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Estimation of homeostatic 
dysregulation and frailty 
using biomarker variability: a 
principal component analysis of 
hemodialysis patients
Yuichi Nakazato1 ✉, Tomoko Sugiyama1, Rena Ohno1, Hirofumi Shimoyama1, 
Diana L. Leung2, Alan A. Cohen3, Riichi Kurane4, Satoru Hirose5, Akihisa Watanabe6 & 
Hiromi Shimoyama4

Increased intraindividual variability in several biological parameters is associated with aspects of frailty 
and may reflect impaired physiological regulation. As frailty involves a cumulative decline in multiple 
physiological systems, we aimed to estimate the overall regulatory capacity by applying a principal 
component analysis to such variability. The variability of 20 blood-based parameters was evaluated as 
the log-transformed coefficient of variation (LCV) for one year’s worth of data from 580 hemodialysis 
patients. All the LCVs were positively correlated with each other and shared common characteristics. 
In a principal component analysis of 19 LCVs, the first principal component (PC1) explained 27.7% of 
the total variance, and the PC1 score exhibited consistent correlations with diverse negative health 
indicators, including diabetes, hypoalbuminemia, hyponatremia, and relative hypocreatininemia. The 
relationship between the PC1 score and frailty was subsequently examined in a subset of the subjects. 
The PC1 score was associated with the prevalence of frailty and was an independent predictor for frailty 
(odds ratio per SD: 2.31, P = 0.01) using a multivariate logistic regression model, which showed good 
discrimination (c-statistic: 0.85). Therefore, the PC1 score represents principal information shared by 
biomarker variabilities and is a reasonable measure of homeostatic dysregulation and frailty.

Studies on variability in blood pressure, plasma glucose levels, hemoglobin concentration, and other parame-
ters have commonly reported associations with adverse outcomes1–3. In our previous study examining patients 
receiving maintenance hemodialysis (HD), variability in many other blood-based laboratory parameters was 
also related to several adverse conditions, such as impaired mobility, hospital admission, increased mortality, 
and hypoalbuminemia4. These conditions are in fact elements of frailty, and frailty is considered to be a state of 
functional decline in many physiological systems5. Therefore, we speculated that the variability in laboratory 
parameters may reflect the dysfunction of corresponding regulatory systems and may also be a measure of frailty. 
Consistent with this idea, the variability of serum albumin concentrations increases with ageing, and this move-
ment accelerates prior to death6. Others have also suggested a link between physiological regulation and variabil-
ity in other biological variables7–10. However, the variability of a single parameter may not properly represent the 
dysregulation across multiple physiological systems in frailty11.

To develop a comprehensive measure of physiological dysregulation that is consistent with the concept of 
frailty, we applied a principal component analysis (PCA) to a set of variabilities in laboratory parameters. This 
procedure, performed on all study participants (n = 580), yielded principal component scores (PC scores) for 
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each subject. The properties of the PCA model and its derived PC score were first investigated in this population. 
Following this, the relationship between the PC score and frailty was analyzed in a subpopulation of 109 subjects.

Our aims for this study were (1) to examine whether the PC1 score is an appropriate measure of physiological 
dysregulation and frailty, and (2) to validate our interpretation of biomarker variability.

Methods
Study subjects and data collection.  A total of 752 patients underwent maintenance HD during the one-
year data collection period (from June 2015 until May 2016) at any of 4 affiliated HD facilities. These facilities are 
located within 6 km of each other and provided equivalent dialysis treatment. To reduce the influence of highly 
fluctuating parameter values during the HD initiation phase6, patients who had been receiving HD for less than 
6 months as of the start of the data collection period (namely, those who had started HD treatment later than 
December 1, 2014) were excluded from this study. We further excluded patients who had completed fewer than 
21 of the 24 regular blood examinations scheduled during the data collection period. Finally, we enrolled the 
remaining 580 patients (Fig. 1).

At each of the 4 participating facilities, 19 blood parameters were regularly examined for all the HD patients. 
The levels of white blood cells (WBC), hemoglobin (Hb), platelets (Plat), albumin (Alb), blood urea nitrogen 
(BUN), creatinine (Cr), potassium (K), uncorrected calcium (Ca), and phosphate (P) were measured twice 
monthly, whereas those of total protein (TP), uric acid (UA), sodium (Na), and chloride (Cl) were measured 
monthly. Aspartic aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), 
alkaline phosphatase (ALP), LDL-cholesterol (LDL), and HDL-cholesterol (HDL) levels were measured every 
2 months. Among the enrolled patients, 231 had been diagnosed as having diabetes and received additional 
monthly measurements of their glycated albumin (GA) level. For the regular blood examinations, pre-dialysis 
blood samples were drawn prior to the first HD treatment of the week and were analyzed at a single external 
laboratory.

