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Abstract: A new supramolecular Pb(II) complex [PbL(NO2)]n was synthesized from Pb(NO3)2,
N’-(1-(pyridin-2-yl)ethylidene)isonicotinohydrazide (HL) and NaNO2. [PbL(NO2)]n is constructed
from discrete [PbL(NO2)] units with an almost ideal N2O3 square pyramidal coordination environment
around Pb(II). The ligand L− is coordinated through the 2-pyridyl N-atom, one aza N-atom, and the
carbonyl O-atom. The nitrite ligand binds in a κ2-O,O coordination mode through both O-atoms.
The Pb(II) center exhibits a hemidirected coordination geometry with a pronounced coordination gap,
which allows a close approach of two additional N-atoms arising from the N=C(O) N-atom of an
adjacent molecule and from the 4-pyridyl N-atom from the another adjacent molecule, yielding a
N4O3 coordination, constructed from two Pb–N and three Pb–O covalent bonds, and two Pb· · ·N
tetrel bonds. Dimeric units in the structure of [PbL(NO2)]n are formed by the Pb· · ·N=C(O) tetrel
bonds and intermolecular electrostatically enforced π+

· · ·π− stacking interactions between the 2- and
4-pyridyl rings and further stabilized by C–H· · ·π intermolecular interactions, formed by one of the
methyl H-atoms and the 4-pyridyl ring. These dimers are embedded in a 2D network representing a
simplified uninodal 3-connected fes (Shubnikov plane net) topology defined by the point symbol (4·82).
The Hirshfeld surface analysis of [PbL(NO2)] revealed that the intermolecular H· · ·X (X = H, C, N, O)
contacts occupy an overwhelming majority of the molecular surface of the [PbL(NO2)] coordination
unit. Furthermore, the structure is characterized by intermolecular C· · ·C and C· · ·N interactions,
corresponding to the intermolecular π· · ·π stacking interactions. Notably, intermolecular Pb· · ·N
and, most interestingly, Pb· · ·H interactions are remarkable contributors to the molecular surface
of [PbL(NO2)]. While the former contacts are due to the Pb· · ·N tetrel bonds, the latter contacts are
mainly due to the interaction with the methyl H-atoms in the π· · ·π stacked [PbL(NO2)] molecules.
Molecular electrostatic potential (MEP) surface calculations showed marked electrostatic contributions
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to both the Pb· · ·N tetrel bonds and the dimer forming π+
· · ·π− stacking interactions. Quantum

theory of atoms in molecules (QTAIM) analyses underlined the tetrel bonding character of the Pb· · ·N
interactions. The manifold non-covalent interactions found in this supramolecular assembly are the
result of the proper combination of the polyfunctional multidentate pyridine-hydrazide ligand and
the small nitrito auxiliary ligand.

Keywords: non-covalent interaction; tetrel bond; lead(II); isonicotinohydrazide; crystal structure;
Hirshfeld surface analysis; DFT calculations

1. Introduction

Non-covalent interactions were first recognized by J. D. van der Waals in his doctoral thesis about
one and a half century ago [1]. The most prominent example for the crucial role of non-covalent
interactions is probably the double helix structure of DNA [2,3]. Different types of non-covalent
interactions, such as hydrogen bonding, π· · ·π interaction, halogen bonding, chalcogen bonding,
pnictogen bonding, tetrel bonding, (an)agostic bonding, and cation/anion· · ·π interaction, can be
distinguished, and their role in all areas of molecular chemistry and biology is eminent [3–23].
Amongst them, non-covalent π· · ·π interactions, also called π-stacking, found between aromatic
systems, are of great interest due to their broad applications [4–11,13–16,18]. Moreover, «stacking
interactions» can also be addressed to aliphatic systems [14]. Notably, benzene and cyclohexane
interact more efficiently (−3.01 kcal/mol) [18] than benzene (−2.758 kcal/mol) [14] and cyclohexane
(−2.62 kcal/mol) [7] dimers.

