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Abstract
For various types of tumor therapy, it is suggested that co-targeting of tumor microenviron-

ment, mainly tumor vasculature, mediates tumor response mechanisms. Immunohis-

tochemistry for glucose transporter-1 (GLUT-1), carbonic anhydrase-IX (CAIX), Ki-67, and

von Willebrand factor VIII for microvessel density (MVD) were performed on formalin-fixed

paraffin-embedded samples of canine oral malignant neoplasms. Polarographic oxygen

measurements (median pO2) and perfusion data via contrast-enhanced power Doppler

ultrasound (median vascularity, median blood volume) provided additional information.

Ninety-two samples were analyzed: sarcomas (n = 32), carcinomas (n = 30), and malignant

melanomas (n = 30). Polarographic oxygen and perfusion data was available in 22.8% (sar-

comas n = 9, carcinomas n = 7, melanomas n = 5), and 27.1% (sarcomas n = 10, carcino-

mas n = 8, melanomas n = 7) of cases, respectively. GLUT-1 expression was detected in

46.7% of all samples, and was generally weak. CAIX expression was found in 34.8% of all

samples. Median Ki-67 score and MVD count was 19% and 17, respectively. The evaluation

of the GLUT-1 score and continuous data showed significantly lower GLUT-1 levels in sar-

comas (mean 5.1%, SD 6.2) versus carcinomas and melanomas (mean 16.5%/ 19.0%, SD

17.3/ 20.9, p = 0.001). The expression of CAIX correlated mildly positively with GLUT-1 (p =

0.018, rho = 0.250) as well as with Ki-67 (p = 0.014, rho = 0.295). MVD showed a signifi-

cantly lower level in melanomas (mean 12.6, SD 7.7) versus sarcomas and carcinomas

(mean 21.8/ 26.9, SD 13.0/20.4, p = 0.001). Median vascularity and blood volume were sig-

nificantly lower in sarcomas (mean 10.4%, SD 11.0, and mean 6.3%, SD 6.5, respectively)

versus carcinomas (mean 39.2%, SD 16.4 and mean 33.0%, SD 25.6, respectively) and

melanomas (mean 36.0%, SD 18.3, and 31.5%, SD 24.5). Between the 3 histological

groups, there was neither a significant difference in the GLUT-1 and CAIX score and contin-

uous data, nor the Ki67 score, or polarographic oxygen measurements. GLUT-1 continuous

data and Ki-67 (p<0.001, rho = 0.403), as well as Ki-67 and MVD (p = 0.029, rho = 0.228)

correlated positively and a mild correlation was found between vascularity and GLUT-1 (p =
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0.043, rho = 0.408). GLUT-1, CAIX, proliferative index and MVD levels were established as

microenvironmental descriptors with the purpose of creating a baseline in order to follow

changes seen in the tumor microenvironment after hypofractionated radiation with high

doses.

Introduction
The tumor microenvironment likely plays a role in different anticancer strategies [1]. Espe-
cially radiation therapy with high doses per fraction seems to yield better tumor control than
the predictions of the radiobiological models [2, 3], and it has been suggested that co-targeting
of tumor microenvironment, mainly tumor vasculature, but also enhanced tumor immunity,
mediates tumor response mechanisms: Timmerman and Papiez comment that it is “not the
technology, but rather the unique radiobiology [. . .] that is truly special about (hypofractio-
nated) stereotactic body radiation therapy” [3]. Thus, the usually overwhelming response of tis-
sue irradiated with high doses of 8–30 Gy per fraction might be explained by the 5 R’s (repair,
repopulation, redistribution, reoxygenation, radiosensitivity) as conventionally fractionated
protocols but could also indicate an alternate response mechanism other than direct tumor cell
toxicity. It must be assumed that additional tumor components (vasculature, tumor immunity)
or non-tumorous stromal components may play a role—as for example by apoptotic cell death
of the microvascular endothelium [2, 4, 5]. The quantification of these changes as well as the
subsequent radiobiologically relevant consequences resulting from vascular damage, immune
response or the bystander effect on the tumor microenvironment remains largely unknown to
date.