Using the above-mentioned measurements (6–24 measurement points for each parameter), we calculated the 
mean values and the coefficients of variation (CV = population standard deviation/mean) for each patient12. The 
yearly mean of parameter X (abbreviated as X-M) was regarded as the overall level, and the CV value (X-CV) 
was used to estimate variability. The CV values were log 10 transformed to normalize the distribution and were 
expressed as log X-CV or X-LCV. There were no missing data for these M and CV values in the enrolled patients.

Frailty assessment.  Of the 580 enrolled patients, 140 patients who were receiving HD treatment at one 
facility in May 2016 were recruited for the frailty assessment. At the time of frailty survey, 6 patients were in hos-
pital, and 9 patients declined participation. The remaining 125 patients participated in the assessment, but 16 of 
them did not complete it. For the final 109 patients without missing data, their frailty status was analyzed relative 
to the PC scores obtained from a PCA of 580 patients (Fig. 1).

Frailty was defined according to the Japanese version of the Cardiovascular Health Study criteria (J-CHS cri-
teria)13–15 as the presence of three or more of five clinical characteristics: (a) weight loss—losing more than 2 kg in 
the past 6 months; (b) walking speed—less than 1.0 m/second; (c) grip strength—less than 26 kg for men, and less 
than 18 kg for women; (d) exhaustion—yes in response to the question: “Have you felt tired without any reason 
in the last 2 weeks?”; and (e) physical activity—no for both of the questions: “Do you perform light exercise or 
gymnastics?” and “Do you play sports regularly?”.

This study protocol was approved by the institutional ethics committee of Hakuyukai Medical Corporation 
(approval number: 27–006) and was performed in accordance with the provision of the Declaration of Helsinki. 
Informed consent for the use of the patients’ clinical records was obtained from all the patients in 2015; the phys-
ical and subjective assessments for frailty were conducted in May 2016 after obtaining written informed consent.

Statistical analysis.  Bivariate correlations between continuous variables were assessed using the Spearman 
or Pearson correlation coefficients according to the distribution of the variables. To compare values between two 
groups, P values were calculated using the Welch t-test or the Fisher exact test, as appropriate. For correlations 
among the LCVs of the laboratory parameters, we did not adjust the P values for multiple comparisons because 
almost all the LCVs were clearly correlated with one another (see Results). In this situation, such P value adjust-
ments merely increase false-negative reporting, rather than decreasing false-positive reporting16.

PCA is a linear transformation technique used for feature extraction, dimensionality reduction, and noise 
reduction. It converts a set of observed variables into a set of orthogonal variables called principal components 
(PCs) by rotating the coordinate system. PC scores represent the values of the PCs. In this study, PCA was per-
formed on the 19 LCVs after they were standardized to have a mean of zero and a standard deviation (SD) of one. 
The scores for the 19 PCs were computed for each subject and were used for further analyses.

The associations between the frailty status and the explanatory variables were examined using univariate and 
multivariate logistic regression models. In these analyses, the frailty status was binarized by combining pre-frail 
and non-frail patients as a “not-frail” group17–19, and the odds ratio for a frail status relative to a not-frail status 
was estimated. The discriminatory ability of each model was evaluated by computing the area under the receiver 
operating characteristic curve (AUC = c-statistic) and the accuracy.

All the analyses were performed in R.3.5.0 (R Core Team, 2018) using the corrplot, binomTools, pscl, ROCR, 
pROC and caret packages. The results were basically expressed as the mean ± SD, and a P value <0.05 was con-
sidered significant.
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Results
Patient characteristics.  The demographic and laboratory data for the 580 patients who were enrolled in the 
PCA are shown in Table 1. The patient age was 65.6 ± 12.3 years (range = 25.3–93.0 years), and most of them had 
received long-term hemodialysis treatment (interquartile range = 4.9–15.5 years). The proportions of female and 
diabetic patients were 32.1% and 37.8%, respectively.

As the diabetic status in HD patients has a strong influence on health conditions, prognosis, and the devel-
opment of frailty20,21, the patient characteristics were also presented separately for diabetic and non-diabetic 
patients. Compared with non-diabetic patients, diabetic patients had lower mean levels of BUN, Cr, UA, Na, K, 

Figure 1.  Patient selection and study flow.
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Cl, LDL, and HDL, while they had a higher degree of variability (log CV values) for WBC, Hb, BUN, Cr, UA, Na, 
K, Cl, P, LDL, and HDL.

