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Abstract: The quality of recognition systems for continuous utterances in signed languages could
be largely advanced within the last years. However, research efforts often do not address specific
linguistic features of signed languages, as e.g., non-manual expressions. In this work, we evaluate
the potential of a single video camera-based recognition system with respect to the latter. For this,
we introduce a two-stage pipeline based on two-dimensional body joint positions extracted from RGB
camera data. The system first separates the data flow of a signed expression into meaningful word
segments on the base of a frame-wise binary Random Forest. Next, every segment is transformed
into image-like shape and classified with a Convolutional Neural Network. The proposed system
is then evaluated on a data set of continuous sentence expressions in Japanese Sign Language
with a variation of non-manual expressions. Exploring multiple variations of data representations
and network parameters, we are able to distinguish word segments of specific non-manual
intonations with 86% accuracy from the underlying body joint movement data. Full sentence
predictions achieve a total Word Error Rate of 15.75%. This marks an improvement of 13.22% as
compared to ground truth predictions obtained from labeling insensitive towards non-manual content.
Consequently, our analysis constitutes an important contribution for a better understanding of mixed
manual and non-manual content in signed communication.

Keywords: sign language; learning systems; motion segmentation; signal processing; gesture
information retrieval; neural networks

1. Introduction

Systems that process and understand expressions in Sign Language (SL) have a great potential to
facilitate daily life of individuals that are deaf or hard of hearing. Nevertheless, to date no universal
system could be found that would be accurate, reliable and applicable to general, daily use. This is
due to a number of complexities specific to SLs.

First, SLs are visual languages and impose specific sensing requirements to obtain meaningful
representations of the moving joint trajectories through time and space. As such, machine learning
data cannot be obtained as easily as in other domains. In order to provide ubiquitous application
systems, it is reasonable to focus on simple sensing devices, may it be video cameras [1], the Microsoft
Kinect [2,3] or the Leap Motion [4]. High recognition rates can be achieved for isolated signs [5–7].
However, it is very challenging to recognize the content of continuous sentence expressions in more
realistic settings. Here, lexical items might merge into each other without clear visual separation,
appear in unbalanced frequency, or undergo morphological changes based on speed, content and
personal style of a signer. Lastly, signed expressions incorporate a wide range of specific linguistic
features. Examples are Non-Manual Expressions (NMEs) and spatial and contextual Classifier
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Predicates (CP). These features may vary with the context of a conversation, and can hardly be put into
generic concepts [8] for subsequent retrieval from the collected sentence data. As a result, it is necessary
to develop specialized continuous Sign Language Recognition (CSLR) approaches that are equally
robust towards morphological variations, and sensitive towards the special characteristics of a SL.

In this work, we particularly aim to investigate the latter aspect, in order to foster the development
of communication assist systems that understand detailed non-manual information. For this,
we introduce a novel recognition system based on skeletal information of body joints obtained from
a single camera video data. This makes our system lightweight and faster to train as compared
to a system solely based on video data. In particular, we make use of the publicly available
OpenPose system [9–12] to infer upper body, finger and facial joint positions of signed video content.
These two-dimensional data points are then post-processed and utilized as input in the proposed
CSLR interface. Here, the idea is to ease the burden on the network training by a two-staged
interface. Rather than simultaneously learning the temporal segmentation and gesture content,
we first separate relevant content within the continuous expressions. The subsequent recognition step
should then be more sensitive to small subtle differences within the data, which often characterize
content-relevant NMEs.

To justify the applicability of our proposed system, we evaluate it with our own collection
of sentence expressions in Japanese SL. Under a strict evaluation that takes misclassification of
non-manual content into account, we achieve an average Word Error Rate (WER) of 15.71%.
In particular, we are able to distinguish various types and intensities of NMEs and CPs.
Therewith, the main contributions of this work are as follows:

• Introduction of a sign segmentation method for the acquisition of robust sentence split proposals
and its subsequent post-processing, followed by a profound discussion and evaluation.

• Evaluation of multiple skeletal feature-based Convolutional Neural Network (CNN) architectures
for classification of word segments with and without NMEs.

• Extensive evaluation of the obtained CSLR system outputs including an analysis of the impact of
NMEs on the overall recognition accuracy.

2. Background

A number of learning systems utilizing both staged and combined strategies to address the
problem of CSLR from video data have been reported. Exploring the problem under conventional
machine learning, 2-stage systems that first segment words and subsequently classify the obtained
segments were popular in the early stages of research [13,14]. Combined systems mainly evolved with
the technological possibility of end-to-end learning. They aim to unify the two problems into one
model architecture in order to prevent error accumulation caused by imperfect temporal segmentation.
State-of-the-art techniques with the best achieved WER all utilize the RWTH-PHOENIX-Weather
corpus featuring 7k sentence expressions of weather forecasts in German Sign Language [15].

Deep neural network architectures could considerably improve the quality of CSLR systems
within the last years. The first deep network proposed by Koller et al. [16,17] utilized a CNN as feature
extractor for classification of hand shapes on top of a segmentation step based on a Hidden Markov
Model (HMM) and Recurrent Neural Network with Long-Short-Term Memory (LSTM) for sequence
modeling. The network reached a WER of 30.0% in a single signer, and 38.8% in a multi-signer scenario
with the PHOENIX data set. Moreover, it achieved a WER of 7.4% under a more controlled data set
referred to as SIGNUM [18]. Using hand only information, a sequence-to-sequence learning approach
based on Connectionist Temporal Classification (CTC) and SubUNets by Camgoz et al. [19] achieved
a WER of 48.2%. Cui et al. [20] developed a three-staged learning model with CTC-based sequence
alignment, for which they report a WER of 38.7% in the multi-signer scenario. A hybrid model for
temporal sequence alignment without segmentation was proposed by Huang et al. [21]. This model is
based on a 3D CNN that is combined with a Hierarchical Attention Network, an extension of recurrent
neural network cells. Here, WER for an independent data set of Chinese SL was 17.3%, whereas the



Sensors 2020, 20, 5621 3 of 21

best WER for the PHOENIX data set was 38.3%. Camgoz et al. [22] explored the problem of sign
language translation as inspired by neural machine translation frameworks for spoken languages.
Their proposed architecture combines spatial video and word embeddings in an attention-based
encoder-decoder network. By this, the authors were able to learn gloss output from video input
without using an intermediate hand-shape classifier framework. The latest network of Cui et al. [23]
employs an end-to-end iterative learning process utilizing a temporal alignment proposal without
segmentation. Best WERs are reported as 24.43%. The most recent work of Koller et al. [24] extended
the hybrid CNN-LSTM-HMM architecture to include mouth shape and hand shape. As a result,
recognition accuracy could be improved to a WER of 26.0%. Lastly, Papastratis et al. [25] showed
that that the accuracy of sentence predictions could be further enhanced by a cross-modal learning
approach that leverages text information.

