rapa ssp parachinensis) [26]. These leafy vegetables
are known for their nutraceutical and health-promoting properties [27]. However, harvested leafy
vegetables wilt, senesce and perish rapidly, leading to short shelf-life and substantial losses. Previous
studies have examined several physiological parameters and identified some SAGs genes related to
postharvest leaf senescence of leafy vegetables, and established storage technologies that delay leaf
senescence [28–31]. Nevertheless, transcriptional regulatory mechanism(s) underpinning WRKY
TF-regulated postharvest leaf senescence in leafy vegetables remains unexplored. Here, a leaf
senescence-inducible WRKY TF BrWRKY65, is isolated and characterized in Chinese flowering cabbage.
We provide evidences that BrWRKY65 may be positively associated with postharvest leaf senescence
in Chinese flowering cabbage by the activation of three SAGs genes including BrNYC1 and BrSGR2
related to chlorophyll degradation, and BrDIN1.

2. Results and Discussion

2.1. Physiological Changes During Chinese Flowering Cabbage Postharvest Leaf Senescence

Leaf yellowing due to a rapid breakdown of chlorophyll is an obvious symptom of senescence
in cabbages [29,30]. As shown in Figure 1A, the Chinese flowering cabbage leaves started yellowing
after 5 days of storage at 15 ◦C, and it got severe by day 9. Chlorophyll content and relative electrolyte
leakage are used as markers for assessing the severity of senescence progression (Lin et al. 2015)[32].
Correlative to the leaf yellowing, total chlorophyll content (Figure 1B) and Fv/Fm ratio (Figure 1C)
declined continuously such that their values on day 9 were just 11.3% and 37.4% of day 0, respectively
(Figure 1B,C). In contrast, relative electrolyte leakage of cabbage leaves increased gradually during
postharvest senescence (Figure 1D).
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Figure 1. (A) Appearance of Chinese flowering cabbage during 9 days of storage at 15 °C; (B–D) 
Changes in total chlorophyll content, Fv/Fm ratio, and relative electrolyte leakage during postharvest 
leaf senescence. Data represent mean values from three biological replicates (±S.E.). 

2.2. Isolation and Bioinformatics Analysis of BrWRKY65 

Plant-specific WRKY TFs play a central role in regulating leaf senescence [3,9,12,33]. Although 
145 WRKY TFs are found in Brassica rapa plants such as Chinese cabbage [34,35], and a senescence-
related Group IIc WRKY TF BrWRKY75 is preliminarily characterized in our previous study [36], the 
mechanism(s) of senescence-associated WRKY TFs involved in regulating leaf senescence in Chinese 
flowering cabbage remains unclear. However, in the present work, searching our RNA-seq 
transcriptome database, a full-length WRKY gene (NP_001306245.1) showed increased expression 
during postharvest cabbage leaf senescence. The full-length of this WRKY was cloned and homology 
search indicated that it exhibited the highest identity with AtWRKY65 (85%); so it was designated as 
BrWRKY65. The ORF of BrWRKY65 is 786 bp in length and encodes a polypeptide of 262 amino acids. 
The calculated molecular weight and pI of BrWRKY65 is 29 kDa and 5.41 respectively. Multiple 
alignments of BrWRKY65 revealed that it possesses a highly conserved WRKY domain, with 
WRKYGQK sequence, which is the defining character of WRKY proteins [15], as well as one putative 
zinc-finger motif (C-X5-CX23-H-X1-H) at the C-terminus (Figure 2A). 

According to the number of WRKY domains and structure of the zinc-finger motif, WRKY TFs 
are clustered into three major groups (I-III). Group II can be further divided into five subfamilies (IIa-
e) [15,16]. A phylogenetic tree that was constructed using BrWRKY65, BrWRKY75, and Arabidopsis 
WRKYs showed that BrWRKY75 belonged to Group IIc, while BrWRKY65 belonged to Group IIe, 
along with AtWRKY65, AtWRKY22, and AtWRKY35 (Figure 2B), of which AtWRKY22 positively 
regulates dark-induced leaf senescence [21], suggesting the possible involvement of BrWRKY65 in 
cabbage leaf senescence. 

