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ABSTRACT: Femtosecond laser pulses can produce oscillatory signals in transient-
absorption spectroscopy measurements. The quantum beats are often studied using
femtosecond coherence spectra (FCS), the Fourier domain amplitude, and phase
profiles at individual oscillation frequencies. In principle, one can identify the
mechanism that gives rise to each quantum-beat signal by comparing its measured
FCS to those arising from microscopic models. To date, however, most measured FCS
deviate from the ubiquitous harmonic oscillator model. Here, we expand the inventory
of models to which the measured spectra can be compared. We develop quantum-
mechanical models of the fundamental, overtone, and combination-band FCS arising
from harmonic potentials, the FCS of anharmonic potentials, and the FCS of a purely electronic dimer. This work solidifies the use
of FCS for identifying electronic coherences that can arise in measurements of molecular aggregates including photosynthetic
proteins. Furthermore, future studies can use the derived expressions to fit the measured FCS and thereby extract microscopic
parameters of molecular potential-energy surfaces.

■ INTRODUCTION

The advent of broadband femtosecond laser pulses in the 1980s
brought with it the observation of oscillatory signals arising from
coherent quantum-beat signals in time-resolved spectroscopy
measurements of atomic, semiconductor, and molecular
samples.1−6 Many research groupsespecially those focused
on molecules in the condensed phasehave observed and
studied the intriguing amplitude and phase profiles of these
oscillations found in transient-absorption spectra. Measure-
ments and analyses of the quantum beats have been conducted
on photosynthetic proteins,7−10 heme proteins,11 retinal-based
complexes,12−19 phytochrome pigment−protein samples,20−23

conjugated polymers,24,25 molecular aggregates,26 and other
molecular samples having intriguing photochemical or photo-
physical effects.27−36 Additional studies have focused on solid-
state samples including carbon nanotubes,37 charge-transfer
crystals,38,39 and hybrid perovskites.40 Other researchers have
focused on developing theoretical models of the coherent
oscillations, in particular the dynamics of a vibrational
wavepacket on the excited electronic state. Researchers have
used quantum-mechanical Gaussian wavepacket models,41,42 an
effective linear response approach,43 a multimode phase-space
analysis,44 and a basis-truncation method.45 The breadth of
samples and phenomena studied using quantum-beat signals in
femtosecond spectroscopy reflect the novel insights these
methods yield into important physical phenomena including
the mechanism of singlet exciton fission,46,47 photoactivity
mechanisms of signal-transduction proteins,17 and the notion of
nontrivial quantum effects in photosynthetic proteins.48

A common procedure for studying quantum beats is to
conduct a conventional, spectrally resolved transient-absorption
spectroscopy measurement using pulses that are impulsive,
meaning having a duration shorter than the period of the
quantum-beat frequency. The coherent oscillations of wave-
packetswhich arise physically through a difference-frequency
mixing process between the various frequencies of the pump
pulseappear across a range of detection frequencies, and the
oscillatory signals dephase typically on the order of 1 ps for
molecular samples. After the measurement is performed, the
quantum-beat signals are isolated and studied by a three-step
procedure. First, one can fit and subtract population-decay
signals. Second is Fourier transformation of the spectrally
resolved signal over the pump−probe time interval. Third, one
extracts the amplitude and phase profiles as a function of
detection frequency for each oscillation frequency of interest.
These profiles are known in the literature by several names, but
here we refer to them as femtosecond coherence spectra (FCS).
Even when a molecule has numerous normal vibrational modes,
each typically has its own FCS, except in the case of accidental
degeneracies. Figure 1 displays a simulated FCS for an excited-
state vibrational wavepacket to illustrate the typical observations
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of a sharp amplitude node and a discrete π phase shift, both
occurring at the emission wavelength that corresponds to the
peak of the fluorescence spectrum.
Despite these efforts, the measured FCS often do not match

the predictions arising from theoretical models. In many
measurements, extra nodes and phase shifts are present. In
other cases, the phase shift is highly structured or less than π.
Some of these differences likely arise from experimental
imperfections such as pump scatter, pulse chirp,4,30 or
contamination from ground-state wavepackets.49 Other differ-
ences likely arise from photoactivity or nontrivial excited-state
topography.
One plausible explanation for the mismatch between the