Nmes and Japanese Sign Language

Learning gloss-like representations from sequences of image data in an end-to-end fashion
requires the availability of sufficient data. However, as Koller et al. [17] point out, word frequency
in the PHOENIX data set is highly imbalanced, and numerous singletons (i.e., words that appear
only once) impede the learning of a strong classifier. This might particularly affect the distinction of
non-verbal expressions and linguistic information that are not frequently used, but convey specific
detailed context information. Moreover, corpus annotation does not focus on the recognition of NMEs
and CPs within continuous sentence expressions. This impedes the analysis of learning systems
customized to respective linguistic aspects of a SL.

A more linguistically focused data set is the American Sign Language data set used by Ye et al. [26].
However, as we aim to ultimately develop a communication assist system for Japanese deaf or hard of
hearing users, we decide to perform the following analysis on our own constructed set of sentence
expressions in Japanese Sign Language (JSL) [27]. JSL is a distinct language of its own culturally
engraved morphology, grammar and expressivity. Taiwanese SL—which is thought to have evolved
from JSL—is its linguistically closest language [28]. As such, JSL differs considerably to German or
American SL. One illustrative example is the sign ‘eating’: in JSL, it is depicted by two chopsticks that
move rice from a bowl to the mouth, whereas in German and American SL it resembles the process of
eating a sandwich. Similarly, NMEs in JSL follow a different cultural understanding [29]. This makes
them very subtle and less expressive than other SLs. In 2000, Sagawa and Takeuchi [30] developed
a system for recognition of short sentences of 3 to 6 signs, which was able to understand pointing
gestures within their contextual context from head movement. Since then, no similar works have
been reported that utilize JSL sentences with NMEs. Therefore, we hope our work to fill a gap in
current CSLR for JSL communication assist systems, while simultaneously also offering the potential
to provide new insights into technological development for different SLs.

3. Cslr System Pipeline

Previous efforts to implement a bidirectional sequence-to-sequence system from joint position
data [31] show that it is very difficult to learn a working system for the given data set due to its high
variability induced by the presence of linguistic features. For this reason, we perform our following
analysis under a two-stage system with temporal segmentation. As a consequence, word boundaries
within a continuous sign movement flow are detected independently of the specific word content.

Following the system flow shown in Figure 1, the general pipeline of our proposed CLSR is
as follows: as an initial step, we extract the two-dimensional data points of upper body, finger and
facial joints from our sign video frames. After data smoothing and interpolation of missing joint
positions we then proceed to the two principal recognition stages. In the first stage, we determine word
boundaries within the signed expressions utilizing the output of a trained binary frame-wise Random
Forest (RF) classifier. Sentence splits are proposed on the base of spatial and non-linear relations
between consecutive frames and the confidence values of the RF. These data segmentation proposals
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next undergo a post-processing step for refinement and enhanced robustness. In the second stage,
the post-processed segmentation proposals are used to extract single data segments from the extracted
2D body joint positions accordingly. A specialized CNN architecture is then utilized to classify each
segment cut on the base of the skeletal data. Lastly, resulting word labels are re-concatenated in their
order of occurrence and a final sentence prediction in gloss annotation is obtained. Making use of
tracked joint locations, our work most closely resembles the architecture discussed by Joze et al. [32]
that uses LSTMs to learn characteristics of signed words. However, whereas the authors focus on the
effect of training data on the recognition accuracy, we focus on the learning of non-manual content
information in the following.

Figure 1. Overview of the complete system outline with the proposed two-stage recognition pipeline.

3.1. Stage 1: Sentence Segmentation

We train a binary classifier for frame-wise evaluation of single data frames as proposed by
Farag and Brock [33]. The original method evaluates 3D motion capture data frames of the upper
body and finger joints with a RF based on its spatio-temporal surrounding. For the current work,
we adapt the method to the reduced dimension of the underlying sign video. Facial movement is
considered as insignificant for the identification of transitional phases, and hence omitted in this stage.
Alternative classifiers and neural networks could be employed instead of a RF, but did not lead to
performance improvements in preliminary explorations. This is most likely due to the fact that we only
observe immediate short-term dependencies of few neighboring frames. Such a time span might be
insufficient to extract relevant information for modern classifiers like CNNs. For this reason, we keep
the original RF approach.

The RF labels every frame as either transitional movement (class 0) or sign movement (class 1).
As a result, without any assumptions, we obtain an initial accurate temporal segmentation of pure
activity sub-sequences. This segmentation is sensitive to the spatial as well as the velocity components
of the motion. Moreover as described in the following, the robustness of the resulting split proposals
can be enhanced utilizing post-processing on the base of the classifier’s confidence values.
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3.1.1. Frame-Wise Classification

For each frame i in the motion sequence, we compute a feature vector xi which depicts phases
of temporal and directional transformation. xi consists of a general geometric feature descriptor
xGeo

i that represents the spatial (and angular) relations between body joints over a certain time span,
and an additional kernel descriptor xKer

i that represents their non-linear relationship obtained from a
Laplacian kernel transformation of xGeo

i .
From any representation of angular joint relations, xGeo

i can be computed as spatio-temporal
representation xGeo

i = [ fi−wg , . . . fi, . . . fi+wg ] around a window wg of neighboring frames.
Joint relations shown to provide reasonable segmentation results are the combination of angular
and distance features between line segments of pairs of joints introduced in [33], or the joint angular
displacement transformation by Kumar et al. [34]. Another possible variation could be to utilize the
point of intersection between selected line segments as reference point for a subsequent computation
of joint or inter-segment angular displacements. To find the best xGeo

i , we evaluate the performance
of the RF with respect to all three variations adapted to the given setting: (a) the 2D version of the
original line segment relation features (in the following referred to as LS), (b) its modified version
encoding joint angular distances with respect to the point of intersection between the line segments
(in the following referred to as LS-IS), and (c) a joint angular displacement transformation (in the
following referred to as JAD) utilizing the same joint pair combinations as LS and LS-IS.

For all three variations, the frame-wise kernel matrix for a motion sequence of t frames and its
corresponding geometric feature matrix F is defined as

K = φ(F)>φ(F) ∈ R t×t, (1)

where ki,j characterizes the similarity between the spatial feature vectors fi and f j of frames i and j in
terms of the kernel function φ( fi)

>φ( f j). The kernel feature vector for a given frame i and window
size wk is then defined as the flattened upper triangular sub-kernel xKer

i = triang[. . . Kuv . . . ], ∀ u, v ∈
[i− wk, i + wk]. As discussed in [33], the idea here is to derive further high-level understanding of
skeleton movement dependencies over time.

Following the original work, we apply the proposed window sizes wg = 2 around frame i to
concatenate all corresponding feature vectors to xGeo

i , and wk = 10 around frame i to build xKer
i .