Figure 1. (A) Appearance of Chinese flowering cabbage during 9 days of storage at 15 ◦C;
(B–D) Changes in total chlorophyll content, Fv/Fm ratio, and relative electrolyte leakage during
postharvest leaf senescence. Data represent mean values from three biological replicates (±S.E.).

2.2. Isolation and Bioinformatics Analysis of BrWRKY65

Plant-specific WRKY TFs play a central role in regulating leaf senescence [3,9,12,33]. Although 145
WRKY TFs are found in Brassica rapa plants such as Chinese cabbage [34,35], and a senescence-related
Group IIc WRKY TF BrWRKY75 is preliminarily characterized in our previous study [36],
the mechanism(s) of senescence-associated WRKY TFs involved in regulating leaf senescence in
Chinese flowering cabbage remains unclear. However, in the present work, searching our RNA-seq
transcriptome database, a full-length WRKY gene (NP_001306245.1) showed increased expression
during postharvest cabbage leaf senescence. The full-length of this WRKY was cloned and homology
search indicated that it exhibited the highest identity with AtWRKY65 (85%); so it was designated as
BrWRKY65. The ORF of BrWRKY65 is 786 bp in length and encodes a polypeptide of 262 amino
acids. The calculated molecular weight and pI of BrWRKY65 is 29 kDa and 5.41 respectively.
Multiple alignments of BrWRKY65 revealed that it possesses a highly conserved WRKY domain,
with WRKYGQK sequence, which is the defining character of WRKY proteins [15], as well as one
putative zinc-finger motif (C-X5-CX23-H-X1-H) at the C-terminus (Figure 2A).

According to the number of WRKY domains and structure of the zinc-finger motif, WRKY TFs are
clustered into three major groups (I-III). Group II can be further divided into five subfamilies (IIa-e) [15,16].
A phylogenetic tree that was constructed using BrWRKY65, BrWRKY75, and Arabidopsis WRKYs showed
that BrWRKY75 belonged to Group IIc, while BrWRKY65 belonged to Group IIe, along with AtWRKY65,
AtWRKY22, and AtWRKY35 (Figure 2B), of which AtWRKY22 positively regulates dark-induced leaf
senescence [21], suggesting the possible involvement of BrWRKY65 in cabbage leaf senescence.
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Figure 2. Bioinformatics analysis of BrWRKY65. (A) Multiple alignment of BrWRKY65 with 
Arabidopsis thaliana AtWRKY22 (XP_002872898.1) and AtWRKY65 (NP_174222.2), Pak-choi 
BcWRKY22 (NP_001288962.1), cotton GrWRKY65 (NP_001313892.1), and castor bean RcWRKY65 
(XP_002522247.1). Black and gray shading indicate identical and similar amino acids respectively. The 
WRKY motif is underlined and the zinc-finger structures are indicated by asterisks; (B) A 
phylogenetic tree of Arabidopsis thaliana WRKYs and BrWRKY65. Three major groups and seven sub-
families of WRKYs are presented in different colors. BrWRKY65, along with AtWRKY65, AtWRKY22, 
and AtWRKY35 were classified into Group IIe. MEGA5.0 was applied to construct the phylogenetic 
tree with default parameters. 

2.3. BrWRKY65 Is Localized to the Nucleus and Acts as a Transcription Activator 

As TFs, WRKYs are usually nuclear proteins and possess transcriptional activity [33,37–39]. 
Previously, we also found that Chinese flowering cabbage BrWRKY75 was a nuclear protein with 
transcriptional repression activity [36]. To investigate the subcellular location of BrWRKY65, it was 
fused with GFP and got transiently expressed in tobacco leaves. As shown in Figure 3A, GFP signal 
of BrWRKY65 fusion protein was detected in the nucleus of tobacco cells, while the positive control 
GFP fluorescence was observed around the cytoplasm and the nucleus. The transcriptional activity 
of BrWRKY65 was analyzed through the dual-luciferase reporter system, also in tobacco leaves. For 
this assay, LUC reporter is fused with 5× GAL4 DNA-binding elements plus TATA box and REN 
driven by the 35S promoter is used as the internal control (Figure 3B). Compared with the negative 
control pBD, both the transcriptional activator control VP16 and BrWRKY65 significantly increased 
the values of LUC/REN ratio (Figure 3C). These data suggest that BrWRKY65 may act as a 
transcriptional activator in the nucleus. 