theoretical predictions and the measured spectra is that studies
thus far have almost exclusively focused on fundamental
vibrational oscillations arising from harmonic potentials, yet
potentials can be anharmonic. In addition, TA measurements
can contain quantum beats arising from overtones and
combination bands. Therefore, in this contribution, we derive
analytic FCS expressions for these models. To add breadth, we
also derive the FCS of a purely electronic dimer.
Femtosecond transient-absorption spectroscopy and the FCS

analysis method have been used to study a wide variety of
photochemical and photophysical phenomena. More recently, a
related four-wave mixing method known as two-dimensional
electronic spectroscopy (2D ES) has become more widely
adopted for studying quantum-beat signals.50,51 2D ES provides
resolution along the excitation and emission frequency
dimensions,52 in contrast to TA spectroscopy, which provides
resolution along the emission dimension. Both methods have a
variable pump−probe time delay interval, and consequently the
analogue of an FCS in 2DES is known as a “beatingmap”. 2D ES
offers enhanced resolution or separation of signals in
comparison to TA but at a considerable cost of complexity:
2D ES measurements are significantly more challenging to
perform in the laboratory and more difficult to analyze and
interpret than TA spectra. A second difference is that pump
pulses that span the absorption spectrum will typically suppress
the confounding and less-informative ground-state wavepacket
signals in TA spectroscopy.27,29,53 In contrast, signals from both
ground-state and excited-state wavepackets appear in 2D ES.
Therefore, FCS remains an important spectroscopic method for
studying the mechanisms that give rise to quantum-beat signals.

The outline of the paper is as follows. In the Theoretical
section we present the general expression for an excited-state
vibrational wavepacket using the doorway-window method. In
the Results and Discussion, we present the key contributions,
which are analytic expressions for the FCS for five models of
quantum-beat signals, and we use simulations to identify
diagnostic features for each mechanism. We conclude by listing
some future mechanisms that remain to be explored.

■ THEORETICAL

Vibrational Wavepacket Dynamics. Our previous work
used a doorway-window method that was based on a classical
window function.45 That work encountered challenges for
anharmonic potentials. Therefore, here we use a window
function based on energies of the transitions between the
vibrational sublevels in each electronic potential and analytic
expressions for the Franck−Condon factors to produce fully
quantum-mechanical expressions for the FCS of the vibrational
models.53 Specifically, we use a window function (W) for the
excited state |e⟩, which is the stimulated-emission term in this
doorway-window picture because in the impulsive, resonant
excitation condition relevant to modern measurements using
ultrabroadband pump pulses, ground-state wavepacket oscil-
lations are suppressed.27,29,53

The expression for the density matrix of a time-dependent
wavepacket in an excited state is given by
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where n and n′ are both vibrational eigenstates of the excited
electronic state and where the coefficients ci,j are Franck−
Condon factors, values that indicate the degree of overlap
between two vibrational eigenstates from distinct electronic
states displaced along the internuclear separation variable, q, by
an amount Δ. They can be written as
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Equation 1 allows for an arbitrary set of energy levels. To
compute the signal that arises in transient absorption spectros-
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W e n e n c c
i

i

( ) , ,
1

/2

1
/2

n n

N N

m

N

n m n m
n m

n m

,

,

, ,
,

,

∑ ∑ω
ω ω γ

ω ω γ

= | ⟩⟨ ′| *
− +

−
− −

′
′

′

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÉ

Ö

ÑÑÑÑÑÑÑÑÑÑ (3)

where m indexes the vibrational eigenstate of the ground
electronic state,ωa,b = (Ea− Eb)/ℏ, and γ is the dephasing of the
emitted optical coherence signal. The transient-absorption
signal as a function of detection frequency variable, ω, and
time delay variable, τ, is given by

S W( , ) Tr ( ) ( )ω τ ω ρ τ∝ [ ] (4)

where the trace is evaluated on the basis of the vibrational
eigenstates on the excited electronic state, Tr[Ô] = ∑n⟨e,n|Ô|
e,n⟩. Inserting the expressionsusing distinct indices for the
sums in ρ and Wand further simplification yields

