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Abstract 

Background:  The probability of sequencing a set of RNA-seq reads can be directly modeled using the abundances 
of splice junctions in splice graphs instead of the abundances of a list of transcripts. We call this model graph quanti-
fication, which was first proposed by Bernard et al. (Bioinformatics 30:2447–55, 2014). The model can be viewed as a 
generalization of transcript expression quantification where every full path in the splice graph is a possible transcript. 
However, the previous graph quantification model assumes the length of single-end reads or paired-end fragments is 
fixed.

Results:  We provide an improvement of this model to handle variable-length reads or fragments and incorporate 
bias correction. We prove that our model is equivalent to running a transcript quantifier with exactly the set of all 
compatible transcripts. The key to our method is constructing an extension of the splice graph based on Aho-Corasick 
automata. The proof of equivalence is based on a novel reparameterization of the read generation model of a state-
of-art transcript quantification method.

Conclusion:  We propose a new approach for graph quantification, which is useful for modeling scenarios where 
reference transcriptome is incomplete or not available and can be further used in transcriptome assembly or alterna-
tive splicing analysis.
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Background
Transcript quantification has been a key component 
of RNA-seq analysis pipelines, and the most popular 
approaches (such as RSEM [1], kallisto [2], and Salmon 
[3]) estimate the abundance of individual transcripts by 
inference over a generative model from transcripts to 
observed reads. To generate a read in the model, a tran-
script is first sampled proportional to its relative abun-
dance multiplied by length, then a fragment is sampled as 

a subsequence of the transcript according to bias correc-
tion models. The quantification algorithm thus takes the 
reference transcriptome and the set of reads as input and 
outputs a most probable set of relative abundances under 
the model. We focus on a generalization of the problem, 
called graph quantification, that allows for better han-
dling of uncertainty in the reference transcriptome.

The concept of graph quantification was first proposed 
by Bernard et al. [4], which introduced a method called 
FlipFlop. Instead of a set of linear transcripts, a splice 
graph is given and every transcript compatible with the 
splice graph (a path from transcript start to termina-
tion in the splice graph) is assumed to be able to express 
reads. The goal is to infer the abundance of edges of the 
splice graph (or its extensions) under flow balance con-
straints. Transcript abundances are obtained by flow 
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decomposition under this setup. FlipFlop infers network 
flow on its extension of splice graphs, called fragment 
graphs, and uses the model to further assemble tran-
scripts. However, the proposed fragment graph model 
only retains its theoretical guarantee when the lengths 
of single-end reads or paired-end fragments are fixed. In 
this work, we propose an alternative approach to graph 
quantification that correctly addresses the variable-
length reads and corrects for sequencing biases. Our 
method is based on flow inference on a different exten-
sion of the splice graph.

Modeling RNA-seq reads directly by network flow on 
splice graphs (or variants) is advantageous when the set 
of transcript sequences is uncertain or incomplete. It is 
unlikely that the set of reference transcripts is correct and 
complete for all genes in all tissues, and therefore, many 
transcriptome assembly methods have been developed for 
reconstructing a set of expressed transcripts from RNA-
seq data [5–8], including FlipFlop [4]. Recent long-read 
sequencing confirms the expression of unannotated tran-
scripts [9], but it also shows that the individual exons and 
splice junctions are relatively accurate. With incomplete 
reference transcripts but correct splice graphs, it is more 
appropriate to model RNA-seq reads directly by splice 
graph network flows compared to modeling using the 
abundances of an incomplete set of transcripts.

The network flow of graph quantification may be incor-
porated into other transcriptome assembly methods in 
addition to FlipFlop. StringTie [6] iteratively finds the 
heaviest path of a flow network constructed from splice 
graphs. A theoretical work by Shao et al. [10] studies the 
minimum path decomposition of splice graphs when the 
edge abundances satisfy flow balance constraints. Bet-
ter network flow estimation on splice graphs inspires 
improvement of transcriptome assembly methods.