The concatenated frame-wise data representation xi = [xGeo
i , xKer

i ] is computed for each frame within
a given training and test set. The resulting classification label for every feature vector is then used to
determine an initial sentence segmentation proposal as the sequence vector spini. Consecutive frames
classified as belonging to class 1 are interpreted as the segments of interest, also holding information
about their start and end points. The frames classified as class 0 and positioned in-between different
segments are considered non-gestures or transitional frames.

3.1.2. Confidence-Based Split

The RF classifies each frame i on the base of its confidence ci about the respective frame’s affiliation
to class 1. This means that every frame with confidence ci ≥ 0.5 is labeled as 1, and 0 otherwise.
Ideally, every motion frame would be assigned to class 1 and every transition frame would be assigned
to class 0. However in practice, it is nearly impossible to obtain such perfect split within a natural
signing flow. To obtain a robust segmentation of sign and transitional movements, we refine the actual
sentence segment prediction spini with the following signal-based post-processing.

The distribution of ci values for a frame belonging to class 1 over all motion sequence frames
t defines a temporal prediction curve c with ci ∈ c ∀ i ∈ [1, 2, . . . , t− 1, t]. Over the progression of
a signed expression, c follows a fundamental sine-like pattern: parts of high and low confidence
take turns on the base of the reciprocal occurrence of transitional and sign movements. We therefore
compute a smooth version cA of c with a Gaussian filter of kernel deviation σA = 5. Here, the idea is
that cA is robust to smaller erroneous parts of mislabelling within multi-directional words or complex
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movements. As such, cA eliminates disturbances caused by classifier predictions inconsistent in
their initial confidence rating. The values of cA can then be used to obtain a smoothed segmentation
proposal spsmg.

Sources of noise (e.g., stutter, fast movement between two separate words or the signing
of complex, multi-directional words) might both add or remove peaks to the basic evolution
of c that cannot be represented in spini or spsmg. Since the main objective of our work is to
investigate the recognition of NMEs, we aim to obtain the most robust sentence splits as possible.
Therefore, we include additional information on the number of sign words occurring per sentence
pattern. Here, it should be noted that this strategy is an optional, minor fine-tuning process which can
be omitted in the absence of respective word count information. As such, it also does not significantly
influence the following system evaluation.

For the optional segmentation refinement, we generate two additional, modified versions from
the prediction curve c: a mildly smoothed version cB of c by applying a Gaussian filter of kernel
deviation σB = 4, and a weakly smoothed version cC of c by utilizing a Savitzky-Golay filter of window
length wC = 3 and polynomial order nC = 3. Plotting the filtered confidence curves (Figure 2), one can
see that strong Gaussian smoothing results in confidence curves which are more robust to smaller
erroneous parts (Figure 2b), but which also miss significant information in parts of quick signing and
flowing transitions between signs (Figure 2c). To account for such information loss, we determine the
number of word segments given by cA and compare them to their actual word count. All expressions
whose word count is smaller than the sentence content then undergo a more detailed signal-based
segmentation check. This enhances the probability that noise-induced ci peaks which were correctly
smoothed out in cA will be left unconsidered.

To start, we identify all significant peaks of c that were smoothed out in cA, but would remain
present in cC. In concrete, we detect all maximal peak locations pmax and all minimal peak locations
pmin of cA and identify their labels as given by the respective cAi. Next, we identify the correlating
reference locations r of maximal (for pmax) and minimal (for pmin) cCi values within a window wp.
Here, wp is defined as the area between the greatest lower bound (glb) and the least upper bound (lub)
of cA and cC around every peak in pmax and pmin. For maximal peaks, this for example holds

r = argmax
i∈wp

cCi (2)

with wp = [lub, . . . , glb] for glb= cAi ∧ cCi ∀ i ∈ [1, . . . , p] with p ∈ pmax, and lub= cAi ∨ cCi ∀ i
∈ [p, . . . , t] with p ∈ pmax. Lastly, we replace all cA labels within the specific wp with the labels of cCr.
This gives us a refined segmentation proposal spmed.

Based on the number of mismatches m between the word count of spmed and the actual known
sentence word count, we further refine the proposal in case of m 6= 0. Next, we target to retrieve
all parts of c that are most likely to be misclassified by the RF, namely the locations of minimal
peaks pmin∗ with ci ≥ 0.5 and the locations of maximal peaks pmax∗ with ci ≤ 0.5. Similarly to the
previous procedure, we utilize windows of intersection between two smoothed confidence curves
around all peak values of interest. To retrieve peak values that were smoothed out by the high filter
value σA, we determine the points of intersection between cC and cB. We find the m most likely
mislabeled locations following the definition given in Equation (2). Lastly, we replace their determined
respective window areas with either class 0 or class 1 labels accordingly. This provides us with the
final segmentation proposal sp f in.
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Figure 2. Confidence curves c (black, solid) and their respective smoothed versions cA (orange, solid),
cB (green, striped) and cC (purple, striped) of sentence-based label predictions in relation to the binary
decision threshold of 0.5 (gray, solid) and the actual segment boundaries of the signed expression.
(a) The confidence curves follow a sine-like pattern closely related to the ground truth segmentation.
(b) cA and cB are more robust to inter-word misclassifications caused by minimal peaks of c falling
below the threshold (red circles, dashed). (c) Strong smoothing of cA can smooth out peaks and result
in information loss (red circle, dashed).

3.2. Stage 2: Word Classifier

We train a CNN to classify single word segments extracted from the video-based joint position
data. The CNN is adapted specifically to the automatic word segmentation technique, i.e., we need to
annotate the proposed word segments to their corresponding word class. We use a simple intersection
analysis between word boundaries based on the provided ground truth annotation. If there is an
overlap, we adopt the word label and otherwise we annotate as unknown. Once the temporal word
boundaries of a test sentence are determined, we then cut the sequence into its according word
segments and classify their respective word labels.

Skeletal Cnn

Skeletal data does not contain any intrinsic image-like structures. For this reason, we aim to
transform the 2D body positions into a compact and meaningful data representation that emphasizes
boundaries between time and space in a pixel-wise manner. Following a similar strategy as
recent successful works from the human activity recognition field [34–36], we test three different
representations of inter-joint relational changes under two different feature combinations that we
designate as feature set F1BH respectively F1BHF, F2BH respectively F2BHF, and F3BH respectively
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F3BHF. Skeletal data obtained from the post-processing step described in Section 4.2 builds our basic
input data for the following three data transformations, whereas the feature indexation stands for:
B body, H hand and F face. This means that for every feature representation we build one version
that only constitutes of body and finger data, and one version that constitutes of body, finger and
facial data.