Figure 1. (a) Oscillatory quantum-beat signals often arise in
femtosecond, spectrally resolved transient-absorption spectroscopy
through a difference-frequency mixing process. (b) The amplitude and
phase profiles, A(ω) and ϕ(ω), respectively, at a selected oscillation
frequency are known as an FCS. Previous studies explored the sharp
amplitude node and abrupt π phase shift that are diagnostic for the
fundamental oscillations of a vibrational wavepacket in a harmonic
potential. In this work, we significantly expand on the spectral
signatures of vibrational and electronic coherences.
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where N represent the upper limit of all summation variables.
Finally, we must calculate the FCS. The first step is Fourier
transformation of the signal function over the time-delay
variable τ to yield an oscillation-frequency variable that we
denote by ω2

where ω is the detection frequency variable and ω2 is the
oscillation frequency variable. This expression provides an
analytic route to the FCS without numeric computation of the
quantum-beat signals followed by Fourier transformation.
Further progress can be made only after choosing a model for
the potential-energy surfaces and selecting a particular
oscillation frequency, ω2, of interest.
The approximations made to derive the doorway-window

expressions are appropriate for many transient-absorption
measurements on condensed phase samples but do limit the
range of validity of the results herein. In particular, the doorway-
window approach is valid for well-separated pump and probe
pulses53 and will not characterize dynamics occurring during
pulse overlap. In addition, the specific form of the density matrix
and window function chosen give the “bare spectrum”, which is
the signal due to the response of the molecule independent of
the details of the laser pulse. This is valid in the limit that the
laser pulse is short compared to the nuclear dynamics of the
sample but long compared to the dephasing of the electronic
transition.53 The FCS can be calculated for laser pulses that
deviate from these approximations by performing a convolution
between the laser pulse and the bare spectrum as a temporal
convolution along the delay time axis for a long pulse or as a
spectral convolution along the probe frequency axis for a short
pulse.53,54 A long pulse would uniformly suppress the amplitude
of high-frequency oscillations. A short pulse would broaden the
lines of the individual transitions in the probe frequency resolved
spectrum.
Harmonic Potential. We first choose to use the harmonic

oscillator, whose potential-energy function is written as V̂(q) =
1/2mω0

2q̂2, where k m/0ω = is the angular frequency for a
mass m and force constant k. This expression assumes that the
equilibrium position of the oscillator is q0 = 0. A parameter used
below is the curvature, α, given by m /0α ω= ℏ , which has
units of inverse length. In fact, α = 1/x0, where x0 is the classical
turning point for the n = 0 eigenfunction. The well-known
energy levels are En = (n + 1/2)ℏω0. To make the notation
explicit, we state the eigenfunctions, ψn(q) = Nn exp(−α2q2/2)
Hn(αq), where the normalization constant is given by

Nn n2
1/4

n π= α
!

− and the Hn(αq) is a Hermite polynomial of

order n.
Morse Potential. The potential-energy function for the

Morse oscillator55,56 is given by V̂(x) =De(1− e−a(x−xe))2, where
xe is the equilibrium bond distance, De is the well depth (the

dissociation energy plus the zero-point energy), and a is
inversely related to the width of the potential well. We define a
key unitless parameter, λ, as mD a2 /( )eλ = ℏ , and an effective
frequency of the oscillator at the equilibrium position,

D a
m0

eff 2 e
2

ω = . The finite number of bound eigenstates of the

Morse oscillator is n ∈ {0, 1, 2, ..., [λ + 1/2]}, where the square
braces, [κ], indicate a floor function such that this value is the
largest integer smaller than κ. The energy levels of the Morse
oscillator are
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The classical turning points of the n = 0 eigenfunction for the

Morse oscillator are given by x x E Dln(1 / )
a0 e
1

0 e= − ± ,

where E0 is the energy of the n = 0 eigenfunction given by eq 7
and where we will use xe = 0. Due to the asymmetry of theMorse
potential, there will be two distinct solutions, in contrast to the
harmonic oscillator potential wherein the turning points were
simply ±x0. Therefore, when normalizing the displacement, we
will use x0 , which represents the mean of the two x0 values for
the Morse oscillator.
The eigenfunctions of the Morse oscillator can be written as
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where w = e−a(x−xe), Ln
(κ)(z) is a generalized Laguerre

polynomial, and the normalization constant is given by
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■ RESULTS AND DISCUSSION