On the other hand, the coordination chemistry of Pb(II) gains particular interest from the large
ionic radius of this heavy p-block metal ion, its rich variety of coordination numbers from 2 up to 10,
and the peculiar feature of the 6s2 lone-pair in the coordination sphere of its complexes [17,19,22,24–30].
This lone-pair can be stereochemically active, which is called hemidirectional or non-active, for which
the term “holodirectional” was coined (Chart 1) [19,24–30]. The background is the observation that
the electron pair on the Pb(II) atom is either stereochemically irrelevant (holodirected) or demanding
space (hemidirected) [17,19].
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Chart 1. Simplified diagram for holodirected and hemidirected coordination spheres around Pb(II).

The hemidirected coordination allows Pb(II) to participate in the formation of tetrel bonds, which
are of great importance for the resulting topology of Pb(II) coordination compounds [17,19,22,24–42].
Although the occurrence of hemidirected or holodirected bonding cannot be reliably predicted
[19,28–31,40,41], recent work using polyfunctional multidentate ligands, such as carboxylates of 2-thiols
or heterocycles [19,24–28], or the per se polyfunctional thiothiosemicarbazones, hydrazones, or Schiff
base ligands of the salen or salan type [29–42] allowed formation of tetrel bonds. We also have recently
contributed to this and have found the polyfunctional 1-(pyridin-2-yl)ethylideneisonicotinohydrazide
ligand (HL, Scheme 1) extremely versatile to build up supramolecular Pb(II) complexes or
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coordination polymers with rich non-covalent interactions, including the reliable formation of tetrel
bonding [32,38,42]. Particularly, we have studied the heteroleptic complexes and coordination
compounds of the type [PbL(SCN)]n and [Pb(HL)(NCS)2]n [32], and [Pb(HL)Cl2]n [38]. From
the isomeric 1-(pyridin-2-yl)ethylidenenicotinohydrazide ligand (HL’, Scheme 1) compounds of
the type [Pb2(HL’)2(NO3)2(NCS)2], [PbL’(OAc)]2, {[Pb(HL’)(OAc)]ClO4}n, {[PbL’]ClO4}n·nH2O,
[PbL(N3)]n and [PbL’(NO2)]n [37], and [Pb(HL’)(NO3)2]n and [PbL’(CH3O)]n [39] have been
studied. We recently reported also the homoleptic complex [Pb(L”)2] containing the
N’-(4-hydroxybenzylidene)isonicotinohydrazide ligand [42].
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Scheme 1. Syntheses of [PbL(NO2)]n (this work) and [PbL’(NO2)]n [37] (tetrel bonds shown as dashed
lines).

In view of the interesting structure of the previously described nitrito nicotinohydrazide compound
[Pd(L’(NO2)]n[37], we reacted a mixture of Pb(NO3)2 and 1-(pyridin-2-yl)ethylideneisonicotinohydrazide
(HL) with NaNO2 and received the corresponding isonicotino isomer [PbL(NO2)]n, which turned out to
have a completely different structure compared with [PbL’(NO2)]n(Scheme 1). The nature and energetic
features of the two Pb···N tetrel bonds were studied by density functional theory (DFT) and molecular
electrostatic potential (MEP) calculations, which demonstrate the presence of a σ-hole at the Pb(II) ion.

2. Results and Discussion

The reaction of a mixture of Pb(NO3)2 and HL with NaNO2 in MeOH led to a new supramolecular
heteroleptic coordination compound [PbL(NO2)]n (Scheme 1). The compound was isolated as a
crystalline air- and moisture-stable solid that was characterized through elemental analysis, FTIR
spectroscopy, single-crystal X-ray diffraction, and Hirshfeld surface analysis.

The FTIR spectrum of [PbL(NO2)]n contains characteristic bands for the C=O and C=N bonds at
1632 and 1590 cm−1, respectively. The methyl C–H fragments showed resonances at 2921 cm−1.

Compound [PbL(NO2)]n crystallized in the monoclinic space group P21/n, with one coordination
unit [PbL(NO2)] in the asymmetric unit. The deprotonated L− and the nitrito NO2

− ligands were
covalently bound to the metal center, yielding an almost ideal N2O3 square pyramidal coordination
environment around the Pb(II) atom (Figure 1), as evidenced from the so-called τ5-descriptor of about
0.08 (Table 1) [43]. The ligand L− is tridentately coordinated through the 2-pyridyl and the aza N-atoms
and the carbonyl O-atom. The nitrite ligand binds in a κ2-O,O coordination mode through both
O-atoms to Pb(II).
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Figure 1. Molecular structure of the [PbL(NO2)] unit in the structure of [PbL(NO2)]n (ellipsoids are
drawn at 50% probability level). Color code: H = black, C = gold, N = blue, O = red, and Pb = magenta.