The splice graph flow itself is biologically meaningful as 
it indicates the relative usage of splice junctions. Estimates 
of these quantities can be used to study alternative splicing 
patterns under the incomplete reference assumption. PSG 
[11] pioneered this line of work but with a different abun-
dance representation. It models splice junction usage by 
fixed-order Markov transition probabilities from one exon 
(or fixed number of predecessor exons) to its successor 
exon in the splice graph. It develops a statistical model to 
detect the difference in transition probability between two 
groups of samples. However, a fixed-order Markov chain 
has limitations: a small order cannot capture long-range 
phasing relationships, and a large order requires inferring 
a number of transition probabilities that are likely to lack 
sufficient read support. Markov models set the abundance 
of a transcript to the product of transition probabilities 
of its splice junctions, which implicitly places a strong 
constraint on the resulting transcriptome. Many other 

previous studies of splice junction usage depend on a list 
of reference transcripts and compute the widely used met-
ric Percentage Spliced In (PSI) [12–14]. Under an incom-
plete reference assumption, the estimated network flow is 
a potential candidate to compute PSI and study alternative 
splicing usage.

A key challenge of graph quantification, especially for 
paired-end reads, is to incorporate the co-existence rela-
tionship among exons in transcripts. When a read spans 
multiple exons, the exons must co-exist in the transcript 
that generates this read. Such a co-existence relationship is 
called phasing, and the corresponding read is said to con-
tain phasing information. For these reads, the flows of the 
spanned splice edges may be different from each other, and 
in this case, the probability of the read cannot be uniquely 
inferred from the original splice graph flow. FlipFlop solves 
this problem by expanding the splice graph into a fragment 
graph, assuming all reads are fixed-length. In a fragment 
graph, every vertex represents a phasing path, two vertices 
are connected if the phasing paths represented by the ver-
tices differ by one exon, and every transcript on the splice 
graph maps to a path on the fragment graph. The mapped 
path in the fragment graph contains every possible phas-
ing path from a read in the transcript, in ascending order 
of genomic location. However, it is not possible to con-
struct this expansion of splice graphs when the reads or 
fragments are of variable lengths. There is no longer a clear 
total order over all phasing paths possible from a given 
transcript, and it is unclear how to order the phasing paths 
in a fragment graph. We detail the FlipFlop model in Addi-
tional file 1: Section 1.1.

To incorporate the phasing information from variable-
length reads or fragments, we develop a dynamic unroll-
ing technique over the splice graph with an Aho-Corasick 
automaton. The resulting graph is called a prefix graph. 
We prove that optimizing a network flow on the prefix 
graph is equivalent to optimizing abundances of refer-
ence transcripts using the state-of-the-art transcript 
expression quantification formulation when all full paths 
of splice graphs are provided as reference transcripts, 
assuming modeled biases of generating a fragment are 
determined by the fragment sequence itself regardless of 
which transcript it is from. In other words, quantification 
on prefix graphs generates exact quantification for the 
whole set of full splice graph paths. The proof is done by 
reparameterizing the sequencing read generation model 
from transcript abundances to edge abundances in the 
prefix graph. We also propose a specialized EM algo-
rithm to efficiently infer a prefix graph flow that solves 
the graph quantification problem.

As a case study, we apply our method to paired-end 
RNA-seq data of bipolar disease samples and estimate 
flows for neurogenesis-related genes, which are known 
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to have complex alternative splicing patterns and unan-
notated isoforms. We use this case study to demonstrate 
the applicability of our method to handle variable-length 
fragments. Additionally, the network flow leads to differ-
ent PSI compared to the one computed with reference 
transcripts, suggesting reference completeness should be 
considered in alternative splicing analysis.

Methods
We now provide a brief technical overview of the method 
section.

In "Reparameterization" section, we describe the 
detailed derivation and procedure to reparameterize the 
generative model in transcript quantification. A key com-
ponent in this process is redefining transcript effective 
length. The transcript effective length is introduced to 
offset sampling biases towards shorter transcripts, and an 
empirical formula penalizing transcript length with aver-
age fragment length has been widely used. We show that 
this empirical formula has a more elegant explanation. 
From this, we naturally introduce the path abundances, 
the new set of variables that parameterize the genera-
tive model, and the path effective lengths, an analogue to 
transcript effective length that plays a role in normaliza-
tion. To introduce bias correction, we introduce the con-
cept of affinity that encodes bias-corrected likelihood for 
generating a fragment at a particular location, and the 
rest follows naturally by redefining the effective lengths.

In "Prefix graphs" section, we describe the prefix graph, 
whose purpose is to map the abundances of compatible 
transcripts (transcripts that correspond to S − T  paths 
on the splice graph) onto network flows that preserve 
path abundances. This is beneficial, as we avoid enumer-
ating compatible transcripts and only need to infer the 
prefix graph flow. The key technical contribution in this 
section is connecting the process of matching phasing 
paths onto transcripts to the general problem of multi-
pattern matching. This leads to a rollout of the splice 
graph according to an Aho-Corasick automaton, and the 
correctness (that the flow preserves path abundances) 
can be proved by running the Aho-Corasick algorithm on 
the compatible transcripts.