Fundamental Oscillations of a Harmonic Oscillator.
Numerous authors have provided analytic solutions for Franck−
Condon factors for a pair of harmonic oscillators. We choose to
use the result from Iachello and Ibrahim.56 The full expression
for the Franck−Condon factorstheir eq 2.9is not
reproduced here. We adjusted their notation such that m and
n indicate vibrational sublevels of the ground and excited
electronic states, respectively, and then we simplified for the case
of identical curvatures, α = α′. The expression for each Franck−
Condon factor simplifies tremendously to

e
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where Δ̃ ≡ Δ/x0 is a normalized displacement parameter.
This expression allowed us to derive the complete expression

for the FCS for the fundamental oscillations. Because ℏω0 = En+1

− En, we choose n′ = n + 1 and ω2 = ω0 and find that
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where the auxiliary functions are given by
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The expression yields several physical insights. First, the factor
of m! indicates that there will be more nonzero coefficients in m
than n for a set value of Δ̃. Second, higher values of n and m
become non-negligible as Δ̃ increases, which matches the
intuition that as the displacement is increased, higher-lying
vibrational states should have non-negligible coefficients. Third,
negative-valued Franck−Condon factors must arise from the
(−1)l component in the auxiliary functions. Fourth, the two
Lorentzian terms produce sequences of peaks that will overlap
and interfere when the summations overm and n are performed.
Fifth, the displacement enters this expression everywhere as Δ̃2;
thus negative and positive displacement values will produce
identical FCS.
Our simulations begin with an analysis of how the coefficients

and frequencies vary as Δ̃ changes for the FCS at the
fundamental vibrational frequency for the harmonic oscillator
model. Each peak in an FCS is created by a sum of, potentially,
many terms arising from both Lorentzian functions that have
distinct frequencies for a given (n, m) combination. For our
chosen set of simulation parameters, m = 0.5, ℏ = 1, ωeg = 400,
andω0 = 9, we show the frequency matrices as well as the matrix
representing the product of Franck−Condon factors for two
values of Δ̃, in Figure 2. The matrices representing different
cases of the product of Franck−Condon factors indeed confirm
that the values are non-negligible for more values of m than n.
We analyze the case of Δ̃ = 0.1 in more detail. The matrices

reveal that there will be four non-negligible terms. The first term
contributes a positive-amplitude coefficient applied to the
Lorentzian at ωn=0,m=0 = ωeg = 400, and the second is a negative-

amplitude coefficient applied to the Lorentzian at ωn=0,m=1 = ωeg
− ω0 = 391. The third and fourth are, respectively, positive-
amplitude and negative-amplitude coefficients applied to the
Lorentzian at ωn+1=1,m=0 = ωeg + ω0 = 409 and ωn+1=1,m=1 = ωeg =
400.
These matrices reveal the number, location, and amplitude of

each Lorentzian peak that will compose a full FCS for the
fundamental oscillations of the harmonic oscillator. The peaks in
the FCS are distinct when γ ≪ ω0, see top panels of Figure 3.
The vertical axes are normalized in all instances except for the
phase, which is in radians. The Lorentzian terms each produce
two non-negligible peaks for Δ̃ = 0.1. The total spectrum is the
sum, and because two of the four peaks overlap, there are three
distinct peaks in the total spectrum. At larger displacements,
more peaks appear. For example, we plot the FCS in the upper
right panel of Figure 3 for Δ̃ = 1.0, where now six distinct peaks
are visible. The fundamental transition atωeg is not the strongest
peak due to destructive interference among the contributing
terms. These data reveal that as the displacement increases,
more vibronic transitions become non-negligible, an explanation
familiar from steady-state spectroscopy methods.
The small dephasing values are related to gas-phase

spectroscopy measurements. However, FCS are generally used
to study condensed-phase systems. Therefore, we evaluate larger
dephasing values where the distinct peaks can overlap and
further interfere. The bottom two panels in Figure 3 reveal that
the overlap among the peaks leads to FCS that nearly reproduce
the classical-window spectra45 in which the amplitude node is
sharp, the peaks on either side of the node are exactly equal in
amplitude, and the abrupt π phase shift occurs for all values of Δ̃.
These features are reproduced in the Δ̃ = 0.1 case in Figure 3,
but the Δ̃ = 1.0 spectrum has an unanticipated asymmetry
between the two peak amplitudes as well as smoother variation
in the phase profile.
We studied this asymmetry further by evaluating the relative

