
Ma et al. Algorithms Mol Biol (2021) 16:5
https://doi.org/10.1186/s13015-021-00184-7

RESEARCH

Exact transcript quantification over splice
graphs
Cong Ma2†, Hongyu Zheng1† and Carl Kingsford1*   

Abstract 

Background:  The probability of sequencing a set of RNA-seq reads can be directly modeled using the abundances
of splice junctions in splice graphs instead of the abundances of a list of transcripts. We call this model graph quanti-
fication, which was first proposed by Bernard et al. (Bioinformatics 30:2447–55, 2014). The model can be viewed as a
generalization of transcript expression quantification where every full path in the splice graph is a possible transcript.
However, the previous graph quantification model assumes the length of single-end reads or paired-end fragments is
fixed.

Results:  We provide an improvement of this model to handle variable-length reads or fragments and incorporate
bias correction. We prove that our model is equivalent to running a transcript quantifier with exactly the set of all
compatible transcripts. The key to our method is constructing an extension of the splice graph based on Aho-Corasick
automata. The proof of equivalence is based on a novel reparameterization of the read generation model of a state-
of-art transcript quantification method.

Conclusion:  We propose a new approach for graph quantification, which is useful for modeling scenarios where
reference transcriptome is incomplete or not available and can be further used in transcriptome assembly or alterna-
tive splicing analysis.

Keywords:  RNA-seq, Alternative splicing, Transcript quantification, Splice graph, Network flow

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Transcript quantification has been a key component
of RNA-seq analysis pipelines, and the most popular
approaches (such as RSEM [1], kallisto [2], and Salmon
[3]) estimate the abundance of individual transcripts by
inference over a generative model from transcripts to
observed reads. To generate a read in the model, a tran-
script is first sampled proportional to its relative abun-
dance multiplied by length, then a fragment is sampled as

a subsequence of the transcript according to bias correc-
tion models. The quantification algorithm thus takes the
reference transcriptome and the set of reads as input and
outputs a most probable set of relative abundances under
the model. We focus on a generalization of the problem,
called graph quantification, that allows for better han-
dling of uncertainty in the reference transcriptome.

The concept of graph quantification was first proposed
by Bernard et al. [4], which introduced a method called
FlipFlop. Instead of a set of linear transcripts, a splice
graph is given and every transcript compatible with the
splice graph (a path from transcript start to termina-
tion in the splice graph) is assumed to be able to express
reads. The goal is to infer the abundance of edges of the
splice graph (or its extensions) under flow balance con-
straints. Transcript abundances are obtained by flow

Open Access

Algorithms for
Molecular Biology

*Correspondence: carlk@cs.cmu.edu
†Cong Ma and Hongyu Zheng contributed equally to this work
1 Computational Biology Department, School of Computer Science,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
USA
Full list of author information is available at the end of the article
This work was done when Cong Ma was a Ph.D. student at Carnegie
Mellon University

http://orcid.org/0000-0002-0118-5516
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00184-7&domain=pdf

Page 2 of 15Ma et al. Algorithms Mol Biol (2021) 16:5

decomposition under this setup. FlipFlop infers network
flow on its extension of splice graphs, called fragment
graphs, and uses the model to further assemble tran-
scripts. However, the proposed fragment graph model
only retains its theoretical guarantee when the lengths
of single-end reads or paired-end fragments are fixed. In
this work, we propose an alternative approach to graph
quantification that correctly addresses the variable-
length reads and corrects for sequencing biases. Our
method is based on flow inference on a different exten-
sion of the splice graph.

Modeling RNA-seq reads directly by network flow on
splice graphs (or variants) is advantageous when the set
of transcript sequences is uncertain or incomplete. It is
unlikely that the set of reference transcripts is correct and
complete for all genes in all tissues, and therefore, many
transcriptome assembly methods have been developed for
reconstructing a set of expressed transcripts from RNA-
seq data [5–8], including FlipFlop [4]. Recent long-read
sequencing confirms the expression of unannotated tran-
scripts [9], but it also shows that the individual exons and
splice junctions are relatively accurate. With incomplete
reference transcripts but correct splice graphs, it is more
appropriate to model RNA-seq reads directly by splice
graph network flows compared to modeling using the
abundances of an incomplete set of transcripts.

The network flow of graph quantification may be incor-
porated into other transcriptome assembly methods in
addition to FlipFlop. StringTie [6] iteratively finds the
heaviest path of a flow network constructed from splice
graphs. A theoretical work by Shao et al. [10] studies the
minimum path decomposition of splice graphs when the
edge abundances satisfy flow balance constraints. Bet-
ter network flow estimation on splice graphs inspires
improvement of transcriptome assembly methods.

The splice graph flow itself is biologically meaningful as
it indicates the relative usage of splice junctions. Estimates
of these quantities can be used to study alternative splicing
patterns under the incomplete reference assumption. PSG
[11] pioneered this line of work but with a different abun-
dance representation. It models splice junction usage by
fixed-order Markov transition probabilities from one exon
(or fixed number of predecessor exons) to its successor
exon in the splice graph. It develops a statistical model to
detect the difference in transition probability between two
groups of samples. However, a fixed-order Markov chain
has limitations: a small order cannot capture long-range
phasing relationships, and a large order requires inferring
a number of transition probabilities that are likely to lack
sufficient read support. Markov models set the abundance
of a transcript to the product of transition probabilities
of its splice junctions, which implicitly places a strong
constraint on the resulting transcriptome. Many other

previous studies of splice junction usage depend on a list
of reference transcripts and compute the widely used met-
ric Percentage Spliced In (PSI) [12–14]. Under an incom-
plete reference assumption, the estimated network flow is
a potential candidate to compute PSI and study alternative
splicing usage.

A key challenge of graph quantification, especially for
paired-end reads, is to incorporate the co-existence rela-
tionship among exons in transcripts. When a read spans
multiple exons, the exons must co-exist in the transcript
that generates this read. Such a co-existence relationship is
called phasing, and the corresponding read is said to con-
tain phasing information. For these reads, the flows of the
spanned splice edges may be different from each other, and
in this case, the probability of the read cannot be uniquely
inferred from the original splice graph flow. FlipFlop solves
this problem by expanding the splice graph into a fragment
graph, assuming all reads are fixed-length. In a fragment
graph, every vertex represents a phasing path, two vertices
are connected if the phasing paths represented by the ver-
tices differ by one exon, and every transcript on the splice
graph maps to a path on the fragment graph. The mapped
path in the fragment graph contains every possible phas-
ing path from a read in the transcript, in ascending order
of genomic location. However, it is not possible to con-
struct this expansion of splice graphs when the reads or
fragments are of variable lengths. There is no longer a clear
total order over all phasing paths possible from a given
transcript, and it is unclear how to order the phasing paths
in a fragment graph. We detail the FlipFlop model in Addi-
tional file 1: Section 1.1.

To incorporate the phasing information from variable-
length reads or fragments, we develop a dynamic unroll-
ing technique over the splice graph with an Aho-Corasick
automaton. The resulting graph is called a prefix graph.
We prove that optimizing a network flow on the prefix
graph is equivalent to optimizing abundances of refer-
ence transcripts using the state-of-the-art transcript
expression quantification formulation when all full paths
of splice graphs are provided as reference transcripts,
assuming modeled biases of generating a fragment are
determined by the fragment sequence itself regardless of
which transcript it is from. In other words, quantification
on prefix graphs generates exact quantification for the
whole set of full splice graph paths. The proof is done by
reparameterizing the sequencing read generation model
from transcript abundances to edge abundances in the
prefix graph. We also propose a specialized EM algo-
rithm to efficiently infer a prefix graph flow that solves
the graph quantification problem.

As a case study, we apply our method to paired-end
RNA-seq data of bipolar disease samples and estimate
flows for neurogenesis-related genes, which are known

Page 3 of 15Ma et al. Algorithms Mol Biol (2021) 16:5 	

to have complex alternative splicing patterns and unan-
notated isoforms. We use this case study to demonstrate
the applicability of our method to handle variable-length
fragments. Additionally, the network flow leads to differ-
ent PSI compared to the one computed with reference
transcripts, suggesting reference completeness should be
considered in alternative splicing analysis.