Correlations between variables.  The pair-wise correlations among demographics, the mean levels of 
the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 
44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 
LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper 
triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The 
coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp 

Total Non-diabetic Diabetic

Number of patients 580 361 219

Male/Female (n) 394/186 233/128 161/58*

Age (years) 65.6 ± 12.3 65.0 ± 12.8 66.7 ± 11.3

HD duration (years) 11.3 ± 8.4 13.4 ± 9.1 7.8 ± 5.4***

WBC-M (/µl) 6120 ± 1648 5908 ± 1568 6469 ± 1720***

Hb-M (g/dL) 11.1 ± 0.8 11.1 ± 0.8 11.1 ± 0.7

Plat-M (104/µl) 19.1 ± 5.8 19.1 ± 5.5 19.1 ± 6.3

TP-M (g/dL) 6.5 ± 0.4 6.5 ± 0.4 6.5 ± 0.5

Alb-M (g/dL) 3.6 ± 0.3 3.6 ± 0.3 3.6 ± 0.3

AST-M (IU/L) 14.6 ± 7.5 15.0 ± 8.7 14.0 ± 4.8

ALT-M (IU/L) 11.5 ± 5.7 11.6 ± 6.0 11.4 ± 5.2

LDH-M (IU/L) 179 ± 39 179 ± 40 179 ± 33

ALP-M (IU/L) 263 ± 138 270 ± 151 252 ± 113

BUN-M (mg/dL) 64.3 ± 12.2 65.6 ± 11.6 62.3 ± 12.9**

Cr-M (mg/dL) 11.4 ± 2.6 11.8 ± 2.6 10.8 ± 2.5***

UA-M (mg/dL) 7.4 ± 1.2 7.5 ± 1.2 7.1 ± 1.1***

Na-M (mmol/L) 138.8 ± 2.3 139.1 ± 2.2 138.4 ± 2.4**

K-M (mmol/L) 5.0 ± 0.6 5.1 ± 0.6 4.9 ± 0.7**

Cl-M (mmol/L) 105 ± 3.0 105.2 ± 3.0 104.6 ± 2.9*

Ca-M (mg/dL) 8.8 ± 0.4 8.8 ± 0.4 8.8 ± 0.4

P-M (mg/dL) 5.4 ± 1.0 5.5 ± 1.0 5.4 ± 0.9

LDL-M (mg/dL) 84.2 ± 26.7 87.4 ± 26.8 79.0 ± 25.7***

HDL-M (mg/dL) 46.0 ± 13.5 47.7 ± 14.0 43.2 ± 12.3***

GA-M (%) 20.5 ± 4.4

WBC-LCV −0.91 ± 0.14 −0.92 ± 0.14 −0.89 ± 0.15*

Hb-LCV −1.27 ± 0.17 −1.28 ± 0.17 −1.25 ± 0.15*

Plat-LCV −1.02 ± 0.16 −1.03 ± 0.16 −1.02 ± 0.15

TP-LCV −1.54 ± 0.13 −1.53 ± 0.13 −1.54 ± 0.13

Alb-LCV −1.39 ± 0.13 −1.40 ± 0.13 −1.38 ± 0.13

ALT-LCV −0.86 ± 0.28 −0.86 ± 0.29 −0.84 ± 0.27

AST-LCV −0.77 ± 0.25 −0.78 ± 0.25 −0.75 ± 0.25

LDH-LCV −1.18 ± 0.21 −1.19 ± 0.21 −1.18 ± 0.20

ALP-LCV −1.01 ± 0.23 −1.02 ± 0.22 −0.99 ± 0.23

BUN-LCV −0.92 ± 0.13 −0.94 ± 0.13 −0.89 ± 0.13***

Cr-LCV −1.27 ± 0.17 −1.30 ± 0.17 −1.22 ± 0.17***

UA-LCV −1.12 ± 0.16 −1.13 ± 0.15 −1.10 ± 0.18*

Na-LCV −1.96 ± 0.14 −1.97 ± 0.13 −1.95 ± 0.15*

K-LCV −1.13 ± 0.15 −1.15 ± 0.14 −1.09 ± 0.16***

Cl-LCV −1.78 ± 0.14 −1.80 ± 0.14 −1.75 ± 0.14***

Ca-LCV −1.46 ± 0.17 −1.46 ± 0.17 −1.46 ± 0.16

P-LCV −0.83 ± 0.13 −0.84 ± 0.13 −0.80 ± 0.13***

LDL-LCV −1.08 ± 0.21 −1.11 ± 0.19 −1.03 ± 0.23***

HDL-LCV −1.17 ± 0.19 −1.20 ± 0.19 −1.12 ± 0.18***

GA-LCV −1.34 ± 0.25

Table 1.  Patient characteristics. X-M and X-LCV denote yearly mean and log 10-transformed coefficient of 
variation of parameter X, respectively. Data for diabetic and non-diabetic groups were compared by Fisher’s 
exact test or Welch’s t test. ***P < 0.001, **P < 0.01, *P < 0.05.
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Figure 2.  Correlations between variabilities and those between mean levels of 20 laboratory parameters. (a) 
One hundred and ninety pairwise correlation coefficients between 20 LCVs (=log transformed coefficients of 
variation) were excerpted from Supplementary Table S1 and are shown as ellipses in the upper triangle of the 
heatmap. Similarly, the correlation coefficients between 20 Ms (=yearly means) are shown in the lower triangle. 
The sign and strength of the correlation coefficient is displayed by the color, and insignificant correlations 