Table 1. Selected bond lengths (Å) and bond and torsion angles (◦) in the structures of [PbL(NO2)]n

and [PbL’(NO2)]n
a.

[PbL(NO2)]n (This Work) [PbL’(NO2)]n [37]

Bond lengths (Å)

Pb–N1 (L/L’) 2.583(4) (covalent) 2.535(5) (covalent)
Pb–N2 (L/L’) 2.462(4) (covalent) 2.452(4) (covalent)
Pb···N3 (L/L’) 3.235(4) (tetrel) 3.258(4) (tetrel)
Pb···N4 (L/L’) 3.039(5) (tetrel) 2.752(5) (covalent)
Pb–O1 (L/L’) 2.387(3) (covalent) 2.384(5) (covalent)
Pb–O2 (NO2) 2.387(4) (covalent) 2.547(4) (covalent), 3.299(4) (tetrel)
Pb–O3 (NO2) 2.768(4) (covalent) 2.904(5) (covalent)

Bond angles (◦)

O1–Pb–O2 82.35(13) 79.90(14)
O1–Pb–O3 124.07(13) 114.84(15)
O1–Pb–N1 128.82(12) 130.02(14)
O1–Pb–N2 65.50(12) 65.51(14)
O1–Pb–N4 – 91.30(14)
O2–Pb–O3 47.63(14) 44.26(14)
O2–Pb–N1 78.05(13) 81.12(14)
O2–Pb–N2 75.04(13) 70.61(14)
O2–Pb–N4 – 148.15(13)
O3–Pb–N1 70.93(12) 79.40(16)
O3–Pb–N2 112.30(13) 109.41(14)
O3–Pb–N4 – 153.72(15)
N1–Pb–N2 63.90(13) 64.62(14)
N1–Pb–N4 – 81.49(14)
N2–Pb–N4 – 77.86(13)

Torsion angles (◦)

2-Py· · · 4-/3-Py 3.5(3) 3.0(3)
a HL’ = N’-(1-(pyridin-2-yl)ethylidene)nicotinohydrazide.

This structure is completely different from that of the previously reported nicotinohydrazide
isomer [PbL’(NO2)]n [37]. In this coordination polymer, Pb(II) shows a distorted, non-octahedral
six-fold coordination in which the pending 3-pyridyl N-atom bridges between two metals (Scheme 1
and Table 1).

The Pb–N bond lengths in [PbL(NO2)]n are 2.462(4) and 2.583(4) Å, with Pb–N(N) < Pb–N2-Py.
The Pb–O distance with the carbonyl oxygen atom is shorter and of 2.387(3) Å. These values are in line
with data from related hydrazide Pb(II) complexes [32,35,37–39,42]. The same bonds with the nitrite
oxygen atoms differ significantly. Particularly, while one of the bonds has the same length as that
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formed with the carbonyl O atom, the second bond with 2.768(4) Å is the longest within the covalent
bonds formed by Pb(II) in the structure of [PbL(NO2)]n.

The covalent bond distances around the Pb(II) atom in [PbL(NO2)]n are very similar to the
nicotinohydrazide isomer [PbL’(NO2)]n [37], and, in both cases, the corresponding organic ligand is
almost completely planar, as can be seen from the torsion angles of only about 3◦ between the mean
planes formed by the pyridyl rings (Table 1).