To compute the feature representations, we first set all available joint positions into relation to
a reference joint. For all pose joints, we define this reference to be the chest joint inferred from the
known shoulder and hip positions. Finger joints are set into relation to the corresponding wrist joint,
meaning the right wrist for all right finger joints and the left wrist for all left finger joints. The neck
build the reference point for all facial joints. By simple data scaling and normalization, we then obtain
our first feature set F1. Next, we set all joint positions into relation to their previous joint within the
kinematic chain, whereas the inferred chest joint serves as origin of all kinematic chains respectively
root joint. We again scale and normalize the data and obtain our second feature set F2. Based on their
success in sentence segmentation, we compute a third feature set F3 from JAD features. We consider
all available joint data except the eyes, ankles and a second chest joint.

4. System Implementation and Training

4.1. Data Set

We evaluate our proposed approach on an extended collection of the DJSLC corpus introduced
in [27]. The extended corpus comprises of 1432 sequential sign expressions (of which 930 are sentence
expressions with a length of 6 to 13 signs, and 502 are short phrases with a length of 3 to 6 signs)
in JSL conveyed by a single, native signer. During data recording, the movement of the signer was
made available utilizing a high-resolution optical motion capture system and a front-view 4 K video
camera capturing the upper body movement of the signer. Since we focus on single video-camera data,
we only make use of the set of video data in this work. Further details on the data collection process
can be found in detail in [27].

The sentence structure of the corpus was specifically designed as a way to allow for both the
learning of actual life-like content and the analysis of advanced system development for linguistic
analysis. It therefore contains a high number of NMEs with subtle variations in signing to convey
adjective inflection, syntax or contextual references. In concrete, we aim to recognize the following
specific linguistic features as they are also illustrated in Figure 3:

• CP2: non-verbal expression (commonly facial expression) to convey inflection of an adjective
(level 2, comparative).

• CP3: non-verbal expression (commonly facial expression) to convey inflection of an adjective
(level 3, superlative).

• Neg.: non-verbal expression (commonly slight movement of the head and upper body
accompanied by a sad facial expression) used to express rejection or negation.

• Quest. (?): non-verbal expression (commonly slight movement of the head and upper body
accompanied by a surprised facial expression) used at the end of a sentence to form a question.

• Nod: specific types of head movement used to connect two sub-sentences, which are either
aligned or in logical contrast to each other.

• Gen.: specific head movement used as contextual information to express genitive references,
such as Mr. Yamamoto’s wife.
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Figure 3. Symbolic description of the NMEs of JSL investigated in this work. Left: NMEs for CP2
and CP3 indicating adjective inflection. Middle: syntactic NMEs to express negations or questions.
Right: NMEs carrying contextual information.

Moreover, the corpus contains a number of spatial and contextual references that can influence
the morphology of preceding or succeeding lexical items (sign classes), and hence further complicate
the recognition task. In the given data collection the following references, of which some are also
illustrated in Figure 4, are present:

• CP (item): Classifier Predicates used to convey a conceptual information ’item’, such as locations
or shapes of things.

• pt1: reference to first person (oneself).
• pt2: reference to second person (conversation partner).
• pt3: reference to third person, object or location.

Figure 4. Sign avatar visualization of some of the JSL items for spatial and contextual references present
in the corpus. From left to right: CP for two people (‘CP (2ppl)’), CP for places (‘CP (P)’), CP for
buildings (‘CP (BL)’), pt1, pt2 and pt3.

The sentences and phrases within the DJSLC contain 203 different lexical items, of which a high
number can change their detailed, contextual meaning when combined with any of the previous NMEs.
One example are comparative and superlative variations of an adjective, such as ‘tasty’, ‘very tasty’
(‘tasty (CP2)’) and ‘extremely tasty’ (‘tasty (CP3)’). Another example are CP items that describe
semantic concepts, and build complex meanings in combination with surrounding words (e.g., the CP
for buildings expresses the meaning ‘department store’ once combined with the sign for ‘buy’).
Consequently, it might be meaningful to treat these sign and NME combinations as distinct motion
classes. For this reason, we define two different sets of word classes that define the NME-sensitivity
of the evaluated recognition system in the following: one basic set L1 consisting of all 203 basic sign
classes, and an extended set L2 consisting of 273 sign classes, which includes the basic classes and all
additional occurring NME combinations.

All training and system evaluation described in the following is performed under an 8-fold
cross validation scheme, in order to make best use of all available signed expressions and their
intrinsic variations in signing. This strategy furthermore helps to keep the evaluation free of any
randomization bias.

4.2. Fundamental Data Preparation

Basic data preparation (Figure 1, top row) serves as the foundation for the staged recognition
pipeline. We first obtain 2D joint positions by running the OpenPose framework. Our choice
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of OpenPose is influenced by the high number of body joints available for tracking, including
face and finger joints. However, it should be noted that it is also possible to utilize alternative
tracking frameworks. Missing data samples of every feature stream are then filled using a simple
1D linear interpolation. Lastly, all extracted joint trajectories are smoothed with a Butterworth filter.
McDonald et al. [37] showed that it is reasonable to adapt smoothing filter values to the varying joint
movements of SL motion capture data. We therefore assign joints of similar motion speed into separate
groups of specific filter settings. These are strong filter values (cutoff frequency 1 Hz with a filter
order of n = 1) for the nearly static hips, knees, and the top of the head; strong medium filter values
(cutoff frequency 1 Hz with a filter order of n = 2) for the slightly moving shoulder and head joints;
weak medium filter values (cutoff frequency 6 Hz with a filter order of n = 2) for the elbow, all finger,
and all facial joints; and finally weak filter values (cutoff frequency 8 Hz with a filter order of n = 3)
for the fast moving wrists (Table 1).

Table 1. Different Butterworth filter settings are used to smooth the joint position data obtained
using OpenPose.

Joint Cutoff Freq. Filter Order

hips, knees, head (top) 1 Hz 1
shoulders, head (center) 1 Hz 2
elbows 6 Hz 2
fingers 6 Hz 2
face 6 Hz 2
wrists 8 Hz 3

4.3. Stage 1 Segmentation Classifier

To identify the best feature set for the segmentation task of the first stage, we train three
independent RF models for the LS, LS-IS and JAD feature representations under the chosen 8-fold
cross validation scheme. Each tree is trained on a sub-sample from the original data set generated by
bootstrapping with 300 decision trees of balanced class weights.