Figure 2. Bioinformatics analysis of BrWRKY65. (A) Multiple alignment of BrWRKY65 with
Arabidopsis thaliana AtWRKY22 (XP_002872898.1) and AtWRKY65 (NP_174222.2), Pak-choi BcWRKY22
(NP_001288962.1), cotton GrWRKY65 (NP_001313892.1), and castor bean RcWRKY65 (XP_002522247.1).
Black and gray shading indicate identical and similar amino acids respectively. The WRKY motif
is underlined and the zinc-finger structures are indicated by asterisks; (B) A phylogenetic tree of
Arabidopsis thaliana WRKYs and BrWRKY65. Three major groups and seven sub-families of WRKYs are
presented in different colors. BrWRKY65, along with AtWRKY65, AtWRKY22, and AtWRKY35
were classified into Group IIe. MEGA5.0 was applied to construct the phylogenetic tree with
default parameters.

2.3. BrWRKY65 Is Localized to the Nucleus and Acts as a Transcription Activator

As TFs, WRKYs are usually nuclear proteins and possess transcriptional activity [33,37–39]. Previously,
we also found that Chinese flowering cabbage BrWRKY75 was a nuclear protein with transcriptional
repression activity [36]. To investigate the subcellular location of BrWRKY65, it was fused with GFP and
got transiently expressed in tobacco leaves. As shown in Figure 3A, GFP signal of BrWRKY65 fusion
protein was detected in the nucleus of tobacco cells, while the positive control GFP fluorescence was
observed around the cytoplasm and the nucleus. The transcriptional activity of BrWRKY65 was analyzed
through the dual-luciferase reporter system, also in tobacco leaves. For this assay, LUC reporter is fused
with 5× GAL4 DNA-binding elements plus TATA box and REN driven by the 35S promoter is used as the
internal control (Figure 3B). Compared with the negative control pBD, both the transcriptional activator
control VP16 and BrWRKY65 significantly increased the values of LUC/REN ratio (Figure 3C). These data
suggest that BrWRKY65 may act as a transcriptional activator in the nucleus.
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Figure 3. (A) Nuclear localization of BrWRKY65 in tobacco leaves. The fusion protein (BrWRKY65-
GFP) and positive control were transiently expressed in tobacco leaves respectively via Agrobacterium 
tumefaciens strain GV3101. GFP signals were captured with a fluorescence microscope after 48 h of 
injection. Images were photographed in a dark-field for GFP, while the outline of the cell and the 
merged were taken in a bright field. Bars, 25 μm; (B) Schematics of the reporter and effector constructs. 
The firefly luciferase (LUC) was drove by the minimal TATA box of the CaMV 35S promoter plus five 
copies of the GAL4 binding element (5× GAL4), and the CaMV 35S-driving Renilla luciferase (REN) 
at the same vector was used as an internal control. BrWRKY65 fused with the yeast GAL4 DNA-
binding domain (GAL4BD) driven by CaMV 35S, were adopted as the effector; (C) Transcriptional 
activation activity of BrWRKY65. The trans-activation ability of BrWRKY65 is revealed by the 
LUC/REN ratio. The ratio of LUC/REN of the empty pBD vector is used as the calibrator (set as 1). At 
least six independent repeats were assayed for each pair. Compared with the pBD, significant 
differences at the level of p < 0.05 analyzed by the Student’s t-test, are indicated by different letters 
above the bar. 