The covalent bonds in the central coordination unit are markedly concentrated on one hemisphere
of the coordination environment (Figure 1), representing a hemidirected coordination geometry with
a pronounced coordination gap, due to the 6s2 lone pair. This allows for two additional N-atoms
from adjacent molecules, the aza and the 4-pyridyl N-atoms, to approach the Pb(II) and form two
Pb· · ·N tetrel bonds (Figure 2). The Pb· · ·N=C(O) tetrel bond (3.235(4) Å) is significantly longer than
the sum of the covalent radii (2.17 Å) and shorter than the sum of van der Waals radii (3.57 Å), thus
supporting its non-covalent nature. It leads to the formation of centrosymmetric dimers [PbL(NO2)]2

(Figure 2), which are further reinforced by bilateral π· · ·π stacking interactions, formed between the 2-
and 4-pyridyl rings (Figure 2 and Table 2). These dimers are interlinked through bilateral C–H· · ·π
intermolecular interactions, formed by one of the methyl H-atoms and the 4-pyridyl ring (Figure 2
and Table 3). The slightly shorter Pb· · ·N4-Py tetrel bond (3.039(5) Å) leads to a supramolecular
aggregation of the dimers into a 2D layer structure (Figure 3). From a topological perspective, this 2D
metal–organic layer in [PbL(NO2)]n is assembled from the 3-connected Pb(II) nodes and 3-connected
L linkers and can be classified as a uninodal 3-connected fes (Shubnikov plane net) [44] topology
defined by the point symbol (4·82). Thus, the overall topology of [PbL(NO2)]n is a supramolecular 3D
framework, formed by multiple non-covalent interactions, such as Pb· · ·N tetrel bonds, π· · ·π stacking,
and C–H· · ·π interactions.
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Figure 2. View on a 1D supramolecular chain in the structure of [PbL(NO2)]n, formed through
Pb· · ·N=C(O) tetrel bonds, π· · ·π stacking, and C–H· · ·π interactions (ellipsoids are drawn at 50%
probability level). Color code: H = black, C = gold, N = blue, O = red, and Pb = magenta; cyan dashed
line = Pb· · ·N tetrel bond, yellow dashed line = π· · ·π stacking interaction, and gray dashed line =

C–H· · ·π interaction.
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Table 2. π· · ·π inter-ring distances (Å) and angles (◦) for [PbL(NO2)]n
a.

Cg(I) Cg(J) d[Cg(I)· · ·Cg(J)] α β γ Slippage Symmetry
Transformation

2-Py 4-Py 3.544(3) 3.5(3) 19.7 18.1 1.194 2 − x, 2 −y, 1 − z
4-Py 2-Py 3.544(3) 3.5(3) 18.1 19.7 1.100 2 − x, 2 − y, 1 − z

a Cg(I)· · ·Cg(J): distance between ring centroids of the 2-Py and 4-Py rings of the ligand L; α: dihedral angle between
planes Cg(I) and Cg(J); β: angle Cg(I)→ Cg(J) vector and normal to plane I; γ: angle Cg(I)→ Cg(J) vector and
normal to plane J; slippage: distance between Cg(I) and perpendicular projection of Cg(J) on ring I.

Table 3. C–H· · ·π ring interactions distances (Å) and angles (◦) for [PbL(NO2)]n
a.

C–H(I) d[C–H(I)] Cg(J) d[H(I)· · ·Cg(J)] d[C· · ·Cg(J)] ∠
[CH(I)· · ·Cg(J)]

Symmetry
Transformation

C7–H7B 0.98 4-Py 2.81 3.657(6) 145 1 – x, 2 – y, 1 – z
a H(I)· · ·Cg(J): distance between the H(I) atom and ring centroid of the 4-Py ring of the ligand L; C· · ·Cg(J): distance
between the C atom and ring centroid; [CH(I)· · ·Cg(J)]: angle between the bond C–H(I) and plane Cg(J).
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[PbL’(NO2)]n, in which a similar Pb⋯N=C(O) tetrel bond and a very dissimilar Pb⋯ONO tetrel bond 
lead to dimers, which are interconnected through the Pb‒N3-Py coordinative bond, thus forming a 
zigzag polymeric structure and only one remarkable π⋯π stacking interaction with a centroid–
centroid distance of 3.615(3) Å [37]. 