Methods
We now provide a brief technical overview of the method
section.

In "Reparameterization" section, we describe the
detailed derivation and procedure to reparameterize the
generative model in transcript quantification. A key com-
ponent in this process is redefining transcript effective
length. The transcript effective length is introduced to
offset sampling biases towards shorter transcripts, and an
empirical formula penalizing transcript length with aver-
age fragment length has been widely used. We show that
this empirical formula has a more elegant explanation.
From this, we naturally introduce the path abundances,
the new set of variables that parameterize the genera-
tive model, and the path effective lengths, an analogue to
transcript effective length that plays a role in normaliza-
tion. To introduce bias correction, we introduce the con-
cept of affinity that encodes bias-corrected likelihood for
generating a fragment at a particular location, and the
rest follows naturally by redefining the effective lengths.

In "Prefix graphs" section, we describe the prefix graph,
whose purpose is to map the abundances of compatible
transcripts (transcripts that correspond to S − T paths
on the splice graph) onto network flows that preserve
path abundances. This is beneficial, as we avoid enumer-
ating compatible transcripts and only need to infer the
prefix graph flow. The key technical contribution in this
section is connecting the process of matching phasing
paths onto transcripts to the general problem of multi-
pattern matching. This leads to a rollout of the splice
graph according to an Aho-Corasick automaton, and the
correctness (that the flow preserves path abundances)
can be proved by running the Aho-Corasick algorithm on
the compatible transcripts.

In "Inference" section, we describe the inference pro-
cess for the prefix graph flows, as we need to expand
our model to handle multi-mapped reads, including
reads mapped to different genes. We employ a standard
EM algorithm for multi-mapped reads, similar to exist-
ing approaches. Inference across genes is enabled by
another reparameterization of the generative model,
which relativizes edge abundances to its incident gene.
We decouple the inference for each gene during the
M-step, which combined with a simple E-step, allows for

efficient inference and completes the specification of our
methods.

We formally define the following terms. A splice graph
is a directed acyclic graph representing alternative splic-
ing events in a gene. The graph has two special vertices:
S represents the start of transcripts and T represents the
termination of transcripts. Every other vertex represents
an exon or a partial exon. Edges in the splice graph rep-
resent splice junctions, potential adjacency between
the exons in transcripts, or connect two adjacent partial
exons. A path is a list of vertices such that every adjacent
pair is connected by an edge, and an S − T path is a path
that starts with S and ends with T. Each transcript cor-
responds to a unique S − T path in the splice graph, and
as discussed in the introduction we will assume every
S − T path is also a potential transcript. Graph quantifi-
cation generalizes transcript quantification as we can set
up a “fully rolled out” splice graph containing only chains
that each corresponding to a linear transcript. We use the
phrase quantified transcript set to denote a set of tran-
scripts with corresponding abundances.

Finally, we use the term phasing paths extensively. In
its original definition, phasing paths are derived from
reads that span more than two exons. As each read (or
read pair) originates from a single transcript, a transcript
containing the phasing path must be present in the tran-
scriptome. These paths provide valuable information in
determining longer-range exon arrangements. We gen-
eralize the notion and remove the constraint that phas-
ing paths must contain more than two exons. Specifically,
singleton paths (paths that consisting of a single vertex)
are also considered phasing paths. Under this definition,
all fragments (mapped from reads) can be mapped to a
phasing path.

Reparameterization
Our goal in this section is to establish an alternative set
of parameters for the graph quantification problem. In
the transcript quantification model, every transcript cor-
responds to a variable denoting its relative abundance.
We will identify a more compact set of parameters that
would represent the same model, as described below.

We start with the core model of transcript quantifica-
tion at the foundation of most modern methods [1–3,
15]. Assume the paired-end reads from an RNA-seq
experiment are error-free and uniquely aligned to a ref-
erence genome with possible gaps as fragments (these
assumptions will be relaxed later). We denote the set of
fragments (mapped from paired-end reads) as F, the set
of transcripts as T = {T1,T2, . . . ,Tn} with corresponding
lengths l1, l2, . . . , ln and abundances (copies of molecules)
c1, c2, . . . , cn . This can be used to derive other quantities.

Page 4 of 15Ma et al. Algorithms Mol Biol (2021) 16:5

For example, the transcripts per million (TPM) values are
calculated by normalizing {ci} then multiplying the values
by 106 . Under the core model, the probability of observ-
ing F is:

Here, P(Ti) denotes the probability of sampling a frag-
ment from transcript Ti and P(f | Ti) denotes the proba-
bility of sampling the fragment f given that it comes from
Ti . idx(f) is the set of transcript indices onto which f can
map. Let D(l) be the distribution of generated fragment
lengths. In the absence of bias correction, P(f | Ti) is
proportional to D(f) = D(l(f)) where l(f) denotes the
fragment length inferred from mapping f to Ti . Define the
effective length for Ti as l̂i =

∑li
j=1

∑li
k=j D(k − j + 1)

(which can be interpreted as the total “probability” for Ti
to generate a fragment), and P(f | Ti) = D(f)/l̂i . The
probability of generating a fragment from Ti is assumed
to be proportional to its abundance times its effective
length, meaning P(Ti) ∝ cil̂i . Our definition of effective
length is different from existing literature, where it is
usually defined as li − µ(Ti) , the actual length of tran-
script li minus the truncated mean of D, and the trun-
cated mean is defined as µ(Ti) = (

∑li
j=1

jD(j))/(
∑li

k=1
D(k)) .

However, these two definitions are actually essentially the
same most of the time.

Lemma 1  l̂i =
∑li

j=1

∑li
k=j D(k − j + 1) = (

∑li
t=1 D(t))

(li + 1− µ(Ti)).

Proof 

This means ignoring the difference between li and li + 1 ,
the two definitions differ by a multiplicative factor of
∑li

t=1 D(t) .� �

The factor
∑li

t=1 D(t) is the probability of sampling a
fragment no longer than li . It is very close to 1 as long
as the transcript is longer than most fragments, which is

P(F | T , c) =
∏

f ∈F

∑

i∈idx(f)

P(Ti)P(f | Ti).

l̂i =

li
�

t=1

D(t)(li + 1− t)

= (li + 1)

li
�

t=1

D(t)−

li
�

t=1

tD(t)

=





li
�

t=1

D(t)





�

li + 1−

�li
t=1 tD(t)

�li
t=1 D(t)

�

=





li
�

t=1

D(t)



(li + 1− µ(Ti))

usually true in practice. We refer to previous papers [1–3,
15, 16] for more detailed explanation of the model. This
leads to:

We now propose an alternative view of the probabilis-
tic model with paths on splice graphs to derive a com-
pact parameter set for the quantification problem. The
splice graph is constructed so that each transcript can be
uniquely mapped to an S − T path p(Ti) on the graph,
and we assume the read library allows each fragment f
to be uniquely mapped to a (non S − T  ) path p(f) on the
graph (this assumption will also be relaxed later). With
this setup, i ∈ idx(f) if and only if p(f) is a subpath of
p(Ti) (in other words, p(f) ⊂ p(Ti)).

We now define cp =
∑

i:Ti∈T ,p⊂p(Ti)
ci to be the total

abundance of transcripts including path p, called path
abundance, and l̂p =

∑li
j=1

∑li
k=j 1(p(Ti[j, k]) = p)D(k − j + 1)

called path effective length, where Ti[j, k] is the frag-
ment generated from transcript i from base j to base k
and 1(·) is the indicator function. Intuitively, the path
effective length is the total probability of sampling a
fragment that maps exactly to the given path. This defi-
nition is independent of the chosen transcript Ti and any
Ti yields the same result as long as Ti includes p. Next, let
P be the set of paths from the splice graph satisfying
l̂p > 0.

Lemma 2  The normalization term can be reparameter-
ized:

∑

Ti∈T
cil̂i =

∑

p∈P cpl̂p.