2.4. Expression Patterns of BrWRKY65, BrNYC1, BrSGR1, and BrDIN1 during Chinese Flowering Cabbage 
Postharvest Leaf Senescence 

To further confirm the possible association of BrWRKY65 with cabbage postharvest leaf 
senescence, its expression was examined by qRT-PCR. Consistent with its trend in our RNA-seq 
database, BrWRKY65 transcript level increased during senescence, reaching about 4.2- and 3.8-fold 
of the initial level at day seven and nine, respectively (Figure 4). In addition, as leaf yellowing is due 
to chlorophyll degradation [29,32,40–43], and dark-inducible (DIN) genes are induced in dark-
adapted and senescing leaves [44,45], which have been used previously as markers to characterize 
senescence-associated responses. Therefore, we further searched the SAG genes in our RNA-seq 

Figure 3. (A) Nuclear localization of BrWRKY65 in tobacco leaves. The fusion protein (BrWRKY65-GFP)
and positive control were transiently expressed in tobacco leaves respectively via Agrobacterium
tumefaciens strain GV3101. GFP signals were captured with a fluorescence microscope after 48 h
of injection. Images were photographed in a dark-field for GFP, while the outline of the cell and the
merged were taken in a bright field. Bars, 25 µm; (B) Schematics of the reporter and effector constructs.
The firefly luciferase (LUC) was drove by the minimal TATA box of the CaMV 35S promoter plus five
copies of the GAL4 binding element (5× GAL4), and the CaMV 35S-driving Renilla luciferase (REN) at
the same vector was used as an internal control. BrWRKY65 fused with the yeast GAL4 DNA-binding
domain (GAL4BD) driven by CaMV 35S, were adopted as the effector; (C) Transcriptional activation
activity of BrWRKY65. The trans-activation ability of BrWRKY65 is revealed by the LUC/REN ratio.
The ratio of LUC/REN of the empty pBD vector is used as the calibrator (set as 1). At least six
independent repeats were assayed for each pair. Compared with the pBD, significant differences at the
level of p < 0.05 analyzed by the Student’s t-test, are indicated by different letters above the bar.

2.4. Expression Patterns of BrWRKY65, BrNYC1, BrSGR1, and BrDIN1 during Chinese Flowering Cabbage
Postharvest Leaf Senescence

To further confirm the possible association of BrWRKY65 with cabbage postharvest leaf senescence,
its expression was examined by qRT-PCR. Consistent with its trend in our RNA-seq database,
BrWRKY65 transcript level increased during senescence, reaching about 4.2- and 3.8-fold of the initial
level at day seven and nine, respectively (Figure 4). In addition, as leaf yellowing is due to chlorophyll
degradation [29,32,40–43], and dark-inducible (DIN) genes are induced in dark-adapted and senescing
leaves [44,45], which have been used previously as markers to characterize senescence-associated
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responses. Therefore, we further searched the SAG genes in our RNA-seq transcriptome database,
and three SAGs such as BrNYC1 (NON-YELLOW COLORING1/Chl b reductase) (XP_009139641.1)
and BrSGR1 (STAY-GREEN1) (XP_018512704.1) associated with chlorophyll degradation, and BrDIN1
(XP_009150416.1) were selected. Their expressions were also analyzed. As can be seen in Figure 4,
as expected, similar to BrWRKY65, the expression of BrNYC1, BrSGR1, and BrDIN1 were all
up-regulated during cabbage postharvest leaf senescence.
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BrSGR1, and BrDIN1 in vivo. 

Figure 4. Expression patterns of BrWRKY65, BrNYC1, BrSGR1, and BrDIN1 during Chinese flowering
cabbage postharvest leaf senescence. Transcript levels of each gene at 0 d of storage were set as 1. Data
represents the mean ± S.E. of three biological replicates.