To further examine the intermolecular interactions in the crystal of [PbL(NO2)]n, we used a 
Hirshfeld surface analysis [45]. This analysis provides an excellent overview over all intermolecular 
interactions originating from a species, regardless of its nature. Together with the analysis of the 
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Figure 3. (a) View on the 2D supramolecular layer in the structure of [PbL(NO2)]n, formed through
Pb· · ·N=C(O) and Pb· · ·N4-Py tetrel bonds (H-atoms were omitted for clarity). Color code: C = gold, N
= blue, O = red, and Pb = magenta; cyan dashed line = Pb· · ·N tetrel bond. (b) Simplified underlying
network of [PbL(NO2)]n, considering all Pb· · ·N tetrel bonds, with the uninodal 3-connected fes
(Shubnikov plane net) topology defined by the point symbol of (4·82). Color code: Pb = magenta, and
L = blue.

This stands in complete contrast to the previously reported nicotinohydrazide isomer [PbL’(NO2)]n,
in which a similar Pb· · ·N=C(O) tetrel bond and a very dissimilar Pb· · ·ONO tetrel bond lead to dimers,
which are interconnected through the Pb-N3-Py coordinative bond, thus forming a zigzag polymeric
structure and only one remarkable π· · ·π stacking interaction with a centroid–centroid distance of
3.615(3) Å [37].

To further examine the intermolecular interactions in the crystal of [PbL(NO2)]n, we used a
Hirshfeld surface analysis [45]. This analysis provides an excellent overview over all intermolecular
interactions originating from a species, regardless of its nature. Together with the analysis of the nature
of these interactions (XRD data, molecular electrostatic potential (MEP), binding energies from DFT,
and quantum theory of atoms in molecules (QTAIM) calculations), it gives a complete picture, whose
forces contribute to the molecular and crystal structure. The 2D fingerprint plots [46] of the basic
coordination unit [PbL(NO2)] were generated, using CrystalExplorer 3.1 [47], to visualize proportions
of the intermolecular interactions. Furthermore, we calculated the enrichment ratios (E) [48] of the
intermolecular contacts to estimate the probability of two chemical species to be in contact.
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The Hirshfeld surface analysis showed that the intermolecular H···X (X = H, C, N, O) contacts
occupy an overwhelming majority of the molecular surface of the basic coordination unit [PbL(NO2)]
(Figure 4 and Table 4). The shortest H···H contacts are shown in the corresponding 2D fingerprint plot
at de + di ≈ 2.3 Å, and a clear splitting of the H···H fingerprint was found (Figure 4), which is due to
the shortest contact being between three atoms, rather than for a direct two-atom contact [45]. The
H···C contacts in the corresponding 2D plot of [PbL(NO2)] were found in the form of «wings», with the
shortest being de + di ≈ 2.8 Å (Figure 4). This is characteristic for C–H· · ·π type of interactions [45].
The H···N and H···O contacts are shown in the corresponding 2D fingerprint plots as two «horns», with
the shortest being de + di ≈ 2.4–2.5 Å (Figure 4).
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Table 4. Hirshfeld contact surfaces and derived “random contacts” and “enrichment ratios” for
[PbL(NO2)]n

a.

H C N O Pb

Contacts (C, %)

H 27.3 – – – –
C 13.7 5.4 – – –
N 13.7 3.3 1.4 – –
O 22.2 1.1 1.6 0.0 –
Pb 5.3 0.4 4.5 0.0 0.0

Surface (S, %)

54.8 14.7 13.0 12.5 5.1

Random contacts (R, %)

H 30.0 – – – –
C 16.1 2.2 – – –
N 14.2 3.8 1.7 – –
O 13.7 3.7 3.3 1.6 –
Pb 5.6 1.5 1.3 1.3 0.3

Enrichment (E) b

H 0.91 – – – –
C 0.85 2.45 – – –
N 0.96 0.87 0.82 – –
O 1.62 0.30 0.48 0.00 –
Pb 0.95 0.27 3.46 0.00 –

a Values were obtained by using CrystalExplorer 3.1 [47]. b The “enrichment ratios” were not computed when the
“random contacts” were lower than 0.9%, as they are not meaningful [48].