Proof  The idea is to break down the expression of l̂i into
a sum over fragments, and regroup the fragments by the
path to which they are mapped:

The third equation holds because the sum of D(k − j + 1)
across any transcripts containing path p is the same, as
a shift in the reference does not change D(k − j + 1)
assuming there are no sequencing biases.� �

P(F | T , c) =
�

f ∈F





�

i∈idx(f)

ci



D(f)/(
�

Ti∈T

cil̂i).

�

Ti∈T

l̂ici =
�

Ti∈T

li
�

j=1

li
�

k=j

D(k − j + 1)ci

=
�

p∈P

�

i,j,k:p(Ti[j,k])=p

D(k − j + 1)ci

=
�

p∈P





�

j,k:∃i,p(Ti[j,k])=p

D(k − j + 1)









�

i:p⊂p(Ti)

ci





=
�

p∈P

l̂pcp.

Page 5 of 15Ma et al. Algorithms Mol Biol (2021) 16:5 	

The likelihood objective can now be rewritten as
follows:

This reparameterizes the model with {cp} , the path abun-
dance. To incorporate bias correction into our model, we
define the affinity Ap(j, k) to be the unnormalized likeli-
hood of generating a read pair mapped to path p from
position j to k. This is the analog of P(f | ti) in the tran-
script quantification model. In the non-bias-corrected
model, we simply have Ap(j, k) = D(k − j + 1) . Certain
motif-based corrections and GC-content-based correc-
tions, which are calculated from the genomic sequence
in between the paired-end alignment, can then be inte-
grated into our analysis naturally. To adapt the likelihood
model to bias correction, we define transcript and path
effective length as follows:

l̂p is still the same for any Ti that includes p, so it does not
matter which transcript is used to compute it. p(Ti[j, k])
denotes the path that Ti[j, k] (transcript Ti from location j
to k) maps to, and we assume the coordinate when calcu-
lating Ap coincides with that of Ti . The definition of path
abundance remains unchanged, and all of our proposed
methods will work in the same way. Transcript-specific
bias correction requires an approximation to the affin-
ity term, and we discuss this topic in detail later in this
section.

We have now completed the necessary steps to claim
the following theorem, which formally establishes the
correctness of the reparameterization procedure with
bias correction.

Theorem 1  Assuming each read is uniquely mapped
to one phasing path, the following two optimization
instances are equivalent:

•	 Optimizing {cp} , which are the path abun-
dances under the reparameterized objective

(1)

P(F | T , c) =
�

f ∈F





�

j:p(f)⊂p(Tj)

cj



D(f)/





�

p∈P

cpl̂p





∝
�

f ∈F

cp(f)/





�

p∈P

cpl̂p



.

l̂i =

li
∑

j=1

li
∑

k=j

Ap(Ti[j,k])(j, k)

l̂p =

li
∑

j=1

li
∑

k=j

Ap(j, k)1(p(Ti[j, k]) = p), ∀p ⊂ p(Ti)

∏

f ∈F cp(f)/(
∑

p∈P cpl̂p), conditioned on {cp} corre-
sponding to a valid quantified set of transcripts;

•	 Optimizing {ci} which are the transcript abundances under
the original objective

∏

f ∈F (
∑

i∈idx(f) ci)/(
∑

Ti∈T
cil̂i).

Here l̂i and l̂p are transcript effective length and path effec-
tive length defined with the same set of affinities Ap(j, k).

Proof  This naturally follows in two steps. First, we can
prove Lemma 2 with bias correction using the identical
technique of breaking l̂i down to sum over fragments,
then regroup by path mappings. This means the normali-
zation term can be reparameterized. We finish by repa-
rameterizing the whole likelihood in the same way as in
the non-bias-corrected case (see Eq. (1)), again with the
identical technique.� �

With reads multimapped to different phasing paths
(within or across genes), let M(f) denote the set of phas-
ing paths f can map onto, and for p ∈ M(f) let A(f | p)
denote the affinity of f mapping to p. In this case, we can
use the same idea of grouping transcripts by the phasing
path that f maps onto:

The reparameterization theorem holds by replacing cp(f)
with

∑

p∈M(f) cpA(f | p) in the objective function.

Prefix graphs
Theoretical foundation of prefix graphs
In Theorem 1, we showed that to perform graph quanti-
fication, it is sufficient to optimize the path abundances
under a reparameterized objective, requiring that the
path abundances correspond to a quantified set of tran-
scripts. This means that to apply the theorem for opti-
mization of path abundance, we need a set of constraints
that ensures this condition. One solution is to introduce a
variable for every compatible transcript and then use the
definition of cp as the constraints. However, this will lead
to an impractically large model, as the number of S − T
paths in the splice graph can be exponentially larger than
the size of the prefix graph. In this section, we derive a
set of linear constraints governing {cp} that achieves this
purpose.

To motivate the next step, assume every inferred frag-
ment either resides within an exon or contains one

P(f) =
∑

i∈idx(f)

P(Ti)P(f | Ti)

=
∑

p∈M(f)

∑

i:p⊂Ti

ciA(f | p)

=
∑

p∈M(f)

cpA(f | p).

Page 6 of 15Ma et al. Algorithms Mol Biol (2021) 16:5

junction. In this case, the phasing paths are nodes or
edges in the splice graph. More specifically, when the
fragment resides within an exon, the phasing path con-
tains that exon only, and when the fragment contains one
junction the phasing path contains the two constituent
exons that form an edge in the splice graph. If the quan-
tified transcript set is mapped onto the splice graph, we
obtain a network flow. The path abundance for a phasing
path equals either the flow through a vertex or an edge.
By the flow decomposition theorem (that every network
flow over a DAG can be decomposed into finitely many
paths), given a network flow on the splice graph, we can
decompose it into S − T paths with weights. These paths
naturally map back to a quantified transcript set. As the
two-way mapping (between quantified transcript sets
and splice graph flows) preserves path abundances, we
conclude optimization over a splice graph flow would
achieve the goal of graph quantification. Specifically, it is
easy to restructure the constraints to represent a splice
graph flow, and optimizing the resulting model is equiva-
lent to the transcript quantification model with all com-
patible transcripts included.

This solution no longer works when some phasing path
p contains three or more exons. This is because one can-
not determine the total flow that goes through two con-
secutive edges (corresponding to a phasing path with two
junctions) just from the flow graph, and different decom-
positions of the flow can lead to different answers. Infor-
mally, this can be solved by constructing higher-order
splice graphs (as done by Legault et al. [11] for example),
or fixed-order Markov models, but the size of the result-
ing graph grows exponentially fast and some phasing
paths can be very long. Instead, we choose to “unroll”
the graph just as needed, roughly corresponding to a
variable-order Markov model, similar to FlipFlop [4] but
applicable to variable-length paired-end reads.

To motivate our proposed unrolling method, consider
the properties it needs to satisfy. Roughly speaking, the
unrolled graph needs to exactly identify every path in P
to accurately calculate the path abundances. That is, for
every path p in P , there is a set of vertices or edges in the
unrolled graph, such that a transcript includes p if and
only if its corresponding S − T path intersects with this
set. We can view this “identify phasing paths” problem as
an instance of multiple pattern matching. That is, given
P , for a given transcript Ti , we want to determine the set
of paths in P that are subpaths of Ti , reading one exon of
Ti at a time. Similar to our previous example, if P con-
tains only single exons, we only need to recognize [x] (the
singleton path including only x) when we read exon x,
and we will recognize a general phasing path p when the
transcript we have seen admits p as a suffix. To speed up
the process, we can memorize a suffix of the transcript

we have seen that is a prefix of some path in p, so we do
not need to check all preceding exons again when trying
to recognize p. This is not a new idea and in fact is the
Aho-Corasick algorithm [17], a classical algorithm for
multiple pattern matching where the set of nodes in the
splice graph (set of exons) is the alphabet, P is the set of
patterns and Ti is the text, and the idea is formalized as
a finite state automaton (FSA) that maintains the longest
suffix of current text that could extend and match a pat-
tern in the future. This can be regarded as an unrolling of
the splice graph, which has the power of exactly matching
arbitrarily phasing paths, and a flow on the automaton
is the analog of a splice graph flow that also is unrolled
enough to recover path abundances, as we will prove in
this section.