(P > 0.05) are marked with an × (see Methods for details). Additionally, first principal component score (PC1 
score) is obtained from the PCA of 19 LCVs (all LCVs except GA-LCV), and the correlations between the 20 
LCVs and the PC1 are shown in the rightmost column of the heatmap. The correlations between the 20 Ms and 
the PC1 are also shown in the bottom row. The actual values of the correlation coefficients are shown in Table 2. 
(b) Distribution of the correlation coefficients between LCVs displayed as a histogram.
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contrast, the sign and the strength of the correlation between different Ms varied according to the combination 
(see lower triangle of Fig. 2a).

PCA.  As GA-LCV data were only available for the diabetic patients, the remaining 19 LCVs were used to build 
the PCA model. The first 5 principal components showed corresponding eigenvalues of more than 1.0, and the 
PC1 had an eigenvalue of 5.26 and accounted for 27.7% of the total variance. The corresponding values for PC2 
were much lower (1.58 and 8.3%, respectively). The variable loadings for PC1 were all positive (range = 0.140 to 
0.305); thus, PC1 was regarded as a cumulative index of variability. Likewise, as shown in the left half of Table 2, 
the correlation coefficients between the PC1 score and the original 19 LCVs (i.e., component loadings for PC1) 
were all positive (range = 0.321 to 0.701). These results indicate that PC1 represents principal information shared 
by all the LCVs. The correlations between PC1 and other variables (right half of Table 2) revealed a consist-
ent relationship with multiple prognostic factors in HD patients. The PC1 score was negatively correlated with 
Alb-M, Cr-M, K-M, Na-M, BUN-M, Ca-M, Hb-M, and LDL-M, etc. On the other hand, it was positively corre-
lated with GA-LCV, GA-M, AST-M, LDH-M, diabetic status, ALP-M, age, and ALT-M. These correlations are also 
displayed as a heatmap in Fig. 2a.

Frailty.  The relationships between frailty status and demographic/laboratory data were analyzed for 109 of the 
580 patients. Among them, 23 (21.1%) and 55 (50.5%) patients were classified as frail and pre-frail, respectively. 
When the patients were re-classified into two categories, namely frail and not-frail (pre-frail + non-frail), several 
characteristics differed between the 2 groups (Table 3). The frail patients were generally older, had a longer dura-
tion of HD, and had lower Alb and Cr levels and higher LDH and ALP levels. Of note, the frail patients exhibited 
elevated LCV levels for all the parameters except for UA, though the differences were statistically significant only 
for Hb-LCV, Plat-LCV, Alb-LCV, and LDH-LCV. The PC scores derived from a PCA of 580 patients were also 
compared. Of the 19 PC scores, the PC1 score was significantly higher in frail patients than in not-frail patients, 
but the other PC scores were not significantly different between the 2 groups (Table 3).

As shown in Fig. 3, the prevalence of frailty tended to increase with increasing age, HD duration, and PC1 
score, though there was no significant correlation between these 3 variables in the examined subjects. The dis-
criminatory power of the PC1 score for frailty was analyzed using logistic regression models and receiver operat-
ing characteristic curves (Table 4 and Fig. 3d). In these models, mean levels of laboratory parameters (Ms) are not 