peak heights across a range of displacements, 0.05≤ Δ̃≤ 2.5 for
γ = 2ω0 and γ = 10ω0. Smaller dephasing values led to spectra
that contained multiple distinct peaks, complicating this
analysis. The data presented in Figure 4 reveal that the relative
peak heights vary at most by about 20%, which occurs at Δ̃ = 1.0.
We attempted to derive an analytic expression for the relative

peak heights as a function of Δ̃, γ, and ω0. However, due to the
complications arising from themultiple summations in eq 11, we
were unable to find a general solution. We anticipate that under
certain approximations, an analytic expression might be
achieved; however, we did not pursue the analytic solution
further and proceeded to a numeric evaluation of limiting cases.
We found that the FCS converge to the classical result when γ/
ω0 ≈ 10Δ̃. The explanation is that the dephasing sets the range
of possible emission energies between each vibrational level of
the excited and ground electronic states. When γ < ω0, the
transitions are discrete and therefore the quantum-window
approach applies. When γ is large, all transition frequencies are
allowed, which is the classical interpretation. To support that
assessment, Figure 5 displays the vibrational FCS for Δ̃ = 1.0
when γ = 10ω0. The interference among essentially all of the
contributing terms makes the abrupt phase shift return and
produces peaks that now have symmetric heights.

Overtone Oscillations of a Harmonic Oscillator.
Sensitive TA measurements can reveal signals arising from
overtones,35,57 and therefore we derive the FCS for the first
overtone of the harmonic oscillator by choosing n′ = n + 2 and
selecting ω2 = 2ω0. The result is

Figure 2. Components for FCS expression for the fundamental
frequency of a harmonic oscillator, for each (n, m) combination. (left)
Variation in the product of Franck−Condon factors, cn,mcn+1,mcn,0cn+1,0,
for two selected values of Δ̃ and (right) emission frequency of each term
arising from the Lorentzian functions.
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There are three differences between the FCS expressions of
the harmonic oscillator fundamental and its first overtone: the
exponent on the (Δ̃2/2) term is slightly different, the auxiliary
function involves n + 2 rather than n + 1, and the one Lorentzian
term will shift all the peaks by an extra factor of ω0. The final
aspect significantly affects the interference among peaks.
Figure 6 contains the Franck−Condon coefficient product

matrix for Δ̃ = 0.1 and the frequency matrices for the first
overtone of the harmonic oscillator model. For this displace-
ment, three (n, m) combinations make non-negligible
contributions to the VCS, and the ωn+2,m Lorentzian shifts the
frequencies one additional unit of ω0 compared to the ωn+1,m
Lorentzian of the fundamental harmonic oscillator FCS.
Based on the Franck−Condon and frequencymatrices for Δ̃ =

0.1 presented in Figure 6, we anticipate that the ωn,m and ωn+2,m
terms will each produce three peaks and overlap at only one
emission frequency. Therefore, we anticipate that the FCS for
this displacement value will have a pattern of five distinct peaks
centered at ωeg. In contrast, the fundamental frequency FCS at

the same displacement value had a total of four non-negligible
terms producing a total of three peaks centered at ωeg.
We display example FCS for the overtone in Figure 7 for both

narrow and wide peaks widths at Δ̃ = 0.1 and 1.0 as
representative examples. The narrow peak spectrum for Δ̃ =
0.1 shows that indeed the Lorentzian withωn+2,m shifts to higher
frequencies relative to that of ωn+1,m for the fundamental
frequency case. This shift causes interference effects that are
distinct from those of the fundamental frequency. The γ = 2ω0
FCS show that some peak structure and phase dependence
develop.
These simulations demonstrate that overtones can be

distinguished from fundamental frequencies by the distinctive
pattern of dual nodes and phase shifts and, furthermore, the
presence of an overtone can be confirmed by the presence of the
fundamental peak having the correct phase and amplitude
profiles at half the frequency of the overtone. This analysis is
straightforward to extend to higher overtones.

Combination Band Oscillations of a Harmonic Oscil-
lator. Like overtones, some TA measurements can reveal peaks

Figure 3. FCS for fundamental oscillations of the harmonic oscillator model for Δ̃ ∈ {0.1, 1.0} when γ ∈ {ω0 × 10−4, 2ω0}. The number of terms
increases with increasing displacement, and the larger dephasing values can converge to the classical-window result.