4.4. Stage 2 Word Classifier

We test multiple variations of a CNN under two distinct word class specifies. The first classifier
type only evaluates hand shape and movement based on L1, and the second also includes subtle
information as defined by L2. Combining the respective classified labels into one sequence, we can
then compare system performance under the presence of NMEs in the following. For both L1 and L2,
the chosen CNN variations are an architecture with two pairs of one convolutional and one pooling
layer each followed by two fully connected layers, an architecture with three pairs of one convolutional
and one pooling layer each followed by two fully connected layers, and their respective deeper versions
with a second convolutional layer before each pooling layer. The size of the convolutional kernel
was set to (5 × 5), and the pooling kernel was set to perform max pooling with kernel size (2 × 2).
The number of kernel features per layer were (16) and (32) for the convolutional layers and (1024) for
the fully connected layers. All network hyper-parameters were chosen in consideration of standard
practices, and hence constitute some of the most basic CNN architectures as frequently employed
in closely-related research domains [6,38–40]. For all feature set and word class set combinations,
the most shallow architecture offered the best performance on average over all cross-validation folds,
whereas its accuracy was ranging around ±90% in all cases. With the main goal of implementing
a full working CLSR system, we consider the achieved accuracy as sufficient and do not further
extend hyper-parameter tuning. Consequently, we continue our investigation with the respective
best-performing four-layered network structure, and do not discuss the remaining architectures
in detail.
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Both feature sets F1 and F2 are brought into one-dimensional image-like structures. For feature
combination BH, this image is of size 120 × 156 with 120 being the number of features and 156 being
the maximal length of a sign. Similarly, the image size for feature combination BHF is 260 × 156.
For those few sign annotations that are of higher length than 156 frames, we cut off any over length
frames. Sign annotations shorter than 156 frames are padded along the right margin. For feature
set F3 we follow the proposed strategy of Kumar et al. [34] and further transform all segments
into three-dimensional joint angular displacement maps (JADMs) of standardized size using bicubic
interpolation and a simple colormap transform. Considering the size of the data input before rescaling,
we interpolate every word segment to be of size 256 × 128 with 256 being the modified feature size
and 128 being the modified word length.

5. Analysis

5.1. Stage 1 Word Segmentation

We use the trained RF model to classify the frames of unseen video sequences and evaluate the
performance on average over all 8 folds of the cross-validation. We report the performance of all
models with respect to accuracy, precision, recall and F1-score in terms of correct binary detection of
all class 1 frames in Table 2.

Table 2. Binary classification performance of different RF models averaged over an 8-fold
cross-validation. The Brier score was only determined for the fine-tuned JAD* model.

Precision Recall F1 Accuracy Brier

RFLS 0.83 0.89 0.86 0.89 nA
RFLS-IS 0.84 0.89 0.87 0.90 nA
RFJAD 0.86 0.91 0.88 0.91 nA

RFJAD* 0.86 0.92 0.89 0.92 0.06

We can see that the modified LS-IS version of the LS features achieves better results than the
initially proposed LS features, but that the JAD features achieve better results than the LS-IS features.
While the LS features appear to be good descriptors for noise-free 3D skeleton information [33], the JAD
features show a superior performance for the realistic setting of 2D video data. A chi-square based
McNemar test between the frame-wise predictions confirms our observations. Here, the predictions
of RFLS-IS differ from the predictions of RFLS with strong statistical significance (p = 155.22), while
they also differ from the predictions of RFJAD with very strong statistical significance (p = 13844.80).
One reason for the better performance of the JAD-based features might be their higher robustness
against noisy data points: a small perturbation of a joint position in the coordinate system could have a
more significant effect on the derived line segments under LS and LS-IS. In the following, we therefore
choose to use the JAD-based movement descriptors as well-suited data transformation for our practical
setting of imperfect and noisy data conditions.

We refine the initial RFJAD in a random grid hyper tuning process and include the Brier score
as additional quality metric for the selection of the final model parameters. Here, the idea is that
the better a RF model is able to differentiate between both classes, the more reliable and less prone
to errors sp f in should be. The ideal Brier score would be 0.00. As a result of the hyper parameter
tuning, we obtain a final classifier RFJAD* with frame-wise accuracy of 0.92, 0.89 F1-score and 0.06 Brier
score (Table 2). RFJAD* uses 300 decision trees with a maximum depth of 80 without bootstrapping,
1 minimum sample per leaf and a minimum number of 2 samples to split a tree. The quality of a split
is measured as a function of the information gain.

Visual comparison to the manually annotated ground truth segments reveals that spini already
provides many robust segmentation results as the one given in Figure 5a. Besides, the proposed
post-processing step improved the validity of imperfect split proposals. First post-processing
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leading to spsmg can successfully recover significant parts that were smoothed out (Figure 5b),
whereas second post-processing can additionally identify local minima above the binary threshold
(Figure 5c) The impact of all remaining errors (e.g., an erroneous split caused by the lowest minimal
peak being located above the binary threshold, see Figure 5d) should be analyzed after segment-wise
classification in the context of full-sentence prediction errors.

[frames]
(a)

[frames]
(b)

[frames]
(c)

[frames]
(d)

Figure 5. Sample segmentation results for 4 different sentences (a–d). Blue: Ground truth segments.
Black: Confidence curves c of the automatic segmentation without smoothing. Green: segmentation
spsmg obtained from strong Gaussian smoothing of spini. Yellow: spmed obtained from retrieving
smoothed out local peaks. Purple: split proposal sp f in as used for final evaluation in this manuscript.

5.2. Stage 2 Word Classification

The present task is a standard multi-class recognition problem that can be trained using the
standard cross-entropy loss. Training of all classifiers was set to 2000 epochs with a dropout rate of
0.5 and a learning rate dynamically adapted via the Adam optimizer. As for the word segmentation,
we evaluate the training processes as average of all 8 cross-validation folds and report the performance
of the investigated classifiers with respect to accuracy, precision, recall and F1 score.

As exemplary shown for L2 in Figure 6, a stable classification model cannot be learned
under the BHF feature combination throughout the cross-validation folds. For BH on the other
hand, a classifier with test accuracy >0.8 can be learned in all folds. This holds true for all three
feature representations and both word class labels. Besides, in cases of successful classifier training,
test accuracy of the BHF feature combination classifier slightly ranks below the BH feature combination
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classifier. This might suggest that fewer relevant information could be learned under the BHF feature
combination. For this reason, all subsequent evaluation will be discussed utilizing the feature
representations F1BH , F2BH and F3BH only. The respective index terms will be omitted for simplicity
in the following.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Fold

Te
st

A
cc

ur
ac

y

F1BHF
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Figure 6. Classifier training under the BHF feature combination is much less stable than classifier
training under the BH feature combination only (here: F1BHF and F1BH for L2).

For all folds, training converges quickly under all three feature transformations.
However, accuracy and loss reach their final value faster for F2 as compared to F1, and faster for F3
as compared to F2. Listing the average values of all evaluation metrics (Table 3), we see that F3 shows
the best performance, and that F2 performs better than F1 under both L1 and L2. This observation
suggests that an inter-chain based data representation is better suited to carry relevant information
than a pure single reference point one: both F2 and F3 utilize angular representations of neighboring
(and most often kinematic related) joints. Additional transformation of F3 into identically-sized
three-dimensional images further seems to enhance structures or hidden information within a signing
pattern that could not be retrieved otherwise.