Variables r P value Variables r P value

Ca-LCV 0.321 0.000 Alb-M −0.278 0.000

ALP-LCV 0.364 0.000 Cr-M −0.254 0.000

LDL-LCV 0.375 0.000 K-M −0.173 0.000

AST-LCV 0.380 0.000 Na-M −0.171 0.000

ALT-LCV 0.430 0.000 BUN-M −0.162 0.000

Na-LCV 0.449 0.000 Ca-M −0.138 0.001

TP-LCV 0.485 0.000 Hb-M −0.118 0.005

UA-LCV 0.490 0.000 LDL-M −0.104 0.013

LDH-LCV 0.493 0.000 Cl-M −0.102 0.014

HDL-LCV 0.506 0.000 UA-M −0.102 0.014

Cl-LCV 0.520 0.000 TP-M −0.098 0.018

WBC-LCV 0.561 0.000 HD duration −0.081 0.051

Hb-LCV 0.566 0.000 Plat-M −0.031 0.450

K-LCV 0.584 0.000 HDL-M −0.015 0.712

Plat-LCV 0.590 0.000 Female (vs. male) −0.006 0.890

P-LCV 0.614 0.000 WBC-M 0.052 0.212

Cr-LCV 0.663 0.000 P-M 0.073 0.080

Alb-LCV 0.693 0.000 ALT-M 0.101 0.015

BUN-LCV 0.701 0.000 Age 0.137 0.001

ALP-M 0.137 0.001

DM (vs. non-DM) 0.195 0.000

LDH-M 0.200 0.000

AST-M 0.221 0.000

GA-Ma 0.240 0.000

GA-LCVa 0.366 0.000

Table 2.  Correlations between PC1 score and study variables. DM = diabetes mellitus. The correlation 
coefficients (r) between PC1 and the original variables of the PCA, namely the 19 LCVs, are displayed on the 
left, and the r for other variables (19 Ms, GA-LCV, DM, HD duration, and gender) are displayed on the right. 
For dichotomous variables, r represents the point-biserial correlation coefficient. Variables are arranged in the 
order of their r values from lowest to highest. Boldface indicates a statistical significance at P < 0.05. aFor GA-M 
and GA-LCV, the coefficients were calculated for diabetic subjects only.
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included in the covariates because they are broadly correlated with each other and with PC1 and can cause mul-
ticollinearity problems. The PC1 score, age, and HD duration were independently associated with frailty in these 
univariate and multivariate models, and the PC1 score had odds ratios (OR) of 2.20–2.42 (per 1 SD) for frailty.

The PC1 score alone was not sufficient to determine the frailty status (AUC = 0.649, accuracy = 0.817, model 
#1 in Table 4 and Fig. 3d). However, as shown by the comparison between model #2 and model #3, its addition 
to the explanatory variables significantly improved the fit of the model (P = 0.0037 for likelihood ratio test). The 
lower ranked PCs (PC2 − PC19) had no significant association with frailty status, and their further addition to 
these models did not improve the performance. A multivariate model (#4 in Table 4 and Fig. 3d) containing 4 
variables (PC1 score, age, HD duration, and diabetic status) had the smallest AIC and an AUC of 0.849, indicating 
good discrimination. At the probability cutoff value of 0.5, this model showed 0.565 sensitivity, 0.942 specificity, 
and 0.862 accuracy. To obtain an unbiased estimate of the AUC, a 10-fold cross validation was repeated 100 times. 
With this resampling method, the averaged AUC of model #4 was 0.824.

Discussion
In our previous survival study, we observed widespread positive correlations between LCVs in the baseline data 
which had been recorded during the year of 20024. The dataset analyzed in the present study was collected more 
than 12 years thereafter. Nevertheless, the correlation matrices derived from both datasets showed very similar 
patterns and levels (compare Table 5 in Ref. 4 and Supplementary Table S1), indicating their nearly constant 
correlation structure. Given that a high LCV level reflects dysfunction of the corresponding physiological regu-
latory system, the correlation coefficient between two different LCVs can represent the strength of the interac-
tion (coupling) between two different physiological systems22. More specifically, the robust correlation (r > 0.5) 
between certain pairs of LCVs (Na-LCV/Cl-LCV, BUN-LCV/Cr-LCV, Alb-LCV/TP-LCV, and BUN-LCV/K-LCV, 
see Supplementary Table S1) indicates the proximity of the regulatory mechanisms of these paired parameters. 
Taking this idea one step further, the ubiquitous positive correlations among the LCVs imply an interconnected 
structure (i.e., network) of homeostatic regulation and suggest that its overall dysfunction can be estimated by 
PC1 of the LCVs22,23.

Changes in physiological variability in relation to aging and health can be viewed through two lenses that 
produce contradictory results. On the one hand, the “loss of complexity” paradigm suggests that high variability 

Variables Not-frail Frail SMD P value Variables Not-frail Frail SMD P value

Demographics Principal component score

Age 61.7 ± 11.6 69.8 ± 7.4 0.000 PC1 -0.66 ± 1.76 0.74 ± 2.52 0.61 0.019

Female (%) 29.1 30.4 0.902 PC2 0.19 ± 1.16 -0.18 ± 1.21 -0.29 0.199

HD duration 9.9 ± 8.2 17.9 ± 10.5 0.002 PC3 0.10 ± 0.99 0.34 ± 1.24 0.21 0.388

DM (%) 30.2 43.5 0.265 PC4 0.00 ± 1.06 -0.12 ± 0.90 -0.11 0.586

Biomarker level Biomarker variability

LDH-M 175 ± 27 202 ± 55 0.68 0.034 Alb-LCV -1.41 ± 0.09 -1.33 ± 0.15 0.63 0.021

ALP-M 236 ± 76 298 ± 123 0.45 0.029 LDH-LCV -1.23 ± 0.20 -1.10 ± 0.27 0.62 0.042

Na-M 139.0 ± 2.0 140.0 ± 2.0 0.24 0.243 Hb-LCV -1.30 ± 0.16 -1.21 ± 0.16 0.53 0.025