In "Inference" section, we describe the inference pro-
cess for the prefix graph flows, as we need to expand 
our model to handle multi-mapped reads, including 
reads mapped to different genes. We employ a standard 
EM algorithm for multi-mapped reads, similar to exist-
ing approaches. Inference across genes is enabled by 
another reparameterization of the generative model, 
which relativizes edge abundances to its incident gene. 
We decouple the inference for each gene during the 
M-step, which combined with a simple E-step, allows for 

efficient inference and completes the specification of our 
methods.

We formally define the following terms. A splice graph 
is a directed acyclic graph representing alternative splic-
ing events in a gene. The graph has two special vertices: 
S represents the start of transcripts and T represents the 
termination of transcripts. Every other vertex represents 
an exon or a partial exon. Edges in the splice graph rep-
resent splice junctions, potential adjacency between 
the exons in transcripts, or connect two adjacent partial 
exons. A path is a list of vertices such that every adjacent 
pair is connected by an edge, and an S − T  path is a path 
that starts with S and ends with T. Each transcript cor-
responds to a unique S − T  path in the splice graph, and 
as discussed in the introduction we will assume every 
S − T  path is also a potential transcript. Graph quantifi-
cation generalizes transcript quantification as we can set 
up a “fully rolled out” splice graph containing only chains 
that each corresponding to a linear transcript. We use the 
phrase quantified transcript set to denote a set of tran-
scripts with corresponding abundances.

Finally, we use the term phasing paths extensively. In 
its original definition, phasing paths are derived from 
reads that span more than two exons. As each read (or 
read pair) originates from a single transcript, a transcript 
containing the phasing path must be present in the tran-
scriptome. These paths provide valuable information in 
determining longer-range exon arrangements. We gen-
eralize the notion and remove the constraint that phas-
ing paths must contain more than two exons. Specifically, 
singleton paths (paths that consisting of a single vertex) 
are also considered phasing paths. Under this definition, 
all fragments (mapped from reads) can be mapped to a 
phasing path.

Reparameterization
Our goal in this section is to establish an alternative set 
of parameters for the graph quantification problem. In 
the transcript quantification model, every transcript cor-
responds to a variable denoting its relative abundance. 
We will identify a more compact set of parameters that 
would represent the same model, as described below.

We start with the core model of transcript quantifica-
tion at the foundation of most modern methods [1–3, 
15]. Assume the paired-end reads from an RNA-seq 
experiment are error-free and uniquely aligned to a ref-
erence genome with possible gaps as fragments (these 
assumptions will be relaxed later). We denote the set of 
fragments (mapped from paired-end reads) as F, the set 
of transcripts as T = {T1,T2, . . . ,Tn} with corresponding 
lengths l1, l2, . . . , ln and abundances (copies of molecules) 
c1, c2, . . . , cn . This can be used to derive other quantities. 
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For example, the transcripts per million (TPM) values are 
calculated by normalizing {ci} then multiplying the values 
by 106 . Under the core model, the probability of observ-
ing F is:

Here, P(Ti) denotes the probability of sampling a frag-
ment from transcript Ti and P(f | Ti) denotes the proba-
bility of sampling the fragment f given that it comes from 
Ti . idx(f ) is the set of transcript indices onto which f can 
map. Let D(l) be the distribution of generated fragment 
lengths. In the absence of bias correction, P(f | Ti) is 
proportional to D(f ) = D(l(f )) where l(f) denotes the 
fragment length inferred from mapping f to Ti . Define the 
effective length for Ti as l̂i =

∑li
j=1

∑li
k=j D(k − j + 1) 

(which can be interpreted as the total “probability” for Ti 
to generate a fragment), and P(f | Ti) = D(f )/l̂i . The 
probability of generating a fragment from Ti is assumed 
to be proportional to its abundance times its effective 
length, meaning P(Ti) ∝ cil̂i . Our definition of effective 
length is different from existing literature, where it is 
usually defined as li − µ(Ti) , the actual length of tran-
script li minus the truncated mean of D, and the trun-
cated mean is defined as µ(Ti) = (

∑li
j=1

jD(j))/(
∑li

k=1
D(k)) . 

However, these two definitions are actually essentially the 
same most of the time.