We formalize the idea. Consider the Aho-Corasick FSA
constructed from P , where we further modify the finite
state automaton as follows. Transitions between states of
the FSA, called dictionary suffix links, indicate the next
state of the FSA given the current state and the upcom-
ing character. We do not need the links for all characters
(exons), as we know Ti ∈ T is an S − T path on the splice
graph. If x is the last seen character, the next character y
must be a successor of x in the splice graph, and we only
generate the state transitions for this set of movements.
With an FSA, we now construct a directed graph from its
states and transitions as described above:

Definition 1  (Prefix Graph) Given splice graph GS and
set of splice graph paths P (assuming every single-ver-
tex path is in P ), we construct the corresponding prefix
graph G = (V ,E) as follows:

The vertices V are the splice graph paths p such that p is
a prefix of some path in P . For p ∈ V  , let x be the last
exon in p. For every y that is a successor of x in the splice
graph, let p′ be the longest path in V that is a suffix of py
(py is the path generated by appending y to p). We then
add an edge from p to p′ to E.

The source and sink of G are the vertices corresponding
to splice graph paths [S] and [T], where [x] denotes a sin-
gle-vertex path. The set AS(p) is the set of vertices p′ such
that p is a suffix of p′.

Figure 1 shows an example construction of prefix
graph. Intuitively, the states of the automaton are the ver-
tices of the graph and are labeled with the suffix in con-
sideration at that state. The edges of the graph are the
dictionary suffix links of the FSA, now connecting verti-
ces. For p ∈ P , AS(p) denotes the set of states in FSA that
recognizes p. All transcripts start with S, end with T, and
there is no path in P containing either of them as they are

Page 7 of 15Ma et al. Algorithms Mol Biol (2021) 16:5 	

not real exons, so there exist two vertices labeled [S] and
[T]. We call them the source and sink of the prefix graph,
respectively, and we will see they indeed serve a similar
purpose.

Lemma 3  There is a one-to-one correspondence between
S − T paths in the splice graph and [S] − [T] paths in the
prefix graph.

Proof  Every transcript can be mapped to an [S] − [T]
path on the prefix graph by feeding the transcript to
the finite state automaton and recording the set of vis-
ited states, excluding the initial state where no string is
matched. The first state after the initial state is always [S]
as the first vertex in an S − T path is S, and the last state
is always [T] because there are no other vertexes in the
prefix graph that would contain T. Conversely, a [S] − [T]
path on the prefix graph can also be mapped back to a
transcript, as it has to follow dictionary suffix links (tran-
sitions between FSA states), which by our construction
can be mapped back to edges in the splice graph.� �

This implies that the prefix graph is also a DAG: If there
is a cycle in the prefix graph, it implies an exon appears
twice in a transcript, which violates our assumption that
the splice graph is a DAG.

The resulting prefix graph flow serves as a bridge
between the path abundance {cp} and the quantified tran-
script set {ci}:

Theorem 2  Every quantified transcript set can be
mapped to and from a prefix graph flow. The path abun-
dance is preserved during the mapping and can be cal-
culated exactly from prefix graph flow: cp =

∑

s∈AS(p) fs ,
where fs is the flow through vertex s.

Proof  Using the path mapping between the splice graph
and the prefix graph, we can map a quantified transcript
set onto the prefix graph as a prefix graph flow and
reconstruct a quantified transcript set by decomposing
the flow and mapping each [S] − [T] path back to the
splice graph as a transcript.

To prove the second part, let {cp} be the path abundance
calculated from the definition given a quantified tran-
script set, and {c′p} be the path abundance calculated from
the prefix graph flow. We will show {cp} = {c′p} for any
finite decomposition of the prefix graph flow.

For any transcript Ti and any path p ∈ P , since no exon
appears twice for a transcript, if Ti contains p, it will
be recognized by the FSA exactly once. This means the
[S] − [T] path to which Ti maps intersects with AS(p) by
exactly one vertex in this scenario, and it contributes the
same abundance to c′p and cp . If Ti does not contain p, by
similar reasoning, it contributes to neither c′p nor cp . This
holds for any transcript and any path, so the two defini-
tions of path abundance coincide and are preserved in
mapping from quantified transcript set to prefix graph
flow. Since the prefix graph flow is preserved in flow
decomposition, the path abundance is preserved as a
function of prefix graph flow.� �

This connection allows us to directly optimize over
{cp} by using the prefix graph flow as variables (the path
abundances cp is now represented as seen in Theorem 2),
and use flow balance and non-negativity as constraints,
as we describe in the next section. The corresponding
quantified transcript set is guaranteed to exist by a flow
decomposition followed by the mapping process.

Fig. 1  An example construction of the Prefix Graph. The source and sink of the prefix graph are [S] and [T], respectively. The set of phasing paths
P is shown in blue in the left panel, and we do not include the singleton paths for simplicity. We draw the trie and the fail edges for the a–c
automaton as it reduces cluttering (dictionary suffix link can be derived from both edge sets). The colored nodes in prefix graph are the vertices
(states) in AS(35) and AS(24)

Page 8 of 15Ma et al. Algorithms Mol Biol (2021) 16:5

Compact prefix graph
We next describe an improvement to the prefix graph,
which we call the compact prefix graph. In the prefix
graph, FSA states are vertices of the resulting graph, and
as AS(p) is a set of vertices, we can say that we recognize
phasing paths at the vertices of the prefix graph. The idea
for compact prefix graph is to recognize phasing paths at
the edges instead. We will still start with the Aho-Cora-
sick FSA, but we will be building the graph in a way that
the states of the FSA correspond to edges of the resulting
graph, as described below:

Definition 2  (Compact Prefix Graph) Given splice
graph GS and set of splice graph paths P , we construct
the corresponding compact prefix graph G′ as follows.
The vertex set of the compact prefix graph is the union of

•	 All single-vertex paths on the splice graph;
•	 Any splice graph path p that is the prefix of some

path p′ in P , while being strictly shorter than p′.

For p in the compact prefix graph, let x be its last exon
and y be a successor of x in the splice graph. We create an
edge that has label py (again, appending y to p), originates
from p, and leads to the node that is the longest suffix of
py in the compact prefix graph.
The source and sink of G are the vertices corresponding
to splice graph paths [S] and [T]. The set AS(p) is the set
of edges p′ such that the edge label on p′ is a suffix of p.

The set AS(p) bears the same meaning as in the origi-
nal prefix graph, as the states of the Aho-Corasick FSA
are now (roughly) the edges of the compact prefix graph.
With this intuition, we can prove the same property as
stated in Lemma 3 for compact prefix graph.

Lemma 4  There is a one-to-one correspondence between
S − T paths in the splice graph and [S] − [T] paths in the
compact prefix graph.

Proof  Every transcript can be mapped to an [S] − [T]
path on the compact prefix graph by walking on the com-
pact prefix graph starting from [S]. Upon reading a new
exon y, we move to the new vertex on the compact pre-
fix graph by following the edge that has a label ending
with y. Our construction ensures this edge exists and is
unique. Similar to our previous reasoning, the finishing
state is always [T] because there are no other vertexes in
the compact prefix graph whose label contains T. Con-
versely, a [S] − [T] path on the prefix graph can also be
mapped back to a transcript, by mapping an edge with

label py on compact prefix graph to an edge (x, y) on the
splice graph, where x is the last exon of p.� �

With this, we can prove Theorem 3, an analogue of
Theorem 2 for compact prefix graphs.

Theorem 3  Every quantified transcript set can be
mapped to and from a compact prefix graph flow. The
path abundance is preserved during the mapping and
can be calculated exactly from compact prefix graph flow:
cp =

∑

e∈AS(p) fe , where fe is the flow through edge e.