AST-M 14.3 ± 4.6 15.0 ± 3.9 0.09 0.471 LDL-LCV -1.12 ± 0.19 -1.02 ± 0.24 0.48 0.070

Cl-M 103.0 ± 2.7 103.0 ± 2.4 0.08 0.681 Plat-LCV -1.04 ± 0.14 -0.97 ± 0.14 0.48 0.031

K-M 4.94 ± 0.57 4.96 ± 0.64 0.03 0.904 Ca-LCV -1.46 ± 0.18 -1.39 ± 0.18 0.43 0.089

UA-M 7.45 ± 1.12 7.46 ± 0.77 0.01 0.960 ALT-LCV -0.84 ± 0.25 -0.73 ± 0.28 0.42 0.113

ALT-M 11.6 ± 3.9 11.3 ± 4.9 -0.04 0.840 P-LCV -0.83 ± 0.11 -0.77 ± 0.14 0.39 0.100

Plat-M 19.4 ± 5.2 18.9 ± 7.0 -0.10 0.714 BUN-LCV -0.96 ± 0.11 -0.91 ± 0.11 0.39 0.062

WBC-M 6030 ± 1790 5860 ± 1770 -0.10 0.684 AST-LCV -0.91 ± 0.25 -0.82 ± 0.32 0.33 0.210

LDL-M 90.4 ± 25.7 87.3 ± 25.3 -0.12 0.602 Cl-LCV -1.80 ± 0.14 -1.76 ± 0.12 0.26 0.200

P-M 5.41 ± 0.84 5.18 ± 0.76 -0.25 0.204 TP-LCV -1.54 ± 0.11 -1.51 ± 0.13 0.25 0.266

HDL-M 49.0 ± 15.7 45.2 ± 14.8 -0.29 0.279 K-LCV -1.13 ± 0.13 -1.10 ± 0.16 0.22 0.352

Ca-M 8.83 ± 0.47 8.70 ± 0.50 -0.30 0.262 WBC-LCV -0.95 ± 0.12 -0.92 ± 0.15 0.22 0.361

TP-M 6.56 ± 0.39 6.41 ± 0.38 -0.36 0.101 Cr-LCV -1.30 ± 0.17 -1.27 ± 0.13 0.20 0.320

BUN-M 64.7 ± 13.1 60.2 ± 11.2 -0.37 0.107 HDL-LCV -1.20 ± 0.19 -1.17 ± 0.16 0.15 0.471

Cr-M 11.80 ± 2.56 10.60 ± 1.78 -0.46 0.014 Na-LCV -1.99 ± 0.10 -1.98 ± 0.14 0.04 0.863

Hb-M 11.10 ± 0.65 10.70 ± 1.01 -0.53 0.081 ALP-LCV -1.03 ± 0.22 -1.03 ± 0.28 0.00 0.995

Alb-M 3.66 ± 0.27 3.38 ± 0.31 -0.89 0.000 UA-LCV -1.13 ± 0.19 -1.14 ± 0.20 -0.03 0.925

Table 3.  Patient characteristics according to frailty status. The patient characteristics of the not-frail group 
(n = 86) and the frail group (n = 23) were compared using the Welch t-test or the Fisher exact test. The 
units of the variables are the same as those used in Table 1. PC1-4 = first to fourth principal components, 
SMD = standardized mean difference between the 2 groups. A positive SMD denotes a higher average value 
for the frail group. Boldface indicates statistical significance at P < 0.05. The values for the 19 Ms (left side) and 
those for the 19 LCVs (right side) are arranged in order of their respective SMD values. The values for PC5 or 
lower ranked PCs were omitted.
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is a sign of a system that is able to adjust appropriately, and that loss of variability is a sign of loss of appropriate 
complexity (ref. 23 and others by Lipsitz and Goldberger). On the other hand, the “critical transitions” paradigm 
suggests that high variability is a marker of an impending critical transition in system state, usually undesirable 
in a health context24,25. Perhaps as a bridge between these two, Fossion et al. suggest that physiological variables 
can be divided into regulated variables (those that are kept stable, i.e., targets of homeostasis) and physiolog-
ical responses (buffers that adjust in order to keep regulated variables stable)8. This is highly concordant with 
sub-cellular regulation as demonstrated by Nijhout et al.26. However, our results would seem to provide unmit-
igated support for the critical transition framework, with generalized increases in variability observed in frailty 
across all biomarkers, regardless of whether they might be thought to be regulated or responses. Why this is 
remains to be explored, though some publications have questioned whether observed changes in heart rate vari-
ability that motivated the “loss of complexity” framework are indeed reproducible27.