The purpose of this study was to create a baseline in order to follow changes seen after hypo-
fractionated radiation with high doses (e.g. 8–30Gy) that are in general applied in stereotactic
radiosurgery (SRS) or stereotactic body radiation therapy (SBRT).

For this study, dogs with malignant oral tumors were chosen as a large animal model for the
investigation of microenvironmental parameters as they are uniquely suited for repetitive mini-
mally invasive and non-invasive observation during radiotherapy [6, 7]. In contrast to xeno-
graft studies, canine tumors develop naturally and grow over long periods of time in the
presence of an intact immune system, sharing similarities with human neoplasms such as
inter-patient tumoral heterogeneity [8, 9]. Furthermore, clinically relevant tumor hypoxia
exists in canine patients and polarographically measured pO2 values as well as perfusion
parameters in spontaneous tumors during fractionated radiation therapy have been described
previously [10–12]. In order to study the changes in tumor environment, several immunohisto-
chemical descriptors were selected for this study. Hypoxia, the radiobiologically most relevant
tumor environmental factor, leads to stabilization and activation of the hypoxia-inducible fac-
tor-1 (HIF-1). In consequence, HIF-1α protein binds to hypoxia responsive elements located
in the promoter regions of genes (such as GLUT-1 (glucose transporter 1), CAIX (carbonic
anhydrase 9)) whose expression has been found to closely correlate with polarographic oxygen
measurements of pO2 [13–16]. GLUT-1 is a membrane-bound glycoprotein mediating glucose
transport across the cell membrane and thereby allowing energy generation (via adenosine tri-
phosphate (ATP) and anaerobic glycolysis) in hypoxic tumor cells that are distant to functional
blood vessels. Increased expression of GLUT-1 has been found in canine histiocytic and soft
tissue sarcoma, osteosarcoma, mammary carcinoma, and meningioma [17–20]. CAIX acts as a
transmembrane glycoprotein expressed in tumors in response to hypoxia. Its function allows
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tumor cells to adapt to hypoxic stress by regulating pH and subsequently modifying the micro-
environment. CAIX expression has also been described in canine mammary carcinoma, histio-
cytic and soft tissue sarcoma [17, 18, 21]. Microvessel density (MVD) and Ki-67 can be
assessed in canine tumor tissue as a measure of vascularity and proliferation, respectively [22,
23].

The aim of this study was to establish immunohistochemical descriptors for pre-treatment
tumor environment in spontaneously occurring malignant oral neoplasms. The relationship
between minimally invasive oxygen measurements as well as perfusion parameters and the
expression of a number of hypoxia-induced proteins was sought in order to set the baseline for
further studies. The future goal is to describe the tumor microenvironment before and after
hypofractionated RT with high doses per fraction.

Materials and Methods

Tissue Samples
Formalin-fixed, paraffin-embedded canine oral malignant tumor samples from client-owned
dogs collected for diagnostic purposes were retrieved from the archives of the Institute of Vet-
erinary Pathology, University of Zurich, Switzerland. Information about histopathologic diag-
nosis and malignancy, sex and age was retrieved from the clinical data chart. Questionable
samples were reviewed by a pathologist. Malignant melanomas were included when one or
more of the following criteria were met: mitotic index� 4/10 HPF, nuclear atypia� 30% of
the cells, pigmentation< 50% of the cells [24].