2.5. BrWRKY65 Directly Binds to the W-Box Elements on the Promoters of BrNYC1, BrSGR1, and BrDIN1

Numerous studies reveal that WRKY TFs control their target gene expressions by binding to
the typical cis-element W-box with a core sequence (C/T)TGAC(C/T) in the promoter [16,33,39,46].
We scanned the promoter regions of BrNYC1, BrSGR1, and BrDIN1, and found that they all
contain putative W-box motifs (Text S1). In addition, qRT-PCR results revealed that BrWRKY65,
BrNYC1, BrSGR1, and BrDIN1 showed similar expression trends during leaf senescence (Figure 4).
Thus, it could be speculated that BrNYC1, BrSGR1, and BrDIN1 might be targets of BrWRKY65.
The direct binding of BrWRKY65 protein to BrNYC1, BrSGR1, and BrDIN1 promoters was verified
by an Electrophoretic mobility shift assay (EMSA). Purified recombinant glutathione S-transferase
(GST)-BrWRKY65 fusion protein was successfully obtained via prokaryotic expression (Figure S1).
As expected, the GST-BrWRKY65 fusion protein was able to bind the biotin-labeled probes containing
the W-box motif derived from BrNYC1, BrSGR1, and BrDIN1 promoters and caused mobility shifts.
However, the mobility shift was effectively abolished when unlabeled BrNYC1, BrSGR1, or BrDIN1
promoter fragment used as a cold competitor was added, in a dose-dependent manner, but not by the
mutated W-box probes (Figure 5). The mobility shift was also not observed when the biotin-labeled
probes were incubated with GST alone (Figure 5), indicating that the binding of BrWRKY65 to the
BrNYC1, BrSGR1, or BrDIN1 promoter is specific. While further experiments such as chromatin
immunoprecipitation (ChIP) assays will be needed to confirm the bindings of BrWRKY65 to BrNYC1,
BrSGR1, and BrDIN1 in vivo.
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probes, and the protein–DNA complexes were separated on native polyacrylamide gels. GST protein 
alone was used as the negative control. − represents absence, while + represents presence. Unlabeled 
or mutant probes at different concentrations (from 100 to 1000 times) were added to the reaction 
mixture for competition and testing binding specificity. Arrows indicate the position of shifted bands. 
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BrSGR1, and BrDIN1 by BrWRKY65 was further determined through transient dual-luciferase assays 
in tobacco leaves. The BrNYC1, BrSGR1, and BrDIN1 promoters with 1331, 533, and 1229 bp, 
respectively, were fused with the LUC reporter. CaMV 35S-driving REN reporter in the same vector 
was used as an internal control to normalize the expression of each reporter (Figure 6A). BrWRKY65 
inserted into the pGreenII 62-SK was adopted as an effector, and the empty pGreenII 62-SK vector 
was included as a control (Figure 6A). The respective reporter and effector plasmids were co-
expressed in tobacco leaves and the LUC/REN ratio was detected. As shown in Figure 6B, compared 
with the empty control (pGreenII 62-SK), overexpression of BrWRKY65 with BrNYC1, BrSGR1, or 
BrDIN1 promoter significantly increased the value of the LUC/REN ratio. The results clearly suggest 
that BrWRKY65 activated the transcription of BrNYC1, BrSGR1, and BrDIN1, revealing that 
BrWRKY65 may function as a positive regulator of postharvest leaf senescence of Chinese flowering 
cabbage. While it should be pointed out that targeted transgenic research are required to fully unravel 
the biological function of BrWRKY65 in regulating postharvest leaf senescence of Chinese flowering 
cabbage. The previously identified BrWRKY75 exhibited transcriptional repression activity and was 
also up-regulated during leaf senescence [36]. Accordingly, whether BrWRKY65 and BrWRKY75 act 
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Figure 5. Electrophoretic mobility shift assay (EMSA) of BrWRKY65 binding to the W-box element
and promoters of BrNYC1, BrSGR1, and BrDIN1 containing W-box element. The probe sequences
corresponding to each of the target gene promoters are shown, with red letters representing the W-box
and the mutant W-box. The purified recombinant GST-BrWRKY65 protein was incubated with probes,
and the protein–DNA complexes were separated on native polyacrylamide gels. GST protein alone
was used as the negative control. − represents absence, while + represents presence. Unlabeled or
mutant probes at different concentrations (from 100 to 1000 times) were added to the reaction mixture
for competition and testing binding specificity. Arrows indicate the position of shifted bands.