Glycemic variability (GV) has been assessed by repeated measurements of blood glucose, hemoglobin A1c, or 
GA levels with various sampling intervals. Despite the different definitions of GV, studies have generally reported 
associations between a high GV and adverse patient outcomes12,28,29. GV is an active topic of clinical medicine, 
and we were interested in the similarity between GV and other LCVs. In chronic HD treatment, the GA value has 
been recognized as a superior index of glycemic control30, and the dataset used in this study contained periodic 
GA values; therefore, both the GA-M and the GA-LCV were included in the analysis. In the diabetic patients, the 
GA-LCV was significantly correlated with 16 of the 19 LCVs and, like most of the other LCVs, exhibited neg-
ative correlations with Alb-M, Cr-M, and Na-M, all three of which are solid prognostic predictors (Fig. 2a and 
Supplementary Table S1).

Figure 3.  Prevalence of frailty and performance of predictive models. (a–c) Subjects were stratified according 
to age, HD duration, or PC1 score, and their frailty levels were displayed as mosaic plots. The areas of the tiles 
are proportional to the numbers of subjects. (d) Receiver operating characteristic curves of combined classifiers 
for frailty. Models #1 − #4 correspond to those in Table 4.
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While GA values were not available for non-diabetic subjects, we think that these correlations likely exist 
in the entire subjects for the following reasons: (a) GA-LCV was strongly correlated with GA-M in the diabetic 
patients (r = 0.54, Supplementary Table S1), (b) the diabetic patients had relatively high levels for the majority 
of LCVs (Table 1), and (c) the GA-M and GA-LCV levels of non-diabetic patients should be lower than those of 
diabetic patients. Accordingly, GA-LCV also seems to share common characteristics and significance with other 
LCVs. That is, the regulation of blood glucose is not independent from that of other blood components. Until 
now, a high GV has been discussed only in the context of diabetic complications. However, as a high GA-LCV 
level, along with a high GA-M level, is largely accompanied by wide fluctuations in other parameters, at least in 
HD patients, it could also be a manifestation of diverse (not necessarily diabetes-related) types of organ/tissue 
damages and accompanying physiological dysregulation. This interpretation is compatible with the presence of 
impaired glucose tolerance in patients with various chronic diseases31–33 as well as frail elderly34. Furthermore, 
it explains why dysglycemia in critically ill patients is associated with a high mortality and why strict glycemic 
control has a minimal effect on their prognosis35.

Most of the operational criteria for frailty are based on aggregate scores of survey items, which were selected 
empirically to capture physical, mental, and social well-being. Frailty assessments can thus be time-consuming 
and require the cooperation of the subjects, but they still entail some uncertainty because of the lack of an objec-
tive definition. Accordingly, biomarkers that complement frailty assessments have been sought and proposed36. 
Some of the LCVs examined in the present study are candidates for such biomarkers, since their values were often 
associated with aspects of frailty4. When comparing the levels of the 19 LCVs between frail and not-frail groups, 
the frail group actually showed elevated mean LCV values for almost all the parameters, though the difference was 
moderately significant for only 4 parameters (Table 3). In comparison, the PC1 score showed a more significant 
difference than each of the LCVs, indicating that the former is a reliable marker for estimating frailty. In line with 
this result, a multivariate logistic regression model containing only 4 predictors (PC1, age, HD duration, and 
diabetic status) reasonably discriminated the frailty status without the use of physical performance tests or ques-
tionnaires. While the PC1 score alone is a moderate predictor of frailty, the information it contains appears to be 
largely independent of age and other covariates in the subjects. Furthermore, the PC1 score was associated with 
many parameters in a manner that was consistent with their prognostic significance in HD patients (see the right 
side of Table 2). They include diabetes (or high GA-M), high GV, and low serum levels of Alb, Cr, K, Na, BUN, Hb, 
LDL-cholesterol, and so on. As deviated levels of these parameters are closely linked to frailty, sarcopenia, protein 
energy wasting, and mortality risk in HD patients36–41, our results indicate that the PC1 of LCVs is certainly a 
marker of adverse health conditions. It is currently unknown why blood levels of each of these parameters have a 
different (i.e., positive or negative) relationship with prognosis. This diversity probably reflects the uniqueness of 
each regulatory system, and we speculate that the common basis of various poor prognostic factors might be their 
close association with a high PC1 level, which denotes a diminished homeostatic capacity.

For HD patients, the PC1 score can be calculated from routine blood examinations and can also be used to 
objectively estimate their frailty status. We believe that the PCA-based frailty estimation is clinically applicable 
and will be a useful guide in selecting treatment options for patients with co-morbidities.