Table 3. Segment classification performance for combinations of feature and label sets averaged over
an 8-fold cross-validation.

Precision Recall F1 Accuracy

CNNF1,L1 0.85 0.86 0.85 0.86
CNNF2,L1 0.86 0.88 0.86 0.88
CNNF3,L1 0.90 0.91 0.90 0.91

CNNF1,L2 0.79 0.81 0.79 0.81
CNNF2,L2 0.81 0.83 0.81 0.83
CNNF3,L2 0.85 0.86 0.85 0.86

Next, we examine classifier performance differences with respect to the distinct representation of
word classes. As expected, overall performance of the classifier trained under label set L2 is lower
than for the one trained under the less specific label set L1. We can register a drop in the average
accuracy of −5.75% and a drop of −6.67% in the average F1 score for F3. Similar performance
decrease also exists for F1 (−5.75% accuracy and −6.33% F1) and F2 (−6.80% accuracy and −7.97%
F1), whereas the relative decrease in performance of F3 and F2 is smaller than for F1. This confirms
the previous assumption that the kinematic-induced angular representations contain more significant
information for discrimination between different motion classes. Moreover, the general observed drop
in accuracy under L2 conveys that the additional linguistic feature identification adds difficulty
to the general recognition task. Grouping closely related words in consecutive order (as e.g.,
in the class sequence ‘tasty – tasty (CP2) – tasty (CP3)’), prediction patterns show a relatively high
number of word confusions of closely related signs with and without NME. These become obvious
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in larger, indifferent clusters, as shown around the diagonal of the confusion matrices in Figure 7.
Consequently, mostly morphological similar or even identical signs are affected by misclassification.

(a) (b)

Figure 7. Exemplary confusion matrices for (a) CNNF3,L1 and (b) CNNF3,L2.

6. Final System Output

We combine the predictions of the CNN classifier into sequential output estimates. Based on the
index of occurrence of every classified word segment within a respective test sentence we concatenate
the labels to a final output. We then compare the resulting sentence predictions to their ground
truth label and compute the WER of all test sentences. We compute the WER following its common
definition as

WER =
s + d + i

n
(3)

with s being the number of necessary substitutions, d being the number of necessary deletions, i being
the number of necessary insertions per word sequence, and n being the number of words in the
reference sentence. We then determine the overall WER as average over all test data as given in the
8 cross validation fold splits.

Due to the staged system architecture, sequence prediction errors can be the cause of two different
error sources. These are wrong temporal segmentation and wrong word segment classification.
Comparison between the ground truth reference sentence and the outputs of the different classifier
should provide a more detailed information on the main error source. In concrete, sentence parts that
are poorly recognized throughout all CNN variations are very likely to be caused by segmentation
errors. Sentences whose sub-parts are poorly recognized by single CNN variations are very likely to
be caused by inferior classifier performance. To evaluate whether the classifiers trained under the
word classes defined by L2 show sensitivity towards the underlying NMEs, we furthermore define
two ground truth predictions GTL1 and GTRG for every sequence. For GTL1, we simply determine the
accuracy of all CNNF3,L1 output predictions with respect to the target sequences of L2. This means a
prediction of the word ‘tasty’ is considered misclassified if the respective target label is ‘tasty (CP2)’ or
‘tasty (CP3)’. To determine GTRG, we randomly replace every possible NME item within the CNNF3,L1
predictions with any of the lexically related available choices. A prediction of the word ‘tasty’ is
hence randomly labeled as either ‘tasty’, ‘tasty (CP2)’ or ‘tasty (CP3)’ and then compared to the target.
Here, the idea is to determine the approximate baseline accuracy that could be obtained while guessing
the content of any NME-loaded sign.
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6.1. Results

For all CNN combinations, the average WER corresponds to the performance of the class-based
word recognition. In particular, the WER of the NME-sensitive word class set L2 is higher than for
the general set of word classes L1. This is observed throughout all types of data input F1, F2 and
F3 (Table 4). F3 furthermore has the lowest, and hence best, WER. In total, we achieve a WER of
11.36% for L1, and a WER of 15.75% for L2. This compares to a WER of 28.97% for GTL1 (absolute
improvement 13.22%) and 30.59% for GTRG (absolute improvement 14.84%). Here, GTL1 achieves
better results than GTRG because the distribution of adjective inflection is slightly skewed towards
the neutral word class. In conclusion, the proposed system and trained classifiers are clearly superior
in identification and understanding of the non-manual information than non-specific classifier and
random guessing. For a more detailed analysis, we will next have a closer look into the final sentence
predictions of four sample sentences and their respective output predictions per data representation
and label class set.

Table 4. Average WER of all test sentence output estimates obtained through 8-fold cross validation for
the differently trained CNNs with respect to their respective target word class set.

F1 F2 F3

L1 17.83% 15.71% 11.36%
L2 22.76% 20.13% 15.75%

The first two sentence patterns A and B (Table 5) show successful prediction samples.
They furthermore demonstrate the difference in WER as a consequence of the two sets of word
classes, and their use as evaluation targets. For sentence pattern A, we can see that the reference
contains two linguistic features, namely ‘pt1 (Gen.)’ and ‘tasty (CP2)’. Utilizing L1, the sentence is
classified correctly under all network models. Under L2, F1 and F2 fail to identify one of the two
linguistic structures correctly. F3 on the other hand identifies both non-verbal structures and achieves
a perfect WER score. Sentence pattern B constitutes a question, and hence contains one non-verbal
expression at the end of the sentence. We can see that F1 and F2 – in contrast to F3 – successfully
recognize ‘pt3?’ as a question. However instead, they fail to classify ‘woman’ correctly. Consequently
all feature variations are of same WER. Since we consider sentences without full speech content, it is
difficult to further judge the impact of both errors. In both cases, WERs for the two ground truth
sequences are higher than for the classifier trained under L2.
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Table 5. Successful sample predictions as obtained from the different classifiers in comparison to
their reference (REF) and the two ground truths GTL1 and GTRG. NMEs in REF are highlighted
by underlining.