2.6. BrWRKY65 Activates the Expressions of BrNYC1, BrSGR1, and BrDIN1

Since BrWRKY65 is a transcription activator (Figure 3C), the trans-activation of BrNYC1, BrSGR1,
and BrDIN1 by BrWRKY65 was further determined through transient dual-luciferase assays in tobacco
leaves. The BrNYC1, BrSGR1, and BrDIN1 promoters with 1331, 533, and 1229 bp, respectively, were
fused with the LUC reporter. CaMV 35S-driving REN reporter in the same vector was used as an
internal control to normalize the expression of each reporter (Figure 6A). BrWRKY65 inserted into
the pGreenII 62-SK was adopted as an effector, and the empty pGreenII 62-SK vector was included
as a control (Figure 6A). The respective reporter and effector plasmids were co-expressed in tobacco
leaves and the LUC/REN ratio was detected. As shown in Figure 6B, compared with the empty
control (pGreenII 62-SK), overexpression of BrWRKY65 with BrNYC1, BrSGR1, or BrDIN1 promoter
significantly increased the value of the LUC/REN ratio. The results clearly suggest that BrWRKY65
activated the transcription of BrNYC1, BrSGR1, and BrDIN1, revealing that BrWRKY65 may function
as a positive regulator of postharvest leaf senescence of Chinese flowering cabbage. While it should be
pointed out that targeted transgenic research are required to fully unravel the biological function of
BrWRKY65 in regulating postharvest leaf senescence of Chinese flowering cabbage. The previously
identified BrWRKY75 exhibited transcriptional repression activity and was also up-regulated during
leaf senescence [36]. Accordingly, whether BrWRKY65 and BrWRKY75 act together or individually to
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regulate SAGs is an interesting research issue in the future. Moreover, it has been reported other types of
Arabidopsis TFs, such as ABSCISIC ACID INSENSITIVE3 (ABI3) [47], ABI5, ENHANCED EM LEVEL
(EEL) [48], phytochrome-interacting factor 4 (PIF4) [49], MYC2/3/4 [50], ANAC072 [43], and ERF [51],
are reported to activate genes related to chlorophyll degradation such as NYE1 (also known as SGR1),
NYC1, and PAO (pheophorbide a oxygenase) via directly binding to their promoters, leading to
accelerated chlorophyll degradation during leaf senescence, seed or fruit degreening. Intriguingly,
Arabidopsis ETHYLENE INSENSITIVE3 (EIN3) and ORE1/NAC2 establish a network controlling
ethylene-induced leaf senescence via directly targeting NYE1, NYC1, and PAO [52]. More recently,
abscisic acid (ABA)-responsive element (ABRE)-binding TFs ABF2, ABF3, and ABF4 from Arabidopsis
are found to speed ABA-mediated chlorophyll degradation and leaf senescence by the trans-activation
of NYE1, NYE2, NYC1, PAO, SAG12, and SAG29 [42]. Collectively, these results imply the existence of
a complex regulatory network of chlorophyll degradation and leaf senescence involving multiple TFs.
Therefore, whether BrWRKY65 coordinates with these TFs in regulating postharvest leaf senescence in
Chinese flowering cabbage needs to be investigated in the future.
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Figure 6. Transient dual-luciferase reporter assay showing the trans-activation of BrNYC1, BrSGR1,
and BrDIN1 by BrWRKY65. (A) Diagrams of the reporter and effector constructs; (B) BrWRKY65
trans-activated BrNYC1, BrSGR1, and BrDIN1 promoters. The ratio of LUC/REN of the empty vector
(62-SK) plus promoter was considered as a calibrator (set as 1). The activation is indicated by the ratio
of LUC to REN. Data represents the mean ± S.E. of six independent repeats. ** indicates statistically
significant differences at the level of p < 0.01 tested by Student’s t-test.
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3. Materials and Methods

3.1. Plant Materials and Samples

Chinese flowering cabbages (Brassica rapa var. parachinensis) were obtained from a local
commercial vegetable farm near Guangzhou, southern China. After pre-cooling, the harvested
cabbages were transported to the lab immediately. Only cabbages with no mechanical damage
and uniform appearance were chosen. The selected cabbages were placed into plastic baskets (20 per
box) packing with 0.04 mm thickness polyethylene perforated plastic bags. The packed cabbages were
then stored in the incubators at 15 ◦C. Samples were taken at 0, 5, 7, and 9 days of storage, and the
second leaf from the bottom of the cabbages was collected. The collected leaves were sliced into small
pieces, frozen in liquid nitrogen and stored at −80 ◦C until analysis.