Immunohistochemistry
Immunohistochemical staining for Ki-67, Factor VIII and CAIX was performed in a Dako
Autostainer (Dako, CH-6341 Baar), immunostaining for GLUT-1 was done using a Ventana
Discovery XT automated staining system (Roche Diagnostics AG, CH-6343 Rotkreuz). Infor-
mation about antibodies, pretreatment, incubation conditions and visualization are reported in
Table 1. In brief, 3 μm sections were mounted on positively charged slides (Superfrost Plus),
dried overnight at 37°C, deparaffinized, rehydrated and immersed for 10 min in 10% hydrogen
peroxide to block endogenous peroxidase activity. Melanoma sections were bleached overnight
through immersion in 20% hydrogen peroxide. For the Dako immunostaining system, anti-
body diluent (S2022) and wash buffer (S3006) were used; for the Roche system, antibody dilu-
ent (251–018) and reaction buffer (950–300) were applied. All antibodies have been evaluated
in canine tissue in previous studies [17–20, 25–28]. Negative controls were done omitting the
primary antibody. Tumor tissues were scored for immunoreactivity excluding regions with
<60% neoplastic cells and areas of necrosis. All slides were scanned with a NanoZoomer
2.0-HT scanscope (Hamamatsu, CH-4500 Solothurn) and visualized using the NDP.view2
software (Hamamatsu). The relative number of positively labeled cells was determined in each
sample and for all antigens as indicated below by computer-assisted manual counting by two
investigators using 5–20 snapshots of randomly chosen regions of each sample taken at a 40x
magnification.

GLUT-1, CAIX, Ki-67
The scoring system for GLUT-1 has been reported previously [17, 19] and was as following: 0
=<1% positive tumor cells, 1 = 1–50% positive tumor cells, and 2 =>50% positive tumor
cells. The intensity of cellular staining was graded as well: 1 = weak positive staining and
2 = strong positive staining. The final immunoreactivity score was calculated as product of the
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two scores. For a product between 1 and 2, the combined final score was 1, if between 3 and 4,
the combined final score was 2. For statistical analysis, also continuous data was recorded.

For CAIX, the amount of staining was recorded in a continuous manner. Furthermore, the
scoring system was applied as described previously [13, 17]. In brief, the percentage of positive
cells was scored as following: 0:<1% positive cells, 1: 1–30% positive cells, 2:>30% positive
cells.

Also the scoring system for Ki-67 has been reported previously [26]. In short, the number of
positively stained cells was determined by computer-assisted manual counting. The mean per-
centage of Ki-67-positive cells was determined for all fields.

Microvessel Density
Microvessel density (MVD) was evaluated as described previously [29, 30]. Briefly, endothelial
cells were stained with factor VIII and microvessels per high power field were recorded. The
mean number of vessels per snapshot was determined by computer-assisted manual counting.

Eppendorf Polarographic Oxygen Data
For a subset of the tumors from client-owned dogs, tissue hypoxia levels measured with the
Eppendorf polarographic oxygen technique were available from a previous trial [7] along with
tumor biopsies taken at the same time point and in the same tumor region. Formalin-fixed tis-
sue blocks were available from the latter to evaluate the immunohistochemical markers. Owner
consent had been obtained for that study, which was approved by the Animal Ethics Council of
the Canton of Zurich, Switzerland. Eppendorf data consisted of multiple measurements in
anesthetized dogs. Tumor oxygen partial pressure measurements were performed as previously
described [10, 15] with a pO2-Histograph (Helzel Medical Systems, Kaltenkirchen, Germany).
The probe was calibrated before each use, and then the needle electrode was placed into the
tumor tissue under ultrasound guidance (ATL 5000, Philips Medical Systems, Zurich, Switzer-
land). A minimum of three different electrode tracks and a minimum of 50 recorded values
were acquired. The oxygenation status of each individual tumor was described using the
median pO2 and the hypoxic fractions (% of pO2 values<10 mmHg,<5 mmHg and
<2.5 mmHg, respectively).

Table 1. Antibodies and incubation conditions.