Figure 4. FCS for fundamental oscillations of the harmonic oscillator
model for 0.05≤ Δ̃≤ 2.5 for γ = 2ω0 (black) and γ = 10ω0 (gray) reveal
that the maximum relative peak height is only 20% for intermediate
dephasing.

Figure 5. Overlap and interference of peaks when γ/ω0 = 10Δ̃ converges to the corresponding classical-window FCS.

Figure 6. Product of Franck−Condon factors for Δ̃ = 0.1 and emission
frequency of each term arising from the Lorentzian functions, for each
(n, m) combination of the 2ω0 overtone.
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arising from combination bands.35,57 These oscillations require a
potentially complicated two-dimensional simulation. We made
three simplifications. The first is that the ground and excited
states will have the same pair of distinct curvatures: α1 and α2.
The second is that there is noDuschinksy rotation so that the full
Franck−Condon factor can be written as the product of the two
1D Franck−Condon factors. Third, we ignore “accidental”
degeneracies that are possible but unlikely. The primary
combination band of interest is the sum of the two fundamental
oscillation frequencies and therefore we select ω2 = ω01 + ω02.
Extrapolating from the analysis above, we can write the

general expression for the 2D FCS as
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where m1 and m2 index the ground-state vibrational levels along
internuclear displacement directions 1 and 2, and where n1, n2,
n1′, and n2′ index the excited-state vibrational levels along the 1
and 2 directions. Due to our interest inω2 =ω01 +ω02, we set n2′ =
n2 + 1 and n1′ = n1 + 1. The FCS expression becomes
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where Δ̃1 and Δ̃2 are the normalized displacements along the 1
and 2 dimensions, respectively.
We then performed simulations under distinct sets of

displacements and dephasing parameters. Figure 8 presents
some results. The peak patterns of the combination-band FCS
somewhat resemble those of the overtone FCS. The similarity
arises most clearly when the dephasing approaches that of the
c lass ica l window funct ion, here 10 0γ ω= , where

( )/20 0 01 2
ω ω ω= + , which have the dual node and phase
shift structure similar to the overtone FCS.
This set of simulations seems to indicate that the

combination-band FCS are always fairly symmetric. However,
intermediate dephasing produced FCS having extremely
asymmetric and disordered profiles. We present in Figure 9 a
simulated harmonic oscillator combination-band FCS with

Figure 7. FCS of the first overtone, ω2 = 2ω0, for Δ̃ = 0.1 and 1.0 for narrow (top) and wide (bottom) peak widths. The three-peak pattern and the
phase symmetry appear to be diagnostics of an overtone FCS.

Figure 8. FCS of a combination band for ω01 = 3, ω02 = 14. Displacements and dephasings are as indicated. The symmetry of the combination-band
FCS resembles the symmetry of the overtone FCS for these parameters.
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2 0γ ω= . The structure of the amplitude profile has one primary
node and numerous other minima. The phase profile is
extremely structured, and we do not attempt to interpret all of
the features. Despite the potentially very complicated FCS that
can arise for combination bands, they are likely to be
distinguished because a combination band will appear at an
oscillation frequency that is the sum of two fundamental
oscillations.
Morse Oscillator. In previous work, we found that the

Morse potential could provide insights into the effects of
anharmonicity on the FCS.45 That analysis, however, required
great care and careful selection of parameters because the
difference betweenMorse potentials is a double-valued function.
Therefore, we pursue its use with the quantum-mechanical
window function.
For the Franck−Condon factors, we again modify an

expression presented by Iachello and Ibrahim.56 Specifically,
their eq 4.5 is a form for the case of identical but displaced
potentials that can be expressed in a consistent notation here as
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where we have assumed that λ = λ′, where we have defined
variables

x x x( )/e e 0Δ̃ = ′ − (17a)

e ax0ζ = − Δ̃ (17b)

n m k k2 1η λ= − − + + ′ − (17c)

m n2 1ξ λ= − − − (17d)

for succinctness, where we use binomial coefficients given by
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and where the auxiliary function is given by
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Developing the full analytic expression for the FCS expression
for the Morse oscillator poses new complications. The energy-
level spacing is not a constant like it was for the case of the

harmonic oscillator, and therefore many peaks will appear as a
function ofω2 and potentially multiple combinations of n′ and n
will contribute for a selected ω2 value. Therefore, we calculate
the wavepacket oscillations at every ω2 value by performing the
additional sum over n′ rather than setting n′ to a specific value
like we did for the harmonic oscillator cases
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where γ2 sets the width of each peak as a function ofω2 and each
ci,j is given by eq 16. We select only n′ > n because we are not
interested in negative-frequency or zero-frequency oscillations.
Then, we select the ω2 value that corresponds to the most
intense oscillations. For small values of Δ̃, this frequency arises
from the two lowest energy eigenstates, ω0,1 = (E1 − E0)/ℏ and
therefore, M(ω,ω0,1) = M*(ω;ω2)|ω0,1