The proof is mostly identical to that of Theorem 2
with a minor technical difference. When a phasing path
is mapped to a prefix graph edge, the label on that edge
might not equal the current FSA state, which is guaran-
teed in the non-compact prefix graph case. Instead, the
current FSA state is a suffix of the edge label. The com-
pact prefix graph, by the virtue of its construction, is
smaller compared to the original prefix graph with the
same power and is preferred in practice. It also has the
desirable property of being a “minimal sufficient” graph
in many cases, as we will show below.

Theorem 4  (Compact Prefix Graph Flow can be Mini-
mally Sufficient) With fixed splice graph G and phasing
path set P , if they satisfy the conditions that (1) for each
p ∈ P any prefix of p is also in P and (2) each vertex in
G has maximum outgoing degree of 2, there is a one-to-
one mapping between the feasible set of path abundance
{cp | p ∈ P} and the feasible set of compact prefix graph
flows {fe}.

Proof  The mapping from a compact prefix graph
flow to {cp} is direct and unique. For the other direc-
tion, assuming the theorem is false, there exist two sets
of compact prefix graph flow {f ′e } and {f ′′e } with identical
path abundances {cp} . Since each cp is the sum of several
flow values, the difference between the sets {�fe} (where
�fe = f ′e − f ′′e for all edges e in the compact prefix graph)
satisfies the following:

We now prove that �fe = 0 for all e, using induction on
the size of |t(e)| (the number of exons in the edge label
of e), which we denote k. The induction hypothesis for k
is that �fe = 0 for all edges e with label no shorter than
k. For the base case where k > maxe |t(e)| , there are no
edges with label length k or longer, so the hypothesis
holds trivially. Here, we use t(e) to denote the label on an
edge in the compact prefix graph, and t(v) to denote the

∑

e∈AS(p)

�fe = 0, ∀p ∈ P .

Page 9 of 15Ma et al. Algorithms Mol Biol (2021) 16:5 	

label on a vertex (the splice graph path it represents) in
the compact prefix graph.

Assume this holds for k + 1 . For each edge e′ with label
length k, let p′ = t(e′) , and we write p′ = px . By the con-
struction of the compact prefix graph, p is a strict prefix
of some phasing paths in P . We now discuss two cases.

•	 If p′ is also in P , there is an equation of form
∑

e∈AS(p′) �fe = 0 . The set AS(p′) contains the edge
e′ and several other edges with edge labels longer
than p′ (as p′ is a suffix of these labels). By the induc-
tion hypothesis, �fe for all edges in AS(p′) other than
e′ equals 0, which means �fe′ is also 0.

•	 If p′ /∈ P , we first claim that the last exon of p (sec-
ond-to-last exon of p′ ) has two outgoing edges. Oth-
erwise, because there are no other phasing paths p′′
with p as a strict prefix, p cannot be a vertex of the
compact prefix graph; contradiction. We now let y be
the destination of the other outgoing edge of the last
exon of p. By similar reasoning, py ∈ P , otherwise p
cannot be a vertex of the compact prefix graph. With
a slight abuse of notion, we let cpx denote the total
flow of edges whose label admits px as a suffix. We
claim cpx = cp − cpy . Intuitively, the total abundance
of transcripts containing px equals the abundance of
transcripts containing p, minus those containing py,
because all transcripts are S − T paths in the splice
graph and px is the only other way p can extend. For-
mally, for every edge (u, v) counting towards cpx , by
the construction of compact prefix graph, t(u) has p
as a suffix, meaning u has exactly one other outgoing
edge that counts towards cpy . This means cpx + cpy
equals the total outgoing flow of all vertexes u whose
label ends with p. On the other hand, for every edge
e′′ = (u′, v′) counting towards cp , t(e′′) takes p as a
suffix. Since p ∈ P and v′ is the longest suffix of t(e′′)
in P , we conclude t(v′) also has p as a suffix. Those
edges such that p is a suffix of t(v′) also count towards
cp by definition. We conclude that cp equals the total
incoming flow of all vertexes v whose label ends with
p. By the flow balance condition, cp = cpx + cpy .
Finally, since cp is the same between two sets of {fe} ,
and cpy is the same between them too, cpx must also
be the same. We can then use the argument from the
first case as if px ∈ P , and conclude �fe′ = 0.

In both cases we conclude �fe′ = 0 for all edges e′ satisfy-
ing |t(e′)| = k , which completes the induction proof. �

In other words, the unrolling of the splice graph by con-
structing a compact prefix graph is, in a certain sense, the
optimal unrolling. This theorem is also very conservative,

and both of its requirements are not necessary for the
uniqueness condition to hold.

Practical considerations of prefix graphs
We discuss three changes to the prefix graph framework
when we implement it for the analysis of real RNA-seq
data. These changes are necessary to enable practical
analysis under our proposed framework, with minimal
changes to the theoretical foundation.

Approximating Transcript-Specific Bias Correction.
Positional bias is a common factor taken into considera-
tion by modern transcript quantification methods. How-
ever, they cannot be integrated into our proposed model
of graph quantification directly, because the positional
bias term would change depending on every exon in the
transcript, not just those in a phasing path. Nonetheless,
since the splice graph is known in full, approximating
positional bias is possible.

Let Bi(j, k) denote the affinity value calculated
from a full bias correction model for the fragment
generated from base j to k on transcript Ti , and r̂i
be the reference abundance of transcript Ti . We let
Ap(j, k) = (

∑

i:p⊂p(Ti)
r̂iBi(j

′, k ′))/(
∑

i:p⊂p(Ti)
r̂i) , where j′

and k ′ are the coordinates of the path sequence in the ref-
erence coordinates of Ti . In other words, for each phasing
path, we calculate the empirical positional bias, collected
over reference transcriptome and weighted with refer-
ence abundances.

In our experiments, for simplicity we use Salmon out-
puts as reference abundance and calculate positional
bias accordingly, using the same positional bias model
as Salmon. It is also possible to model the estimation of
positional bias terms as an iterative process where we
alternatively estimate the path abundances cp and the bias
correction terms Ap(j, k).

Calculation of Path Effective Length: Switching Affini-
ties. We have derived a closed and explicit form for l̂p , the
path effective length, which can be calculated given the
affinity values Ap(j, k) with bias correction. In practice,
the value of Ap(j, k) comes from complicated models of
biases. We can speed up the calculation of l̂p by reusing
calculated affinities, however, to obtain the correct value
of path effective length for each phasing path, we need to
calculate the affinities for every possible fragment.

For paired-end sequencing, while the reads are of fixed
length and short, the induced fragment length can vary in
a wide range. If the longest fragments are of length M and
the reference sequence has length N, the number of affin-
ity values required may reach O(MN). While this bound
is not reached in practice, the process of exact calculation
of path effective length is slow.

While we decided to calculate these exactly for our
experiments, there are possible approximations to

Page 10 of 15Ma et al. Algorithms Mol Biol (2021) 16:5

avoid this time-consuming step. Existing methods
avoid this by essentially using two sets of affinity val-
ues, in calculating transcript effective length l̂i and
calculating read likelihood P(f | Ti) . To see why this
is the case, Lemma 1 indicates that existing methods
to calculate the effective length of a transcript are
approximately summing up affinity values from frag-
ments generated on this transcript before bias correc-
tion. In other words, the non-bias-corrected affinity
values are used in calculating l̂i . However, when calcu-
lating read likelihood, the bias-corrected affinity val-
ues are used instead. It is an interesting open question
that whether “correcting” this discrepancy in existing
methods for transcript quantification, by calculating
transcript effective length in the “correct way” of sum-
ming up bias-corrected affinity values, would lead to
better results.

For our proposed graph quantification methods,
the aforementioned “two affinities” approximation is
a justifiable route, as the path effective length l̂p also
has a closed-form solution without bias correction.
Recall this means Ap(j, k) = D(k − j + 1) , and each l̂p
is weighted sum of some D(i). This can be evaluated
in constant time with proper preprocessing. Alterna-
tively, for multiple RNA-seq experiments sharing the
same set of splice graphs, we propose to use the idea
of “two affinities” in a more refined way, with two
bias-corrected models. We can first derive a com-
mon ground bias correction model shared across all
experiments, then calculate the exact path effective
length using the shared bias model. This is costly but
only needs to be done once. The fragment likelihood
P(f | Ti) would then be calculated using the bias model
private to each experiment. We believe the integra-
tion of proper bias correction during calculation of
path effective length would improve the practicality of
graph quantification models.