Content WER

REF A pt1(Gen.)/mother/pt3/cafe/CP (P)/tasty(CP2)/banana/cake/eat/end/pt3
GTL1 pt1/mother/pt3/cafe/CP (P)/tasty/banana/cake/eat/end/pt3 18.18%
GTRG pt1(Gen.)/mother/pt3/cafe/CP (P)/tasty/banana/cake/eat/end/pt3 9.09%
CNNF1,L1 pt1/mother/pt3/cafe/CP (P)/tasty/banana/cake/eat/end/pt3 0.00%
CNNF2,L1 pt1/mother/pt3/cafe/CP (P)/tasty/banana/cake/eat/end/pt3 0.00%
CNNF3,L1 pt1/mother/pt3/cafe/CP (P)/tasty/banana/cake/eat/end/pt3 0.00%
CNNF1,L2 pt1(Gen.)/mother/pt3/cafe/CP (P)/tasty/banana/cake/eat/end/pt3 9.09%
CNNF2,L2 pt1/mother/pt3/cafe/CP (P)/tasty(CP2)/banana/cake/eat/end/pt3 9.09%
CNNF3,L2 pt1(Gen.)/mother/pt3/cafe/CP (P)/tasty(CP2)/banana/cake/eat/end/pt3 0.00%

REF B Sato/man/teach/woman/flower/present/purpose/CP (S)/CP (BL)/go/past/pt3?
GTL1 Sato/man/teach/woman/flower/present/purpose/CP (S)/CP (BL)/go/past/pt3 8.33%
GTRG Sato/man/teach/woman/flower/present/purpose/CP (S)/CP (BL)/go/past/pt3 8.33%
CNNF1,L1 Sato/man/teach/woman/flower/present/purpose/CP (S)/CP (BL)/pt3/past/pt3 8.33%
CNNF2,L1 Sato/man/teach/woman/flower/present/purpose/CP (S)/CP (BL)/go/past/pt3 0.00%
CNNF3,L1 Sato/man/teach/woman/flower/present/purpose/CP (S)/CP (BL)/go/past/pt3 0.00%
CNNF1,L2 Sato/man/teach/man/flower/present/purpose/CP (S)/CP (BL)/go/past/pt3? 8.33%
CNNF2,L2 Sato/man/teach/pt2/flower/present/purpose/CP (S)/CP (BL)/go/past/pt3? 8.33%
CNNF3,L2 Sato/man/teach/woman/flower/present/purpose/CP (S)/CP (B)/go/past/pt3 8.33%

The third sentence pattern C (Table 6) gives an example for an imperfect output that is likely
to be caused by erroneous segmentation. Specifically, the reference sentence contains the phrase
‘bell/tree/man’ which stands for ‘Mr. Suzuki’: the sign for ‘Suzuki’ is formed by the gestures for ‘bell’
(suzu) and ‘tree’ (ki). Since these two movements are very distinct, we consider them as separate signs
in our temporal data annotation. However, none of the architecture variations classifies the consecutive
word of ’bell’ as ‘tree’. This indicates that the two words might not have been split during segmentation.
Instead, they might have been treated as a single word segment, which subsequently got classified
as the longer and more distinct sub-part ‘bell’. Since the two signs constitute one word semantically,
it appears likely that the signing was very fluent with fast transition, so that the segmentation failed to
split the two words accordingly. Errors like the previous one might be easily post-processed before the
final system output to reduce their impact. In other words, the final sequence prediction of ‘bell/man’
could also be treated as ‘Mr. Suzuki’, once ‘Mr. Bell’ is deemed an impossible combination.

Finally, sentence pattern D (Table 6) gives an example for a failed sentence prediction of high WER
throughout all classifier variations. Two segmentation errors appear to be the main cause for the high
WERs: an erroneous split of the sign ‘always’, as well as two missing splits of the three consecutive
signs ‘go4’. As we can see, the word succeeding the correctly classified ‘always’ is mislabeled by
all CNN variations, whereas the on average best classifier F3 classifies it as ‘always’ again. This is
a strong indicator for the word erroneously being split in two parts. F2 and F3 on the other hand
again correctly classify the phrase combination ‘camping/CP (P)’ succeeding the last of the three
‘go4’ within the reference sentence. We assume this repetitive pattern to be exceptionally difficult
for the proposed system. First, ‘go4’ is a particular morphological modification of the basic sign ‘go’
utilized to express a group of people moving somewhere together. Second, to emphasize the larger
number of people, it is signed repeatedly with alternating hands in a very fast and fluent manner. This
makes it very difficult to separate between movements even in video-based visual annotation. For the
implementation of a future system, it might hence be reasonable to treat multiple occurrences of single
signs as one word, once they are quickly signed in a consecutive manner and convey a single semantic
meaning. Such procedure should also not affect the understanding of the final sentence content.
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Table 6. Sample outputs suffering from segmentation errors as obtained from the different classifiers
in comparison to their reference (REF) and the two ground truths GTL1 and GTRG. NMEs in REF are
highlighted by underlining.

Content WER

REF C pt3/movie/CP (BL)/pt3/pt1/bell/tree/man(Gen.)/wife/CP (2ppl)/interesting/movie/watch/past
GTL1 pt3/movie/CP (BL)/pt3/pt1/bell/ man/wife/despite/interesting/movie/watch/past 21.43%
GTRG pt3/movie/CP (BL)/pt3/pt1/bell/ /man(Gen.)/wife/despite/interesting(CP3)/movie/watch/past 21.43%
CNNF1,L1 pt3/movie/CP (BL)/pt3/pt1/bell/ man/wife/CP (2ppl)/interesting/movie/watch/past 7.14%
CNNF2,L1 pt3/movie/CP (BL)/pt3/pt1/bell/ man/wife/CP (2ppl)/interesting/movie/watch/past 7.14%
CNNF3,L1 pt3/movie/CP (BL)/pt3/pt1/bell/ man/wife/despite/interesting/movie/watch/past 14.29%
CNNF1,L2 pt3/movie/CP (BL)/pt3/pt1/bell/ man/wife/CP (2ppl)/interesting/movie/watch/past 14.29%
CNNF2,L2 pt3/movie/CP (BL)/pt3/pt1/bell/ man/wife/CP (2ppl)/interesting/movie/watch/past 14.29%
CNNF3,L2 pt3/movie/CP (BL)/pt3/pt1/bell/ man/wife/go/interesting/movie/watch/past 21.43%

REF D pt2/always/amuse/go4/go4/go4/camping/CP (P)/pt3/good(CP3)/same?
GTL1 pt2/always/always/amuse/man/camping/CP (P)/pt3/good/same? 54.55%
GTRG pt2/always/always/amuse/man/camping/CP (P)/pt3/good(CP2)/same? 45.45%
CNNF1,L1 pt2/end/break/amuse/man/camping/man/pt2/good/same 63.64%
CNNF2,L1 pt2/always/man/amuse/man/camping/CP (P)/pt2/good/same 45.45%
CNNF3,L1 pt2/always/always/amuse/man/camping/CP (P)/pt3/good/same 36.36%
CNNF1,L2 pt2/end/lover/amuse/man/camping/pt3/bell/good/same? 72.73%
CNNF2,L2 pt2/always/man/amuse/party/camping/CP (P)/pt2/good/same? 54.55%
CNNF3,L2 pt2/always/always/amuse/man/camping/CP (P)/pt3/good/same? 45.45%