.
Performing the FCS simulations for the Morse oscillator

requires a bit of care because the Γ(η) term in eq 16 becomes
numerically unstable at high values of λ. Recall that λ is
effectively the number of bound eigenfunctions in each
potential. This tends to make the initial values of the {n′, n,
m} indices reliable, which produces reasonable spectra when Δ̃
is small enough such that the higher-lying eigenfunctions have
negligible Franck−Condon factors. Larger values can also
produce reliable spectra after examination and selection of
each term.
We present the full FCS as a function of ω2 and ω when Δ̃ =

0.1 and Δ̃ = 0.4 in Figure 10. The main oscillations occur atω2 =
ω0,1, which is the frequency that corresponds to a wavepacket
composed of the n = 0 and n = 1 eigenstates on the excited
electronic potential. For the Δ̃ = 0.4 case, a minor oscillation
occurs at ω2 ≈ ω0,1/0.6, which corresponds under these
parameters to a wavepacket composed of the n = 1 and n = 2
eigenstates. At larger displacements, oscillations occur at other
frequencies lower than ω0,1 that correspond to wavepackets of
other eigenstate combinations. For example, there are
oscillations at ω2 ≈ 0.6ω0,1 in the case of Δ̃ = 0.4. These
peaks are not the main focus of this work but could be of interest
in future studies.
In principle, we could compute each (n′, n) combination that

will lead to oscillations at a selected ω2 frequency. In practice,
however, some distinct peaks could appear near the selected ω2
frequency and, due to nonzero peak widths, affect its FCS.
Therefore, we perform the full calculation and then select the
primary oscillation frequency, ω2 = ω0,1, and display the
conventional FCS in Figure 11 for γ = 2ω0

eff. The amplitude and
phase profiles are essentially vertical lineouts from Figure 10,
and they resemble those of the harmonic oscillator simulations,
with the key distinction that the asymmetry between peak
heights become dramatic for what seem to be modest values of
Δ̃. Simulations with the dephasing increased to γ = 10ω0

eff, Figure
12, recovered the sharp amplitude node and abrupt π phase shift
for Δ̃ = 0.1; in fact the spectrum is indistinguishable from that of
the harmonic oscillator. This fits the intuition that at small
displacements, the wavepacket is composed of only the two
lowest energy eigenstates in bothmodels.45 In all cases, however,
even modest displacements reveal sharply asymmetric peak
heights and complicated phase profiles. These results show that

Figure 9. FCS of a combination band forω01 = 3,ω02 = 14, 2 0γ ω= and
Δ1 = 0.1, and Δ2 = 1.0. The intermediate level of dephasing produces
complicated phase and amplitude profiles.
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asymmetric peak heights readily arise from anharmonicity of the
potentials in contrast to the negligible or minimal asymmetry
that arises from harmonic potentials.
Quantum Beats from an Electronic Dimer.One purpose

of this work is to develop an understanding of the phase and

amplitude profiles in FCS so that researchers can distinguish the
underlying physical origin of the measured quantum beats.
Therefore, we study a purely electronic dimer. Previous authors
have detailed the nonlinear response arising from this
system.5,58,59

Briefly, the system is composed of two potentially distinct
electronic two-level systems, |a⟩ and |b⟩. The system
Hamiltonian is given by

H e e e e J( H. c. )a a a b b b a bs ω ω σ σ̂ = ℏ | ⟩⟨ | + ℏ | ⟩⟨ | + ̂ ̂ ++ −
(21)

where ℏωa and ℏωb are the excited-state energies of the two
systems, J is the coupling energy, σ̂i