Furthermore, the structure of [PbL(NO2)] is also characterized through intermolecular C···C
and C···N interactions (Figure 4) observed as the area at de = di ≈ 1.7–2.0 Å. They correspond to
intermolecular π· · ·π stacking interactions between the pyridyl rings. Importantly, intermolecular
Pb···N and, most interestingly, Pb···H interactions are also remarkable contributors into the molecular
surface of [PbL(NO2)]. The former contacts are shown in the corresponding 2D fingerprint plot as two
sharp «spikes», with the shortest being de + di ≈ 3.0 Å (Figure 4), and correspond to the Pb· · ·N tetrel
bonds. The latter contacts are mainly due to the interaction with the methyl H-atoms arising from an
adjacent π· · ·π stacked [PbL(NO2)] unit.

The 2D plot of [PbL(NO2)] exhibits points at large de and di (Figure 4), which are similar to those
observed in the 2D plots of benzene [45] and have been observed in similar compounds [49–54]. They
correspond to regions without any close contacts to adjacent molecules.

The favorable H···X (X = H, N, O, Pb) contacts in the structure of [PbL(NO2)]n show enrichment
ratios EHH/HN/HO/PbH close to or even higher than unity (Table 4). The H···C, C···N, and N···N contacts
are much less favored, and they are consistent with smaller enrichment ratios of EHC/CN/NN = 0.82–0.87.
This is explained by the presence of the highly probable C···C (ECC = 2.45) and Pb···N (EPbN = 3.46)
contacts in the structure of the compound. Remaining contacts are discouraged with enrichment ratios
ranging from 0.00 to 0.48 (Table 4).

As the Pb· · ·N=C(O) tetrel bonding and the π· · ·π stacking interactions are the dominating forces
for the formation of the dimers in the solid state of [PbL(NO2)]n (Figures 2 and 3), we further analyzed
the donor–acceptor properties of the basic coordination unit [PbL(NO2)] through DFT calculations.

First, we computed the molecular electrostatic potential (MEP) surface and found the highest
positive values at the Pb(II) atom (+26.7 kcal/mol) representing the σ-hole (Figure 5). The most negative
part is located at the 4-pyridyl N-atom (−40.8 kcal/mol) of the ligand L−, which is more electron-richer
than the nitrito N- and O-atoms (−31.4, −33.3, and −37.6 kcal/mol). Consequently, the Pb· · ·N4-Py tetrel
bonding interaction is the most favored contact from an electrostatic point of view in line with the
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observed structure, d(Pb· · ·N4-Py) = 3.039(5) Å (Table 1). The second Pb· · ·N=C(O) tetrel bond is much
weaker (3.235(4) Å) and consistent with a significantly less negative value at the N=C(O) N-atom
(−21.3 kcal/mol). From these MEP calculations, a relatively high probability of a Pb· · ·ONO tetrel bond
can be concluded. However, no such bond was observed in the structure of [PbL(NO2)]n. In contrast
to this, in the nicotinohydrazide isomer [PbL’(NO2)]n, such a Pb· · ·ONO tetrel bond was observed,
although not very dominant and rather long (3.299(4) Å, Table 1).
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Figure 5. Two views of the molecular electrostatic potential (MEP) surface of [PbL(NO2)] (isosurface
0.001 a.u.). The blue color is used for positive MEP values, and the red color for negative values, as
indicated in the legend.

An interesting feature of the surface is that the MEP values over the coordinated and
non-coordinated pyridine ring centers represent opposite signs (Figure 5). As a consequence, they are
well suited to form strong, electrostatically enforced π+

· · ·π– interactions [6] between the coordinated
and non-coordinated pyridine rings of the L- ligand, in line with the dimer-promoting stacking
interactions found in [PbL(NO2)]n (Figure 2 and Table 2).

The DFT-calculated binding energy of these antiparallel stacked dimers composed of
electrostatically enforced π+

· · ·π– and Pb· · ·N=C(O) tetrel interactions (Figure 6) is quite large (∆E1

= −24.3 kcal/mol), in agreement with the MEP surface analysis. In contrast to this, the calculated
interaction energy of the Pb· · ·N4-Py tetrel bond is moderately strong (∆E2 = −10.2 kcal/mol) and
comparable to recently reported values [32,35]. When looking at the bond (red spheres), ring (yellow
spheres), and cage (blue spheres) critical points (CPs), we found that the π+