Trimming P,the set of phasing paths. For simplicity,
we for now consider graph quantification without bias
correction, meaning Ap(j, k) = D(k − j + 1) . Recall the
original definition of P : It is the set of all phasing paths
that have a non-zero path effective length. In practice, the
fragment length distribution D(·) has a long tail. Using
M to denote the longest fragment that can be generated
from D, P would include the set of phasing paths that can
generate a fragment no longer than M. In practice, such
a long tail results in a huge P . This is problematic, losing
the benefits of using graph quantification in theory and
slowing the inference in practice. We trim P by remov-
ing phasing paths with small effective lengths and no
mapped fragments. The removed paths are usually those

extra-long phasing paths that only can generate a frag-
ment thanks to the long tail of the fragment length dis-
tribution. As longer phasing paths involve more complex
splicing patterns, the numbers of such paths are large,
and the trimming is highly effective in practice.

To further justify our choice more rigorously, we
recall the likelihood function under our reparameter-
ized model: P(F | T , c) ∝

∏

f ∈F cp(f)/(
∑

p∈P cpl̂p) . Now,
we investigate the effect of phasing paths p′ without
mapped fragments on the likelihood. These phas-
ing paths do not contribute to the fragment likeli-
hood term because there are no fragments f ∈ F such
that p(f) = p′ . However, their abundance contributes
towards the normalization term. This means if we
ignore the phasing paths without mapped fragments,
we underestimate the normalization term during opti-
mization, and in turn, overestimate transcript and path
abundances. We argue the magnitude of overestima-
tion is small. As we are only removing phasing paths
with small l̂p , the only way this changes our results
significantly is that some of these paths have large
estimated cp . If there is a removed path with a large
cp when optimized under this model, it means in the
inferred quantified transcript set there is are many
fragments mapped to path p, even though exactly zero
fragments are mapped to p in the sequencing library.
This mostly happens if there is a dominant transcript
with high abundance, and p is part of the transcript.
For such things to happen, the transcript must have
many fragments mappable, and the fact that no single
fragment mapped to path p indicates l̂p is small, or the
modeling might be faulty.

Inference
While the restructuring process described in the pre-
vious section reduces the size of the optimization
problem, we still need to solve it efficiently. We start
with the base case, that is, the genome contains a sin-
gle gene, and every read pair maps to exactly one path.
Recall that P is the set of phasing paths we consider,
p(f) is the path fragment f maps to. For a phasing path
p, cp is the path abundance, l̂p is the path effective
length. For the prefix graph, we let fe denote the flow
through an edge, fv denote the flow through a vertex,
and AS(p) is the set of vertices (as FSA states) that
recognize p. We also use In(v) to denote the incoming
edges of vertex v, and Out(v) similarly for the outgo-
ing edges. The full instance in this case, with the prefix
graph proposed the previous section, is:

Page 11 of 15Ma et al. Algorithms Mol Biol (2021) 16:5 	

This is slightly different from what we described in "Repa-
rameterization" section. First, we maximize the logarithm
of the likelihood objective. Second, we explicitly fix the
normalization constant to be 1, instead of placing it on the
divisor of the fragment likelihood. This does not change
the objective, and the only difference is that in the original
form {cp} can be arbitrarily scaled, while here the scaling is
fixed. The variables and the constraints come from the pre-
fix graph flow, and cp is represented as in Theorems 2 and
3. This is a convex problem, as the target function is convex
with respect to {cp} , and the constraints are all linear. We

can solve the problem with general-purpose convex solvers.
With the presence of multi-mapped reads (to multi-

ple genes and/or multiple paths within one gene), we can
employ a standard EM approach. Recall M(f) is the set of
phasing paths onto which f can map, and for p ∈ M(f) let
A(f | p) denote the affinity of f mapping to p, as described
in Section 2.1. We also let z denote the hidden allocation
vector, where zf ,p denotes the probability that the fragment
f is mapped onto splice graph path p. We can alternatively
optimize for {zf ,p} and {cp} until convergence as follows:

z(t) and c(t) denote the variables at iteration t. We hide the
constraint from prefix graphs for clarity. The optimiza-
tion for z(t)f ,p can be run in parallel, so we focus on the
M-step that optimizes c(t+1) = {c

(t+1)
p } , hiding the super-

script whenever it is clear from context. When we opti-
mize over the whole genome, the instance becomes
impractically huge. This is because we need to infer the
flow for every prefix graph (one for each gene) across the
whole genome, and we need to satisfy flow balance for
each graph and normalization for all graphs together.

We let G denote the set of genes. Denote the gene abun-
dance cg =

∑

p∈Pg
cpl̂p , where Pg is the set of phasing

paths in gene g. We then define relative abundance
c∗p = cp/cg for every phasing path p. Plugging cp = cg c

∗
p

into the expression for M-step, we have the following
transformed objective:

Here, sg =
∑

f ∈F

∑

p∈Pg
z
(t)
f ,p can be interpreted as the

estimated read count of gene g. Again for clarity, we hide
the prefix graph constraints for c∗p , which retain their
original form because all prefix graph constraints are aff-
ine. Now, we can decouple optimization of c∗p and cg , as
the objective function is split into two parts, and each
constraint only involves one of them. The optimization
for c∗p can be done for each gene independently, and it is
exactly the single-gene optimization as we described
above except we weight log cp(f) with z(t)f ,p . The optimiza-
tion for cg has the form max

∑

g∈G sg log cg constrained
by

∑

g∈G cg = 1 , from which we derive that cg ∝ sg . Since

z
(t)
f ,p = c(t)p A(f | p)/





�

p′∈M(f)

c
(t)
p′ A(f | p′)





c(t+1) = arg max
c

�

p∈P





�

f ∈F

z
(t)
f ,p



 log cp, s.t.
�

p∈P

cpl̂p = 1

max
�

p∈P





�

f ∈F

z
(t)
f ,p



(log c∗p + log cg)

=
�

g∈G

�

p∈Pg





�

f ∈F

z
(t)
f ,p



 log c∗p +
�

g∈G





�

f ∈F

�

p∈Pg

z
(t)
f ,p



 log cg

=
�

g∈G

�

p∈Pg





�

f ∈F

z
(t)
f ,p



 log c∗p +
�

g∈G

sg log cg

s.t.
�

p∈P

cg c
∗
pl̂p =

�

g∈G

cg = 1

�

p∈Pg

c∗pl̂p = 1, ∀g ∈ G

Page 12 of 15Ma et al. Algorithms Mol Biol (2021) 16:5

∑

g∈G sg =
∑

p∈P

∑

f ∈F z
(t)
f ,p =

∑

f ∈F 1 = |F | , we have the
following localized EM algorithm:

The M-step is run independently for each gene and can
be parallelized. We do not list the prefix graph constraint
over cp for clarity, and cg is implicitly derived as the right-
hand side of the normalization constraint.

Experiments
Based on the expression quantification method Salmon
[3] and its effective lengths, we implement our method
and call it Graph Salmon. We apply Graph Salmon on
three bipolar disease (BD) RNA-seq samples and three
control samples [18] to estimate the expression network
flow on neurogenesis-related genes (GO:0022008), which
are known to have complex alternative splicing patterns
and novel isoforms. We use this as a case study to show
that Graph Salmon is applicable with variable fragment
lengths and that the relative usage of splice junctions
under the incomplete reference assumption are different
from those under complete reference assumption.