3.2. Leaf Senescence Evaluations

Leaf senescence was assessed using the following three parameters: total chlorophyll content,
chlorophyll fluorescence and relative electrolyte leakage. The total chlorophyll content per fresh
weight of leaf tissue was estimated spectrophotometrically after extraction in 80% acetone as previously
described [23,29]. Chlorophyll fluorescence was measured using the ‘Fv/Fm’ mode on an OS-500
modulated Fluorometer (OPTI Sciences, Boston, MA, USA). The Fv/Fm is a ratio of the variable
fluorescence divided by the maximum fluorescence value. The Fv/Fm ratio was measured after cabbage
leaves were placed in the dark for 30 min at room temperature [53]. Relative electrolyte leakage was
defined as Lt/L0 and expressed as a percentage, which was measured using a conductivity meter [54].

3.3. RNA Extraction, Gene Isolation, and Sequence Analysis

Total RNA was extracted from Chinese flowering cabbage leaves using the RNeasy Mini kit
(Qiagen, Hilden, Germany) following the manufacturer’s protocol. The quality and integrity of total
RNA was monitored by running ~1 µg in a formamide denaturing gel, and using a spectrophotometer
to confirm total RNA quantity. A PrimeScriptTM RT reagent Kit with gDNA Eraser (Takara, shiga,
Japan) was applied to synthesize cDNAs, following the manufacturer’s instructions.

Based on our RNA-seq database and genome of Chinese cabbage chiifu in BRAD (http://
brassicadb.org/brad/), a WRKY showing high sequence homology to Arabidopsis thaliana WRKY65,
named BrWRKY65 (NP_001306245.1), was found to be up-regulated during postharvest leaf senescence.
BrWRKY65 was cloned, sequenced (primers are listed in Table S1), and subjected to a homology search
in the NCBI database. The theoretical isoelectric point (pI) and mass value for BrWRKY65 protein were
predicted at the online website (http://web.expasy.org/compute_pi/). Multiple alignments were
performed using CLUSTALW (version 1.83) and GeneDoc softwares. The phylogenetic tree of WRKY
proteins was constructed using the MEGA5.0 software with the Neighbor–Joining method.

3.4. Gene Expression Analysis by qRT-PCR

Quantitative RT-PCR (qRT-PCR) was conducted as previously described [55]. PCR reactions were
carried out with the GoTaq® qPCR Master Mix Kit (Promega, Madison, WI, USA) on a Bio-Rad CFX96
Real-Time PCR System. Data were normalized to reference gene EF-1-α (GO479260) [56]. All qRT-PCRs
were normalized using the cycle threshold (Ct) value corresponding to the reference gene. Primers
used for qRT-PCR are listed in Table S1.

3.5. Analysis of BrWRKY65 Subcellular Localization

The complete Open Reading Frame (ORF) of BrWRKY65 was amplified and inserted into the
pEAQ-GFP vector (primers are listed in Table S1). The pEAQ-BrWRKY65-GFP plasmids were
introduced into the Agrobacterium tumefaciens strain GV3101 using Gene PulserXcellTM Electroporation
Systems (Bio-Rad, Hercules, CA, USA). The Agrobacterium harboring pEAQ-BrWRKY65-GFP was

http://brassicadb.org/brad/
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injected into the abaxial side of 4- to 6-week-old tobacco (Nicotiana benthamiana) leaves using a 1-mL
syringe without a needle as described previously [57,58]. pEAQ-GFP was employed as the positive
control. The GFP signal was visualized with an Axioskop 2 Plus fluorescence microscope (Zeiss, Jena,
Germany) after 48 h of infiltration.