Anti-gen Vendor Anti-body
Type

Catalogue no./
Clone

Dilution, Incu-
bation Condi-
tions

Pre-treatment Visuali-sation
Method

Positive Control
(Canine Tissues)

Ki67 Dako mouse mAb,
IgG1, kappa

M7240/MIB-1 1:50, 1 h, RT HIER*, 20 min 98°C,
EDTA buffer pH 9.0

ChemMate Kit normal lymph node

GLUT-1 Sigma rabbit pAb SAB4502803 1:150, 1 h, 37°C CC1st (EDTA buffer) Red-Map-Kit normal spinal cord

CaIX Novus
Biolo-gicals

rabbit pAb 23300002 1:1500, 1 h, RT HIER*, 20 min 98°C,
EDTA buffer pH 9.0

EnVision normal stomach,
intestine and liver

von Wille-
brand Factor
VIII

Dako rabbit pAb N1505 1:100, 30 min, RT HIER*, 20 min 98°C,
citrate buffer pH 7.0

ChemMate Kit granula-tion tissue

* HIER = heat-induced epitope retrieval; for protocols carried out in the Dako Autostainer pretreatment was done separately in a steamer (Pascal S2800,

Dako)

doi:10.1371/journal.pone.0149993.t001
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Perfusion Data
Perfusion data was available for a subset of tumor samples as part of a previous trial [7] in cli-
ent-owned dogs mentioned above. A 5- to 12-MHz linear transducer (ATL 5000, Philips AG,
Zurich, Switzerland) was used to perform imaging. For contrast-enhanced power Doppler
ultrasonography, settings were used as previously described [31]. Briefly, a region of interest
(ROI) was drawn around the tumor boundaries and two measurements were computed for
each ROI. Median of fractional area of Power Doppler (MDFAPD) was calculated as the num-
ber of colored pixels in the ROI divided by the total number of pixels in the ROI multiplied by
100. MDFAPD calculates the percentage area of the tumor occupied by blood vessels and
therefore represents the vascularity index. Median color weighted fractional area of Power
Doppler (MDCWFA) was used to assess perfusion and determined the mean blood volume
within the tissue. MDFAPD and MDCWFA were determined by calculating the median of five
images.

Statistical Analysis
Data were coded in Excel (Microsoft1 Excel1 for Mac 2011, Version 14.3.2) and analyzed
with a commercial statistical software package (IBM1 SPSS1 Statistics, Version 22). Descrip-
tive statistics such as absolute and relative frequencies for discrete parameters (sex, CAIX
score, GLUT-1 score) as well as mean and standard deviation for continuous parameters (age,
GLUT-1 continuous, Ki-67 index, MVD count, Eppendorf measurements, perfusion data)
were computed. As the assumption of normality was not fulfilled for CAIX continuous, median
and interquartile range (IQR) were provided. The Kolmogorov-Smirnov and Shapiro-Wilk
tests were used to check the validity of the normality assumption of the data. The one-way
ANOVA together with the Bonferroni post-hoc test were used to disclose differences in histo-
logical parameters as well as age between different diagnosis groups. For continuous variables
where the normality assumption was not fulfilled, the Kruskal-Wallis test was applied. Associa-
tion between diagnosis and GLUT-1 score, CAIX score and sex was investigated by the Chi2-t-
est. The non-parametric Spearman correlation was computed to disclose association between
continuous variables. In addition, Spearman correlations were computed for each diagnosis
groups separately. Results of statistical analysis with p-value<5% were interpreted as statisti-
cally significant.

Results
Ninety-two formalin-fixed, paraffin-embedded canine oral malignant tumor samples were
available. They included 32 sarcomas (34.7%), 30 carcinomas, (32.6%) and 30 malignant mela-
noma samples (32.6%). In 21 of the retrieved samples (sarcomas n = 9; carcinomas n = 7 and
melanomas n = 5) the tissue hypoxic status determined by Eppendorf polarographic oxygen
measurements was known. Perfusion data was available in 25 samples (sarcomas n = 10, carci-
nomas n = 8, melanomas n = 7).