· · ·π− interaction is
characterized by two bond CPs that interconnect two atoms of each pyridine ring (Figure 6). The π· · ·π

stacking is further characterized by additional CPs that interconnect the chelate rings and more ring and
cage CPs. Moreover, the two Pb· · ·N=C(O) tetrel bonds are characterized by bond CPs and bond paths
(Figure 6). The Pb· · ·N4-Py tetrel bond contributes, together with a C-H· · ·O interaction, to the overall
binding energy of entire assembly (Figure 6). The energy associated to this C–H· · ·O interaction was
estimated by using the kinetic energy density predictor (E = 0.5 × Vr) to 1.3 kcal/mol. The Pb· · ·N4-Py

tetrel bond interaction is thus significantly stronger in keeping with the quite short experimentally
observed distance of 3.039(5) Å. Thus, this tetrel bond dominates this type of intermolecular interaction
and drives the formation of the uninodal 3-connected fes (Shubnikov plane net) topology.
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3. Materials and Methods

3.1. Reagents

All reactants were used as received, without further purification. The ligand HL was synthesized
by following the available protocol [37].

3.2. Instrumentation

FTIR spectra were recorded on a Bruker Tensor 27 FTIR spectrometer (Bruker, Ettlingen, Germany).
Microanalyses were performed, using a Heraeus CHN-O-Rapid analyzer (Heraeus, Hanau, Germany).

3.3. Synthesis of [PbL(NO2)]n

A solution of HL (0.024 g, 0.1 mmol) in MeOH (10 mL) was added dropwise to a solution of
Pb(NO3)2 (0.033 g, 0.1 mmol), in the same solvent (10 mL). To this mixture, a solution of NaNO2

(0.014 g, 0.2 mmol) in MeOH (5 mL) was added slowly under stirring. The resulting mixture was
stirred at room temperature for 30 min and was left undisturbed for slow evaporation. After about 4
days, yellow X-ray suitable single crystals were formed. Crystals were isolated by filtration. Yield:
0.038 g (78% based on Pb(NO3)2). FTIR, ν: 2921 (CH), 1632(C=O), 1590 (C=N), 1269 (NO2) cm−1. Anal.
Calc. for C13H11N5O3Pb (492.46): C 31.71, H 2.25, and N 14.22; found: C 31.80, H 2.28, and N 14.18%.

3.4. Single-Crystal X-Ray Diffraction of [PbL(NO2)]n

The data were collected with a Bruker AXS SMART APEX2 CCD (Bruker, Ettlingen, Germany)
diffractometer, operating at 179(2) K and using graphite monochromated Mo-Kα radiation
(λ = 0.71073 Å). Cell refinement, indexing, and scaling of the datasets were performed, using the
program Bruker Smart Apex and Saint packages [55]. The structure was solved by direct methods
and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for all
non-hydrogen atoms, using the program SHELXL [56]. The H atoms were included as riding
contributions with fixed isotropic displacement parameters in idealized positions. All the calculations
were carried out by using the WinGX System, V2013.3 [57]. Crystal structure determination and
refinement data are given in Table 5. CCDC-2014301 contains the supplementary crystallographic
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data for this paper (Supplementary Materials). These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2
1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Table 5. Crystallographic data for [PbL(NO2)]n.

Parameter [PbL(NO2)]n

Chemical formula C13H11N5O3Pb
Formula weight 492.46
Crystal system monoclinic

Space group P21/n
a (Å) 8.1660(11)
b (Å) 13.2850(17)
c (Å) 13.7842(18)
β (◦) 92.860(4)

V (Å3) 1493.5(3)
Z 4

Dcalc (g/cm3) 2.190
µ(Mo-Kα) (mm−1) 11.316

F(000) 920
θ range (◦) 2.13–27.32

Reflections collected 18486
No. of unique data 3318

Rint 0.0505
Observed data [I > 2σ(I)] 2666

Parameters refined 200
Goodness of fit (F2) 1.033

R1 [I > 2σ(I)] 1 0.0288
wR2 [I > 2σ(I)] 2 0.0625

1 R1 = Σ(||Fo| − |Fc||)/Σ|Fo|, 2 wR2 = [Σw(Fo2
− Fc2)2/Σw Fo2)2]1/2.

3.5. DFT Calculations

Gaussian-16 package [58] was used to perform the density functional theory calculations reported
herein. In particular, the PBE1PBE-D3 functional [59,60], in combination with the def2-TZVP basis
set [61,62], was employed for computing the binding energies and the molecular electrostatic potential
(MEP) surfaces. The crystallographic coordinates were used for the calculations. The 0.001 a.u.
isosurface was used for mapping the MEP onto the van der Waals surface. The QTAIM analysis [63]
was carried out at the same level of theory and using the program AIMAll [64].