Implementation
The splice graphs are constructed using the reference
exons and splice junctions of Gencode [19] version 26.
Since Salmon’s effective lengths are needed for path
effective lengths, we first run Salmon on the samples.
We also use Salmon read mappings (obtained with the –
writeMappings argument) and convert their coordinates
onto splice graph nodes and edges. Prefix graphs are con-
structed with the converted read mappings. Each edge
in the prefix graph corresponds to a path in the original
splice graph, and we compute the path effective length
by taking the average of the effective lengths of the cor-
responding region in reference transcripts that include
the corresponding path (for detail see Additional file 1:
Section 1.1). With the converted read mappings and path
effective lengths, the probabilistic model of graph quanti-
fication can be specified.

Since only neurogenesis-related genes are of interest
and the rest of the genes are assumed to have complete

Global E-step: z
(t)
f ,p = c(t)p A(f | p)/





�

p′∈M(f)

c
(t)
p′ A(f | p′)





Gene-Level M-step: c(t+1) = arg max
c

�

p∈Pg





�

f ∈F

z
(t)
f ,p



 log cp

s.t.
�

p∈Pg

cpl̂p =
�

p∈Pg

�

f ∈F

z
(t)
f ,p/|F |, ∀g ∈ G

reference transcripts, we assume that Salmon correctly
estimates the probability of each paired-end read gener-

ated from each gene when the read is mapped to multi-
ple genes. We use Salmon’s gene-level weight assignment
as the read counts and only solve the flow optimization
problem within each gene, which corresponds to one
round of the gene-level M step for each gene.

Graph Salmon reveals unique between‑sample differences
of PSI for neurogenesis genes
The mean fragment lengths of the six samples range from
349.17 to 375.28 bp. The standard deviations of fragment
lengths are between 53.00 and 82.15 bp. Meanwhile, 30%
of the exons (or subexons) across the splice graphs are
less than 56 bp long, and the 40% quantile of subexon
lengths is 79 bp. Graph Salmon is needed in this data-
set because of the large standard deviation of fragment
lengths compared to subexon lengths.

We computed Percentage Spliced In (PSI) of 2441
skipped exon events using the Graph Salmon network
flow and compare them with PSIs calculated using
Salmon’s expression quantification based on the refer-
ence transcripts. Given three exons, the PSI is defined as
the total abundance of transcripts that include all three
of them, divided by total abundance of transcripts that
include the first and the last (but not necessarily the mid-
dle one).

The correlations of Graph Salmon PSI and Salmon
PSI of the same sample are around 0.51 to 0.57 (for
both Spearman and Pearson), while the correlations of
PSI between different samples computed by the same
quantification method are over 0.75 (for both Spearman
and Pearson and both methods). The large correlation
between different samples can be explained by the fact
that they are from the same tissue and should follow the
tissue-specific expression and alternative splicing pat-
terns. The smaller correlation between different quanti-
fication methods indicates the incomplete reference and
complete reference assumptions lead to very different
splice junction abundance estimates.

An example of different PSI computed by Graph
Salmon and Salmon is shown in Figure 2 and Additional

Page 13 of 15Ma et al. Algorithms Mol Biol (2021) 16:5 	

file 1: Figure S2 on LPAR1 gene. LPAR1 gene encodes a
lysophosphatidic acid (LPA) receptor that functions in
the LPA signaling pathway, which is related to cognitive
behavioral deficits such as schizophrenia and depres-
sion when dysregulated [20]. We focus on the event that
describes the percentage of expression of the inclusions
of exon 6 (position 110973480–110973558 in GRCh38)
between exon 3 (position 111037840–111038043 in
GRCh38) and exon 7 (position 110972072–110972220 in
GRCh38). Graph Salmon computes the PSIs to be 0.45 to
0.64 for BD samples and 0.07 to 0.33 for control samples,
whereas PSIs computed by Salmon are larger than 0.95
for all six samples.

Even though this difference is not evaluated by rigor-
ous statistical testing, it indicates that when the reference
is incomplete, previous reference-based alternative splic-
ing analysis may lead to different results. Considering the
incomplete reference assumption in alternative splicing
analysis enlarges the pool of candidate alternative splic-
ing events.

Evaluation the prefix graph size with increase of read
length and sequencing coverage
Even though the prefix graph is able to encode the phas-
ing information of variable-length fragments, the size of
prefix graph can greatly increase to a degree such that
inference on prefix graph becomes a computational bur-
den. We evaluate the size of the prefix graph under sev-
eral ranges of read lengths and sequencing coverages by
simulated RNA-seq data.

The simulation setup is as follows. Since the splice
graph and prefix graph is constructed for each gene, we
select a subset of genes for simulating RNA-seq reads
and evaluating prefix graph sizes for computational effi-
ciency. 500 genes are randomly selected under the con-
dition that they are multi-isoform genes and the total
number of S − T paths in their splice graphs exceed 10.
We use the reference transcripts as the set of expressed
transcripts from the randomly selected genes. Paired-end
RNA-seq reads are simulated by polyester [21] under one
of the various sequencing coverage settings (50X, 200X

a

b

Fig. 2  Graph Salmon and Salmon give different PSI estimates in an example of BD RNA-seq sample. a Network flow of BD 1 and control 3 samples
estimated by Graph Salmon. The subgraph includes exons 1, 3 to 7, and exons are represented by nodes and the node label indicates the index of
exon. PSI of inclusion of exon 6 between exon 3 and 7 is computed. Edges involved in the PSI calculation are solid; the rest are dashed. b Network
flow of the same samples computed by Salmon with reference transcripts

Page 14 of 15Ma et al. Algorithms Mol Biol (2021) 16:5

coverage) and under one of the read length settings (100
bp, 300 bp, 500 bp). The length of sequenced fragments is
twice the read length plus the insert size. Graph Salmon
is applied to the simulated RNA-seq dataset as described
in Section 3.1. We use the edge count of the prefix graph
of each gene to evaluate the size of prefix graph because
the number of prefix graph edges is the number of
parameters to be inferred in graph quantification.

With increased read lengths, the number of prefix graph
edges greatly increased as shown in Fig. 3a. But the edge
counts for most of the genes occupy the smaller end of the
figure axes, and the genes with extremely large number
of prefix graph edges are rare. We also observe that with
a fixed number of expressed isoforms, the rate of edge
count increase is not as fast as an exponential growth.

The prefix graph edge counts do not increase a lot with
the increase of sequencing coverage (Fig. 3b). This is
expected since a larger coverage increases the probabil-
ity that a phasing path in splice graph is captured by some
sequencing fragment, but the total number of possible phas-
ing paths is bounded by the splice graph structure and the
read length. Overall, these results indicate the prefix graph
for graph quantification can be applied to next-generation
RNA-seq data under various coverage; but the computation
is impractical when applied to third-generation RNA-seq
with read lengths of several thousand base pairs.

Conclusion
We improve the graph quantification model of FlipFlop
to incorporate phasing information from variable length
reads or fragments. The key algorithmic contributions
are a provably correct reparameterization process and
the introduction of the prefix graph inspired by Aho-
Corasick automata for inference.

To demonstrate the feasibility of our method to han-
dle variable length fragments, we apply our method to

neurogenesis-related genes of bipolar disease RNA-seq
samples and control RNA-seq samples. The RNA-seq sam-
ples contain paired-end reads with mean fragment lengths
around 350 bp and standard deviation around 53–82 bp. We
show that our method successfully estimates network flows
on prefix graphs and the estimated flow (under the incom-
plete reference assumption) only has around 0.5 correlation
(both Pearson and Spearman) with the flow estimated by
Salmon under the complete reference assumption.

The size of the prefix graph depends on the length of
the phasing paths exponentially. Unfortunately, for long-
read sequencing, especially with transcript-long reads,
the prefix graph may be as large as the set of all S − T
paths (equivalently the set of all possible transcripts) and
its efficiency compared to the naïve implementation of
graph quantification (where we enumerate every compat-
ible transcript) may diminish. It is still open what algo-
rithmic tools are required to avoid this inefficency.