Demographic Data
Mean age of the patients was 9.4 years (range 1–15 years, SD 3.1). Twelve dogs were female, 17
were female spayed, 40 were male and 21 were male neutered. For 2 dogs, age and sex was not
recorded. Age and sex was normally distributed with no significant difference between the 3
histological groups regarding sex. Patients in the melanoma group were significantly older
(mean 10.8 years) than in the sarcoma group (mean 8.45 years).
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GLUT-1 Analysis
Immunohistochemical staining was present in 46.7% of all samples and was mainly cytoplas-
matic (Fig 1). Staining intensity was weak in 76.7% and strong in 23.3% of the positive samples.
The evaluation of continuous data as well as the previously described score [17] showed a sig-
nificantly lower GLUT-1 level in sarcomas (mean 5.1%, SD 6.2) versus carcinomas (mean
16.5%, SD 17.3) and malignant melanomas (mean 19.0%, SD 20.9, p = 0.001) (Table 2).

CAIX Analysis
Immunohistochemical staining was present in 34.8% of all samples (Fig 1). CAIX values were
distributed in a skewed manner. There was neither a significant difference in the continuous
data nor in the score between the 3 histological groups (Table 2). Overall, the expression of
CAIX correlated mildly positively with GLUT-1 (p = 0.018, rho = 0.250) as well as with Ki-67
(p = 0.014, rho = 0.295). However, this correlation was lost when looking at individual histo-
logical groups.

Fig 1. Examples of immunohistochemical labelings of canine tumors with hypoxia markers. (A) Sarcoma labelled for GLUT-1, weakly positive region.
(B) Sarcoma labelled for GLUT-1, negative region, same tumor as in (A). (C) Carcinoma labelled for GLUT-1, strongly positive region. (D) Melanoma labelled
for GLUT-1, strongly positive region. (E) Sarcoma labelled for CAIX, weakly positive region. (F) Sarcoma labelled for CAIX, negative region, same tumor as in
(E). (G) Carcinoma labelled for CAIX, strongly positive region. (H) Melanoma labelled for CAIX, weakly positive region. Bar = 20 μm.

doi:10.1371/journal.pone.0149993.g001

Table 2. Immunohistochemical markers andmeasurements within histological groups.

Histology GLUT-1 (%):
mean, SD

CAIX (%):
median, IQR

Ki-67 (%):
mean, SD

MVD:
mean, SD

Hypoxia (mmHg):
mean, SD

Vascularity (%):
mean, SD

Blood volume:
mean, SD

Sarcoma
(n = 32)

5.1a (6.2) 2a (8, range
0–76)

19.6a (18.0) 21.8b (13.0) 16.4a (15.4) 10.4a (11.9) 6.3a (6.5)

Carcinoma
(n = 30)

16.5b (17.3) 3a (20, range
0–64)

29.1a (18.0) 26.9b (20.4) 25.6a (14.0) 39.2b (16.4) 33.0b (25.6)

Melanoma
(n = 30)

19.0b (20.9) 5a (11, range
0–90)

24.9a (20.4) 12.6a (7.7) 24.6a (40.8) 36.0b (18.3) 31.5b (24.5)

p-values 0.001 0.542 0.061 0.001 0.328 0.002 0.002

a, b: Statistically significant differences between the groups are indicated by differing letters.

doi:10.1371/journal.pone.0149993.t002
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Ki-67 and MVD Analysis
No indication for violation of normality assumption in the data was found. For Ki67 no signifi-
cant difference was found between the three histological groups, whereas MVD showed a sig-
nificantly lower level in malignant melanomas (mean 12.6, SD 7.7) versus sarcomas (mean
21.8, SD 13.0) and carcinomas (mean 26.9, SD 20.4, p = 0.001) (Table 2).