4. Conclusions

A new supramolecular Pb(II) coordination compound [PbL(NO2)]n was synthesized through
treating a mixture of Pb(NO3)2 and N’-(1-(pyridin-2-yl)ethylidene)isonicotinohydrazide (HL) with
NaNO2. The yellow material is composed of discrete mononuclear heteroleptic [PbL(NO2)] coordination
units containing the tridentate NˆNˆO binding deprotonated ligand L− and a κ2-O,O binding nitrito
NO2

− ligand. Pb(II) exhibits a hemidirected coordination geometry with a pronounced coordination
gap. This allows two Pb· · ·N=C(O) tetrel bonds of the uncoordinated N-atoms of two symmetry
related [PbL(NO2)] molecules forming pronounced dimers in the crystal and Pb· · ·N4-Py tetrel bonds
to the pending 4-pyridyl group forming a 2D network representing a simplified uninodal 3-connected
fes (Shubnikov plane net) topology defined by the point symbol (4·82). Thus, Pb(II) is in a N4O3

coordination environment, formed by two covalent Pb–N, three covalent Pb–O bonds, and two Pb· · ·N
tetrel bonds. The Pb· · ·N tetrel bonds in the crystal packing of [PbL(NO2)]n are further reinforced by
bilateral intermolecular π· · ·π stacking interactions, formed between the 2- and 4-p.

http://www.ccdc.cam.ac.uk/conts/retrieving.html


Molecules 2020, 25, 4056 12 of 15

Supplementary Materials: The following are available online. The cif and checkcif files.

Author Contributions: Conceptualization, G.M. and D.A.S.; methodology, M.A.; software, S.E.L., E.Z., and A.F.;
investigation, all authors; resources, M.A. and A.K.; data curation, E.Z.; writing—original draft preparation,
D.A.S., A.F., and M.G.B.; writing—review and editing, D.A.S., M.G.B., and A.K.; visualization, D.A.S. and A.K.;
supervision, G.M.; project administration, G.M. and D.A.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the MICIU/AEI of Spain (project CTQ2017-85821-R FEDER funds) and by
the Science Foundation Ireland, under grant no. 05/PICA/B802/EC07.

Acknowledgments: G.M. thanks the University of Maragheh for the financial support of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van der Waals, J.D. Over de Continuiteit van den Gas-en Vloiestoftoestand. Ph.D. Thesis, University of
Leiden, Leiden, The Netherlands, 1873.

2. Watson, J.D.; Crick, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid.
Nature 1953, 171, 737–738. [CrossRef] [PubMed]

3. Scheiner, S. New ideas from old concepts: The hydrogen bond. Biochemist 2019, 41, 6–9. [CrossRef]
4. Hobza, P.; Zahradník, R. Intermolecular Interactions between Medium-Sized Systems. Nonempirical and

Empirical Calculations of Interaction Energies: Successes and Failures. Chem. Rev. 1988, 88, 871–897.
[CrossRef]

5. Müller-Dethlefs, K.; Hobza, P. Noncovalent Interactions: A Challenge for Experiment and Theory. Chem. Rev.
2000, 100, 143–168. [CrossRef]

6. Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands.
J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [CrossRef]

7. Ran, J.; Wong, M.W. Saturated Hydrocarbon−Benzene Complexes: Theoretical Study of Cooperative CH/π

Interactions. J. Phys. Chem. A 2006, 110, 9702–9709. [CrossRef]
8. Hobza, P.; Zahradník, R.; Müller-Dethlefs, K. The World of Non-Covalent Interactions: 2006. Collect. Czech.

Chem. Commun. 2006, 71, 443–531. [CrossRef]
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