An intrinsic issue with graph quantification is non-identifi-
ability: Many configurations of transcript abundances lead to
the same read generation model, and thus it is impossible to
distinguish which configuration is closer to the ground truth
if our goal is to recover an underlying transcriptome. While
our prefix graph representation is compact, for many down-
stream analyses, we are invariably forced to perform a flow
decomposition to transform prefix graph flow into quanti-
fied transcript sets. The non-identifiability problem mani-
fests in this step, as different decompositions can lead to the
same prefix graph flow, which as we proved implies the same
model of read generation. Therefore, it is possible to assess
the severity of non-identifiability problem by inspecting dif-
ferent ways of decomposing a fixed prefix graph flow.

This work focuses on theoretical improvements of the
graph quantification model, while its practical utility is still
largely unexplored. For example, our proposed approach
may be a promising method for transcript assembly similar

a b

Fig. 3  Size increase of prefix graph under different read lengths and sequencing coverages. a Scatter plot between the prefix graph edge count
under base read length (100 bp) and that under an increased read length (300 bp and 500 bp). b Scatter plot between the prefix graph edge count
under 50X sequencing coverage and that under 200X sequencing coverage

Page 15 of 15Ma et al. Algorithms Mol Biol (2021) 16:5 	

to FlipFlop, where we use quantification for assembly. The
method also has potential use cases in alternative splic-
ing analyses and other related tasks in RNA-seq. However,
careful benchmarking is needed to determine the cases
when graph quantification is superior than standard quan-
tification with a given set of transcripts for each task.

Abbreviations
RNA-seq: RNA sequencing; PSI: Percentage Spliced In; EM: Expectation-maxi-
mization; TPM: Transcripts per Million; GC-content: Guanine-cytosine content;
FSA: Finite state automaton; DAG: Directed acyclic graph; BD: Bipolar disease;
GEO: Gene expression omnibus; LPA: Lysophosphatidic acid; GO: Gene ontol-
ogy; GRCh38: Genome Reference Consortium Human Build 38.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​021-​00184-7.

Additional file 1. More details on FlipFlop algorithm. This additional file
provides more explanation on the algorithm of FlipFlop and why it cannot
handle variable-length sequencing fragments. It also includes the figure
showing the edge abundance estimation of LPAR1 gene in the other BD
and control samples.

Acknowledgements
This work has been supported in part by the Gordon and Betty Moore
Foundation’s Data-Driven Discovery Initiative through Grant GBMF4554 to C.K.,
by the US National Institutes of Health (R01GM122935), and the US National
Science Foundation (DBI-1937540). This work was partially funded by The
Shurl and Kay Curci Foundation. This project is funded, in part, under a grant
(#4100070287) with the Pennsylvania Department of Health. The Department
specifically disclaims responsibility for any analyses, interpretations or conclu-
sions. The authors would also like to thank Dr. Natalie Sauerwald, Dr. Guillaume
Marçais, Xiangrui Zeng and Dr. Jose Lugo-Martinez for insightful comments on
the manuscript.

Authors’ contributions
CM and CK designed this study. CM and HZ developed the methods and ran
the experiments. CM, HZ and CK wrote the manuscript. All authors read and
approved the final manuscript.

Availability of data and materials
The source code of Graph Salmon is available at https://​github.​com/​Kings​
ford-​Group/​subgr​aphqu​ant. The RNA-seq sampled used in this study can
be accessed from Gene Expression Omnibus (GEO) database with accession
numbers GSM1288369, GSM1288370, GSM1288371 for bipolar disease sam-
ples, and GSM1288374, GSM1288375, GSM1288376 for control samples.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
C.K. is a co-founder of Ocean Genomics, Inc.

Author details
1 Computational Biology Department, School of Computer Science, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA. 2 Computer
Science Department, School of Engineering and Applied Science, Princeton
University, 35 Olden Street, Princeton, NJ 08544, USA.

Received: 10 February 2021 Accepted: 19 April 2021

References
	1.	 Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq

data with or without a reference genome. BMC Bioinf. 2011;12(1):323.
	2.	 Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-

seq quantification. Nat Biotechnol. 2016;34(5):525–7.
	3.	 Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast

and bias-aware quantification of transcript expression. Nat Methods.
2017;14(4):417–9.

	4.	 Bernard E, Jacob L, Mairal J, Vert J-P. Efficient RNA isoform identification
and quantification from RNA-Seq data with network flows. Bioinformat-
ics. 2014;30(17):2447–55.

	5.	 Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ,
Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by
RNA-Seq reveals unannotated transcripts and isoform switching during
cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

	6.	 Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL.
StringTie enables improved reconstruction of a transcriptome from RNA-
seq reads. Nat Biotechnol. 2015;33(3):290–5.

	7.	 Liu J, Yu T, Jiang T, Li G. TransComb: genome-guided transcriptome assem-
bly via combing junctions in splicing graphs. Genome Biol. 2016;17(1):213.

	8.	 Shao M, Kingsford C. Accurate assembly of transcripts through phase-
preserving graph decomposition. Nat Biotechnol. 2017;35(12):1167–9.

	9.	 Tardaguila M, De La Fuente L, Marti C, Pereira C, Pardo-Palacios FJ, Del
Risco H, Ferrell M, Mellado M, Macchietto M, Verheggen K, et al. SQANTI:
extensive characterization of long-read transcript sequences for quality
control in full-length transcriptome identification and quantification.
Genome Res. 2018;28(3):396–411.

	10.	 Shao M, Kingsford C. Theory and a heuristic for the minimum path
flow decomposition problem. IEEE/ACM Trans Comput Biol Bioinf.
2019;16(2):658–70.

	11.	 LeGault LH, Dewey CN. Inference of alternative splicing from RNA-Seq
data with probabilistic splice graphs. Bioinformatics. 2013;29(18):2300–10.

	12.	 Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA
sequencing experiments for identifying isoform regulation. Nat Methods.
2010;7(12):1009.

	13.	 Shen S, Park JW, Lu Z-X, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y. rMATS:
robust and flexible detection of differential alternative splicing from
replicate RNA-Seq data. Proc Natl Acad Sci. 2014;111(51):5593–601.

	14.	 Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, Eyras E.
SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis
across multiple conditions. Genome Biol. 2018;19(1):40.

	15.	 Hensman J, Papastamoulis P, Glaus P, Honkela A, Rattray M. Fast and
accurate approximate inference of transcript expression from RNA-seq
data. Bioinformatics. 2015;31(24):3881–9.

	16.	 Pachter L. Models for transcript quantification from RNA-Seq. arXiv pre-
print arXiv:​1104.​3889 2011.

	17.	 Aho AV, Corasick MJ. Efficient string matching: an aid to bibliographic
search. Commun ACM. 1975;18(6):333–40.

	18.	 Akula N, Barb J, Jiang X, Wendland J, Choi K, Sen S, Hou L, Chen D, Laje G,
Johnson K, et al. RNA-sequencing of the brain transcriptome implicates
dysregulation of neuroplasticity, circadian rhythms and GTPase binding
in bipolar disorder. Mol Psychiatry. 2014;19(11):1179–85.

	19.	 Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland
J, Mudge JM, Sisu C, Wright J, Armstrong J, et al. GENCODE reference
annotation for the human and mouse genomes. Nucleic Acids Res.
2018;47(D1):766–73.

	20.	 Yung YC, Stoddard NC, Mirendil H, Chun J. Lysophosphatidic acid signal-
ing in the nervous system. Neuron. 2015;85(4):669–82.

	21.	 Frazee AC, Jaffe AE, Langmead B, Leek JT. Polyester: simulating RNA-
seq datasets with differential transcript expression. Bioinformatics.
2015;31(17):2778–84.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13015-021-00184-7
https://doi.org/10.1186/s13015-021-00184-7
https://github.com/Kingsford-Group/subgraphquant
https://github.com/Kingsford-Group/subgraphquant
http://arxiv.org/abs/1104.3889

	Exact transcript quantification over splice graphs
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Methods
	Reparameterization
	Prefix graphs
	Theoretical foundation of prefix graphs
	Compact prefix graph
	Practical considerations of prefix graphs

	Inference

	Experiments
	Implementation
	Graph Salmon reveals unique between-sample differences of PSI for neurogenesis genes
	Evaluation the prefix graph size with increase of read length and sequencing coverage

	Conclusion
	Acknowledgements
	References