Tissue Hypoxia Levels and Perfusion Data
Eppendorf polarographic oxygen measurements did not differ significantly between the histo-
logical groups. The perfusion parameters MDFAPD and MDCWFA were significantly lower in
sarcomas (mean 10.4%, SD 11.0, and mean 6.3%, SD 6.5, respectively) versus carcinomas
(mean 39.2%, SD 16.4 and mean 33.0%, SD 25.6, respectively) and malignant melanomas
(mean 36.0%, SD 18.3, and 31.5%, SD 24.5) (Table 2).

Association within IHC Markers, with Polarographic Oxygen
Measurements and Perfusion Data
GLUT-1 continuous data and Ki-67 (p<0.001, rho = 0.403), as well as Ki-67 and MVD
(p = 0.029, rho = 0.228) correlated positively. A mild correlation was found between MDFAPD
and GLUT-1 (p = 0.043, rho = 0.408). No other correlations were found.

Discussion
In the present study, a baseline of different hypoxia-related markers and measurements in
three histological groups of oral malignant neoplasia in dogs is described. The markers can be
readily assessed in canine oral tumors and they do not display consistent different baseline lev-
els according to the present study, which has been shown in human patients as well [32]. It will
therefore be of great interest to evaluate the changes of such markers in individual tumors in
order to gain information about processes in the tumor environment under treatment. From
an ethical point of view, repetitive sampling is feasible in dog patients as they undergo a short
general anesthesia for each treatment session for proper immobilization. Repetitive sampling is
therefore easily achievable, once ethical approval and owner’s consent has been obtained.

The three histological groups did not show a significant difference in polarographic tissue
hypoxia measurements. However, immunohistochemical markers and perfusion measure-
ments showed small, but significant differences between the three groups with GLUT-1 levels
being lowest in oral sarcoma compared to carcinoma and melanoma. CAIX and GLUT-1
showed a mild positive correlation overall, but this correlation was lost within the three histo-
logical groups. There is a direct pathophysiological link between the endogenous hypoxia
markers GLUT-1 and CAIX. In the presence of hypoxia, tumors are able to and dependent on
generating energy through anaerobic glycolysis. Increased glucose uptake through the cell
membrane is associated with an increase of lactate and protons, i.e. with acidification. CAIX
plays an important role in balancing this acidic environment by eliminating those products
[33, 34]. Previous reports have shown co-expression of GLUT-1 and CAIX but their spatial dis-
tribution might be different [13, 34–36]. There is evidence that GLUT-1 expression is influ-
enced by various factors such as glucose deprivation, oncogenic transformation, and osmotic
stress, and it is unrelated to hypoxia in some cancers in humans [37–40]. CAIX seems to be
less dependent on other factors, possibly rendering it a more reliable endogenous hypoxia-
related marker [33, 34].

The authors are aware of the fact that the so called “endogenous hypoxia markers” (such as
GLUT-1 and CAIX) as HIF-dependent products assess HIF-activity rather than the “true
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radiobiological relevant hypoxic fraction”. It has therefore been proposed to call them “hyp-
oxia-related markers” [33]. The oxygen concentration required to stabilize and activate HIF is
in the range of 1–2%, while the concentration causing maximum resistance to radiation is
much lower with about 0.02%. In some genetic alterations, also hypoxia-independent regula-
tion of HIF can occur [41]. However, evaluation of the transcriptional targets of HIF reflects
part of the changes of tumor environment over a course of treatment and can be followed in
repetitive samples.