7. Discussion

We proposed a staged classifier and evaluated its performance quality for the recognition of
continuous sentence expressions with non-manual content in Japanese SL. The staged procedure is
aligned with initial works of CSLR, but contradicts current evolution of speech and audio recognition
that are all based on end-to-end approaches. The main motivation for our work was to progress
system development sensitive to subtle, non-manual linguistic content specific for SLs. Our system
achieves promising results in this context. The classifiers trained on L2 are able to correctly recognize
NME-sensitive word labels with much higher average accuracy than insensitive prediction or random
guessing. This particularly holds true for sentence predictions with stable and precise sentence
segmentation, indicating that the conveyed subtle non-manual content can indeed be learned from the
underlying joint movement data. This is particular interesting since the final input data constitutes
of 2D joint information of the body and finger only. Inclusion of facial joint data made the classifier
training unstable and did not improve results. Neural classifier training is commonly able to extract
relevant information from the underlying data without manual feature engineering. However,
poor data structure or a high number of irrelevant features might impede classifier training. As such,
information on facial joint movement might be helpful to improve classifier accuracy under different
data arrangements. For example, feature reduction methods like Principal Component Analysis could
help to select only those facial features that would be relevant. In this work, we focused on the basic
architecture and system design to explore CLSR with NME context. Respective work on how to better
include facial information should be conducted in the future.

Although many NMEs are heavily reliant on changes in facial expressions, results suggest that
the main characteristics of the linguistic feature information could already be learned from variations
of the body movement only, such as differences in head trajectory. This observation should be very
interesting and valuable in the future and help to reduce the overall number of necessary sign tracking
features. Moreover, our results considerably outperform results reported for an end-to-end approach
utilizing a reduced number of sentence collections of the same data set [31]. As such, the staged
approach appears meaningful for small, sparse and insufficient data sets with high NME content,
which are otherwise hard to learn.

For the moment, our system has only been trained and tested on Japanese SL and a selection
of 203 lexical items, respectively 273 distinct sign items including NMEs. As such, it is difficult to
evaluate its ability to generalize onto other SLs or an extended corpus of sign words. However, since the
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proposed word segmentation is independent of the content of the underlying signed expression, we are
confident that the proposed system can easily be extend to a larger number of signed words, once a
respective data set is made available.

To put our work into context with existing works, it would next be necessary to compare our
method with different data sets and state-of-the-art architectures. However, a balanced comparison can
be hard to make. For one reason, the main goal of our work was not to improve a general system WER,
but to explore whether a system that can better handle and understand non-manual linguistic features
left rather unexplored to date. Second, our system targets Japanese SL, whose intrinsic linguistic
information—due to cultural differences—is often less distinct than related features in Western SLs.
As a consequence, it appears difficult to directly relate the system to any previous learning architecture,
or·to examine it under baseline data like the SIGNUM or PHOENIX data set. In comparison to the
neural network architecture by Ye et al. [26], whose purpose and underlying NME-heavy data is
most similar to ours, our sentence recognition demonstrates superior performance. Whereas Ye et al.
reach 69.2% recognition accuracy for 27 ASL words, we are able to classify 273 items with 86%
accuracy (Table 3). This might indicate the usability of our approach for subsequent development of
communication assist systems within Japan.

To the best of our knowledge, this is the first time the recognition of non-verbal expressions within
continuous sign sequences has been investigated in detail with respect to different feature and network
variations. We discovered that in many cases it is possible to correctly recognize additional linguistic
features such as questions, adjective inflection and contextual references. For all network variations,
WERs of the NME-sensitive set of word classes is approximately 5% higher than for the word class
set that only differentiates signs on the base of their lexical manual morphology. Results show that
kinematic-induced data transformations (F2, F3) are helpful to achieve a higher classification accuracy.
As previously reported, transformation into JADMs of identical shape (F3) brings a further gain in
accuracy. Most recently, further data transformation strategies for activity or sign recognition were
reported [5,41]. These might result in even better recognition results once applied within the proposed
pipeline. Oppositely, training of the word classification network converges quickly. This suggests
the existence of a maximal accuracy level that is determined by errors in the sentence segmentation,
and that might not be surpassed under the proposed two-staged strategy. To improve WER rates,
it might therefore be helpful to modify the underlying sentence annotations used for supervised
learning of the segmentation step. Ideally this would be achieved in collaboration with native speakers
of SL. In such way, a more robust ground truth label could be obtained and the impact of errors
(such as the ones in sample pattern D of Section 6.1) could be reduced. Lastly, it should be considered
that many of the extended word classes were trained on a very small number of data only. We are
confident to be able to distinguish respective non-verbal information with even higher accuracy once
more training data is available.

8. Conclusions

We implemented a novel staged system for Continuous Sign Language Recognition, whose ability
to understand complex linguistic content was evaluated with a set of signed video sequences in
Japanese Sign Language. The system constitutes of two main processing steps, a first automatic
temporal segmentation with a binary Random Forest classifier, and a segment-wise word classification
of a Convolutional Neural Network. Both steps are learned in a supervised fashion and rely on basic
ground truth data obtained from manual video annotation. The fundamental system input data are
post-processed two-dimensional joint angular trajectories of body, finger and facial joints extracted
from a signer’s video data using the open source library OpenPose. The performance of the system
was evaluated under different types of data transformations and two different sets of word class
labels. We used a set of general, lexical-item word classes that only distinguishes non-manual sign
morphology, and a more complex and specific set of word classes that includes various linguistic
non-manual features. The best data transformations achieve high accuracy for both the segmentation



Sensors 2020, 20, 5621 19 of 21

step (frame-wise accuracy 0.92) and the segment classification step (accuracy 0.91). This results in
an overall average sentence WER of 11.36% for the lexical-item only class labels and 15.71% for the
NME-sensitive class labels. As compared to predictions insensitive to non-manual features or made
under random guessing, we achieve an improvement between 13.22% to 14.84%, suggesting that
NMEs can well be learned within the separate word segments.

In a next step, we will investigate our system with additional data, and under specific settings
where communication assist technologies are particularly useful, such as work meetings and assemblies.
By this, we hope to make the learned classifiers even more robust, and to be able to further explore
structures necessary for the reliable detection of non-verbal information within signed expressions.
Lastly, we aim to adapt our two-staged architecture to different Sign Languages, as well as data sets of
other movement types from the activity recognition field. As such, this work could then contribute
to the future development of continuous sign communication assist tools with high usability and
reliability under linguistically complex signed expressions. Moreover, successful modification could
also assist in the development of collaborative machines that better understand and estimate human
behavior.
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Abbreviations

The following abbreviations are used in this manuscript:

SL Sign Language
JSL Japanese Sign Language
CSLR Continuous Sign Language Recognition
NME Non-Manual Expression
CP Classifier Predicates
WER Word Error Rate
RF Random Forest
CNN Convolutional Neural Network
B Body (joint features)
H Hand (joint features)
F Face (joint features)
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