+ = |ei⟩⟨gi| and σ̂i
− = |gi⟩⟨ei|, i =

{a, b}, and H.c. stands for Hermitian conjugate. For the
important case of a homodimer, one sets ωa = ωb. On this basis,
the transition-dipole moment operator is given by

e g( H. c. )i i i iμ μ̂ = | ⟩⟨ | + (22)

The {a, b} basis is typically known as the site basis, in contrast
to the eigenbasis of the Hamiltonian, which is typically known as
the exciton basis, given here as {|α⟩, |β⟩}. The exciton basis is
written as

H f ffs ω α α ω β β ω̂ = ℏ | ⟩⟨ | + ℏ | ⟩⟨ | + ℏ | ⟩⟨ |α β (23)

Figure 10.Morse oscillator FCS for indicated Δ̃ values for ω0
eff = 9 and

in which the n andm sums used all 12 bound states. The horizontal axis
is normalized to the ω0,1 frequency. The vertical axis is the emission
frequency, ω.

Figure 11.Morse oscillator FCS at ω2 = ω0,1 for Δ̃ = 0.1 (top), Δ̃ = 0.4
(middle), and Δ̃ = 0.5 (bottom) for λ = 12 andω0

eff = 9 and in which the
n and m sums used all 12 bound states.

Figure 12.Morse oscillator FCS at ω2 = ω0,1 for Δ̃ = 0.1 for λ = 12 and
ω0

eff = 9 and in which the n and m sums used all 12 bound states. Here,
the dephasing was set to γ = 10ω0

eff, which recovers the harmonic result
for the classical window.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.0c10807
J. Phys. Chem. A 2021, 125, 2425−2435

2432

https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10807?fig=fig12&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.0c10807?rel=cite-as&ref=PDF&jav=VoR


Here, we have set the composite ground-state energy to zero and
the doubly excited state as the sum, ℏωf = ωa + ωb. The exciton
energies are given by

J

1
2

( ) ( )

sec(arctan( / ( )/2))

a b a b

a b

/ω ω ω ω ω

ω ω

= [ + ± −

ℏ − ]

α β

(24)

The third-order response functions5,59,60 that contain
quantum-beat signals are

R e e( , , ) e i
i
(3)

1 2 3
i i1 , 2 3τ τ τ ∝ ω τ ω τ ω τ− − −β β α β (25a)

R e e e( , , )ii
(3)

1 2 3
i i i1 , 2 3τ τ τ ∝ ω τ ω τ ω τ− − −α α β α (25b)

R e e e( , , )iii
(3)

1 2 3
i i i1 , 2 3τ τ τ ∝ ω τ ω τ ω τ+ − −α β α β (25c)

R e e e( , , )iv
(3)

1 2 3
i i i1 , 2 3τ τ τ ∝ ω τ ω τ ω τ+ − −β α β α (25d)

The total transient-absorption signal under spectrally resolved
detection is the sum of these terms for τ1 = 0 followed by Fourier
transformation over τ3 to yield the detection frequency variable
ω

Therefore, the coherence spectrum at frequencyωβ,α resulting
from Fourier transformation over time interval τ2 and taking the
real part of the complex-valued function is given by

where ωβ,α = (Eβ − Eα)/ℏ, the electronic coherence frequency.
The key distinction between this expression and those of the

vibrational models is that here the two Lorentzian terms are
summed rather than subtracted. This leads to constructive
interference of the peaks, and therefore there is no relative phase
shift. In Figure 13, we present FCS for an electronic homodimer
under three distinct levels of coupling, J, and constant dephasing,
γ. The absence of an amplitude node when J < γ indicates the
constructive interference. When J > γ, there are two distinct
peaks having no relative phase shift. In sum, the absence of the
amplitude node and phase shift appears to be a diagnostic for
electronic coherence in excitonic systems.

■ CONCLUSIONS
We have derived and presented the analytic expression for the
FCS arising from models including harmonic and anharmonic
oscillators as well as an electronic dimer. These models will be
useful for assigning the microscopic origins of quantum-beat
signals in transient-absorption spectroscopy measurements
conducted with femtosecond laser pulses. We envision that,
after performing measurements and accounting for pulse chirp,
researchers will be able to fit the measured FCS to the
expressions and extract values for the microscopic parameters of
the molecular potential-energy surfaces. Future theoretical work
could evaluate niche cases that we have neglected. One key
example is a vibrational dimer having electronic coupling; such

systems indeed are of prime importance for molecular excitonic
applications.
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