Neither of the endogenous hypoxia-related markers GLUT-1 and CAIX correlated with
polarographic tissue hypoxia measurements in the present study. In general, the association
between the oxygen status of tumor tissue and the hypoxia-related markers is described to be
weak and none of the markers have shown consistent strong prognostic impact in the clinical
setting [33]. Previous studies in human cancer patients showed inconsistent results: While
some studies showed a positive correlation between tissue oxygen measurements and endoge-
nous hypoxia markers GLUT-1 and CAIX [14, 42], others failed to find any association [16, 36,
43]. A possible explanation is that readouts of polarographic oxygen content of tissues cannot
distinguish between areas with necrosis and viable tissue, and can therefore possibly lead to an
overestimation of hypoxia. In contrast, endogenous hypoxia-related markers can be detected in
hypoxic areas with viable cells only [42] and are found already at higher levels of tissue oxygen-
ation. While polarographic measurements evaluate tissue oxygen status directly, GLUT-1 and
CAIX are markers for hypoxia response pathways caused by the presence of low oxygen levels
and other factors. Increase of GLUT-1 is a sign of energy generation by anaerobic glycolysis
due to hypoxia-induced ATP depletion, while CAIX is responsible for pH regulation in a hyp-
oxic, acidic environment [14, 33, 42]. This response might already take place well above the
level of hypoxia detected by polarographic Eppendorf measurements [34]. It is also possible
that the site of the biopsy samples may not have been respresentative of the areas sampled for
tissue oxygenation measurements. Tumor hypoxia is a dynamic process, and abnormal vascu-
lature might lead to transient changes in tumoral blood flow, with hypoxic or well-oxygenated
conditions changing over time. Those spatially and temporally fluctuating conditions might
lead to a discrepancy in measurements. Furthermore, prognostic factors such as tumor size,
location, histological subtype, and grade of differentiation were not taken into account due to
lack of information and/or due to small numbers per individual group. It should be recognized
that pooling of histologic subtypes via crude classification may preclude detection of statisti-
cally significant differences due to elevated type II error. This represents an important limita-
tion of the present study. The influence on prognosis of the aforementioned factors is most
probably dependent on the treatment modality and the ability of achieving adequate local con-
trol. This might be more challenging in in maxillary tumors, caudal location or tumors with a
large size [44–47]. Due to the retrospective nature of this study, information about treatment
and outcome could not be gathered. This represents a limitation of this study but could not be
avoided herein.

Tumor perfusion has been found to moderately correlate with MVD in canine tumors but
no significant change was seen during the course of a curative-intent RT protocol in a small
number of patients [31, 48]. Our findings indicate that sarcomas are least perfused in spite of
having a higher MVD than malignant melanomas for instance. The mere presence of vessels
does not necessarily guarantee physiological functionality thereof, which may also depend on
diameter, architecture or intratumoral pressure.

Small (repetitive) tumor sampling bears the risk of a lack of representation of the whole
tumor due to intratumoral heterogeneity in the extent and distribution of malignancy, stromal
reaction, inflammatory cells, necrosis, and hypoxia. However, in a clinical setting it is not feasi-
ble to collect larger or multiple biopsy samples either concurrently or repetitively. With the
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outlook of repetitive sampling during hypofractionated stereotactic fractionation in clinical
patients in the future, a power analysis was performed to test the applicability for such a further
question in a presumably rather small clinical patient cohort. In order to detect a relevant dif-
ference with potential clinical impact of 25% with GLUT-1 and CAIX, 30% with Ki-67, and
30% with MVD between two histological groups with the two sample t-test given power of 80%
and a Bonferroni corrected significance level of alpha = 0.016 the optimal sample size of 10, 14,
and 17 observations in each diagnosis group would be required. If the assumptions above are
correct, the sample sizes of 32, 30, and 30 tumor samples in the sarcoma, carcinoma, and
malignant melanoma groups should therefore guarantee correct detection of relevant differ-
ences that we would deem clinically relevant with probability exceeding 80%. Consequently,
there is some indication for no variation of the baseline levels in the population evaluated.

A previous study in dogs sequentially evaluating hypoxia-related markers and tumor/
microenvironmental factors during RT showed inconsistent results [6]. It remains to be evalu-
ated if there are marked differences between those parameters during conventional fraction-
ation versus hypofractionated treatment protocols, as such fractionation schemes are
increasingly applied for example in SRS and SBRT, even though the knowledge about the exact
mechanisms of action remains small at this point.
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