PCA has some favorable properties in exploring LCVs. Several biomarkers, including P, K, UA, and BUN, 
reportedly have a U-shaped relationship between their levels and mortality42–44. On the other hand, the extent 
of their variability appeared to have a monotonic effect on the mortality risk in previous studies4,45–47. Thus, we 

Predictor OR (95% CI) P value pR2 AIC AUC (95% CI) Accuracy Sensitivity Specificity

Univariate model

#1 PC1 (per SD) 2.20 (1.26–3.81) 0.005 0.08 107.8 0.649 (0.512–0.787) 0.817 0.174 0.988

Multivariate models

#2
Age 1.09 (1.02–1.16) 0.006

HD duration 1.09 (1.03–1.15) 0.002 0.18 96.5 0.795 (0.700–0.891) 0.835 0.348 0.965

#3

PC1 2.42 (1.30–4.53) 0.006

Age 1.10 (1.03–1.17) 0.004

HD duration 1.09 (1.03–1.15) 0.003 0.27 90.0 0.838 (0.748–0.928) 0.835 0.478 0.930

#4

PC1 2.31 (1.22–4.36) 0.010

Age 1.09 (1.02–1.17) 0.008

HD duration 1.11 (1.04–1.19) 0.001

DM 2.74 (0.78–9.60) 0.115 0.29 89.5 0.849 (0.764–0.934) 0.862 0.565 0.942

#5

PC1 2.34 (1.21–4.52) 0.011

Age 1.09 (1.02–1.17) 0.008

HD duration 1.11 (1.04–1.19) 0.001

Female 1.14 (0.32–4.05) 0.837

DM 2.76 (0.79–9.72) 0.113 0.29 91.4 0.854 (0.770–0.938) 0.862 0.565 0.942

Table 4.  Logistic regression models for frailty. OR = odds ratio, P value = P value of Wald’s test, 
pR2 = McFadden’s pseudo R2, AIC = Akaike’s Information Criterion, AUC = area under the curve of receiver 
operating characteristics. P value printed in boldface indicates P < 0.05. Models #1 − #4 correspond to those in 
Fig. 3d.
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can simply apply LCVs to PCA without considering their normal or desirable values. Unlike ordinary multiple 
regression modelling, PCA is not impeded by multicollinearity, which was moderately but widely present among 
the LCVs. Moreover, since PCA is a non-supervised analysis, the resultant PC scores represent information inher-
ent to the data and can be used as independent variables in different regression models for various definitions of 
frailty/sarcopenia as well as mortality. In PCA for variables with the same directional properties, as the number of 
variables increases, the result seems to be less affected by the number and selection of the variables48. Using this 
same dataset, we also examined a smaller PCA model based on 9 variables, namely LCVs of WBC, Hb, Plat, Alb, 
BUN, Cr, K, Ca, and P. Although the detailed results were omitted to avoid repetition, the PC1 score was strongly 
correlated with the score from the original PCA model based on 19 LCVs (r = 0.95) and provided nearly identical 
results in the logistic regression analyses for frailty. For example, the model corresponding to the original model 
#4 exhibited a P value of 0.008, an AUC of 0.861, and an accuracy of 0.844. This property helps to generate com-
mon PC1 scores from multiple datasets, each containing a different set of parameters.

The main limitation of this study is the relatively small sample size of patients who had completed the frailty 
assessment, which might have reduced the statistical power to detect differences between the frail and not-frail 
groups. We also excluded patients who were hospitalized at the time of the survey and those who could not 
respond to the questionnaire. Hence, the subjects who were included in the frailty analysis might have been less 
frail, compared with the overall subjects in the study. Although these situations may have weakened some of the 
results, we think that the presently reported conclusions are still very clear and reasonable.

Another limitation is the cross-sectional design. The regression model produced in this study demonstrated 
that HD patients with an older age, longer HD duration, and greater fluctuations in laboratory data were generally 
more frail. Considering the ageing/death-associated changes in Alb-LCV6, which is robustly correlated with PC1, 
this model seems to fit well with the expected time-dependent progression of frailty. However, a cross-sectional 
study addresses only the prevalence of frailty and can suffer from a selection bias and a survivorship bias. To 
investigate the relationship between PC1 and frailty more accurately, longitudinal data for both variables will 
need to be analyzed.

Finally, we should mention that this study was based solely on clinical data from HD patients. The reason for 
this is that the regular and frequent collection of multi-dimensional data is very difficult to achieve in other pop-
ulations. Consequently, whether similar results are observable in other disease populations is currently unknown.

In summary, we applied a PCA to the levels of variability of 19 blood-based parameters to explore the phys-
iological implications of variability. The 19 LCVs had similar characteristics and shared common information, 
which could be extracted as PC1. Compared with the original LCVs, the PC1 score was consistently correlated 
with frailty as well as various other negative health indicators in HD patients. We concluded that the PC1, which 
is a cumulative index of variability, is a measure of homeostatic dysregulation and can be used to estimate frailty.

Data availability
All processed data generated during this study are included in this published article and its Supplementary 
Information, but the raw data cannot be made openly available to protect the confidentiality of personal 
information and to comply with the terms of the patient’s consent. Requests related to the raw data should be 
addressed to the corresponding author.
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