3.6. Promoter Isolation and Analysis

Genomic DNA was prepared from Chinese flowering cabbage leaves using the CTAB-based
methods [59]. The promoters of three SAGs including BrNYC1, BrSGR2, and BrDIN1 were obtained
using a Genome Walker Kit (Clontech, Mountain View, CA, USA) with nested PCR (specific primers
are listed in Table S1). The Plant-CARE database (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/) was employed to predict the conserved cis-element motifs presented in promoters.

3.7. Recombinant Protein Expression, Purification and Electrophoretic Mobility Shift Assay (EMSA)

The GST-BrWRKY65 expression vector was constructed with pGEX-4T-1 (GE Healthcare Life
Sciences (China), Beijing, China) and then transformed into Escherichia coli strain BM Rosetta (DE3).
GST-BrWRKY65 protein expression was induced by 1mM isopropyl thio-β-D-galactoside (IPTG) at
30 ◦C for 6 h, and the recombinant fusion protein was purified using Glutathione-Superflow Resin
(Clontech, Mountain View, CA, USA) according to the manufacturer’s protocol.

The fragments of ~60 bp containing putative WRKY binding region in the promoters of BrNYC1,
BrSGR2, and BrDIN1 were labeled with biotin at the 5’ end. An EMSA was performed essentially using
the LightShift Chemiluminescent EMSA Kit (Thermo Scientific, Rockford, IL, USA) as our previous
studies described [58,60]. Purified GST-BrWRKY65 fusion protein was incubated with biotin-labeled
DNA fragments, and the protein-DNA complexes were separated by SDS-PAGE following detection on
a ChemiDoc™ MP Imaging System (Bio-Rad, Hercules, CA, USA) by the chemiluminescence method.
A 100- and 1000-fold molar excess of unlabeled DNA fragments with the same or mutant sequences
were used as competitors, and the GST protein alone was used as the negative control. The primers
used in the EMSA assay are listed in Table S1.

3.8. Dual-Luciferase Transient Expression Analysis in Tobacco Leaves

The transcriptional activity of BrWRKY65 was assayed using the dual-luciferase transient
expression system in tobacco leaves. The reporter vector was modified from the pGreenII 0800-LUC
vector [61]. The firefly luciferase (LUC) was driven by the minimal TATA box of the CaMV 35S promoter
plus five copies of the GAL4 binding element (5× GAL4), and the Renilla luciferase (REN) driven
by CaMV 35S at the same vector was used as an internal control. The full-length coding sequence of
BrWRKY65 was fused with the yeast GAL4 DNA-binding domain (GAL4BD) as the effector, driven by
CaMV 35S. To assess the trans-activation of BrWRKY65 to the BrNYC1, BrSGR2, and BrDIN1 promoters,
these promoters were inserted into pGreenII0800-LUC vector, while BrWRKY65 was cloned into the
pGreenII 62-SK vector as the effector [61]. Primers for all constructs are listed in Table S1.

The constructed reporter and effector plasmids were transiently co-expressed in tobacco leaves as
described above. After 48 h of infiltration, dual-luciferase assay kit (Promega (Beijing) Biotech Co., Ltd.,
Beijing, China) was adopted to detect LUC and REN luciferase activity on a Luminoskan Ascent Microplate
Luminometer (Thermo Scientific, Rockford, IL, USA) according to the manufacturer’s instructions.
The transcriptional activity of BrWRKY65, and trans-activation of BrWRKY65 to each promoter was
indicated by the LUC to REN ratio. At least six independent repeats were measured for each pair.

3.9. Statistics

Experiments were performed according to a complete randomized design. Data in figures are
expressed as the mean ± standard errors (S.E.) of at least three independent replicates. The data were
statistically analyzed by applying Student’s t-test.

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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4. Conclusions

In conclusion, a postharvest leaf senescence-inducible transcriptional activator, BrWRKY65, from
Chinese flowering cabbage is isolated and characterized. Furthermore, BrWRKY65 binds to the
promoters of three SAG genes, and activates their expressions. Overall, our work provides novel
information about the transcriptional regulation of leaf senescence in commercially important leafy
vegetables, such as Chinese flowering cabbage.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/6/1228/s1.
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