Lemma 1  l̂i =
∑li

j=1

∑li
k=j D(k − j + 1) = (

∑li
t=1 D(t))

(li + 1− µ(Ti)).

Proof 

This means ignoring the difference between li and li + 1 , 
the two definitions differ by a multiplicative factor of 
∑li

t=1 D(t) .�  �

The factor 
∑li

t=1 D(t) is the probability of sampling a 
fragment no longer than li . It is very close to 1 as long 
as the transcript is longer than most fragments, which is 

P(F | T , c) =
∏

f ∈F

∑

i∈idx(f )

P(Ti)P(f | Ti).

l̂i =

li
�

t=1

D(t)(li + 1− t)

= (li + 1)

li
�

t=1

D(t)−

li
�

t=1

tD(t)

=





li
�

t=1

D(t)





�

li + 1−

�li
t=1 tD(t)

�li
t=1 D(t)

�

=





li
�

t=1

D(t)



(li + 1− µ(Ti))

usually true in practice. We refer to previous papers [1–3, 
15, 16] for more detailed explanation of the model. This 
leads to:

We now propose an alternative view of the probabilis-
tic model with paths on splice graphs to derive a com-
pact parameter set for the quantification problem. The 
splice graph is constructed so that each transcript can be 
uniquely mapped to an S − T  path p(Ti) on the graph, 
and we assume the read library allows each fragment f 
to be uniquely mapped to a (non S − T  ) path p(f) on the 
graph (this assumption will also be relaxed later). With 
this setup, i ∈ idx(f ) if and only if p(f) is a subpath of 
p(Ti) (in other words, p(f ) ⊂ p(Ti)).

We now define cp =
∑

i:Ti∈T ,p⊂p(Ti)
ci to be the total 

abundance of transcripts including path p, called path 
abundance, and l̂p =

∑li
j=1

∑li
k=j 1(p(Ti[j, k]) = p)D(k − j + 1) 

called path effective length, where Ti[j, k] is the frag-
ment generated from transcript i from base j to base k 
and 1(·) is the indicator function. Intuitively, the path 
effective length is the total probability of sampling a 
fragment that maps exactly to the given path. This defi-
nition is independent of the chosen transcript Ti and any 
Ti yields the same result as long as Ti includes p. Next, let 
P be the set of paths from the splice graph satisfying 
l̂p > 0.

Lemma 2  The normalization term can be reparameter-
ized: 

∑

Ti∈T
cil̂i =

∑

p∈P cpl̂p.

Proof  The idea is to break down the expression of l̂i into 
a sum over fragments, and regroup the fragments by the 
path to which they are mapped:

The third equation holds because the sum of D(k − j + 1) 
across any transcripts containing path p is the same, as 
a shift in the reference does not change D(k − j + 1) 
assuming there are no sequencing biases.�  �

P(F | T , c) =
�

f ∈F





�

i∈idx(f )

ci



D(f )/(
�

Ti∈T

cil̂i).

�

Ti∈T

l̂ici =
�

Ti∈T

li
�

j=1

li
�

k=j

D(k − j + 1)ci

=
�

p∈P

�

i,j,k:p(Ti[j,k])=p

D(k − j + 1)ci

=
�

p∈P





�

j,k:∃i,p(Ti[j,k])=p

D(k − j + 1)









�

i:p⊂p(Ti)

ci





=
�

p∈P

l̂pcp.
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The likelihood objective can now be rewritten as 
follows:

This reparameterizes the model with {cp} , the path abun-
dance. To incorporate bias correction into our model, we 
define the affinity Ap(j, k) to be the unnormalized likeli-
hood of generating a read pair mapped to path p from 
position j to k. This is the analog of P(f | ti) in the tran-
script quantification model. In the non-bias-corrected 
model, we simply have Ap(j, k) = D(k − j + 1) . Certain 
motif-based corrections and GC-content-based correc-
tions, which are calculated from the genomic sequence 
in between the paired-end alignment, can then be inte-
grated into our analysis naturally. To adapt the likelihood 
model to bias correction, we define transcript and path 
effective length as follows:

l̂p is still the same for any Ti that includes p, so it does not 
matter which transcript is used to compute it. p(Ti[j, k]) 
denotes the path that Ti[j, k] (transcript Ti from location j 
to k) maps to, and we assume the coordinate when calcu-
lating Ap coincides with that of Ti . The definition of path 
abundance remains unchanged, and all of our proposed 
methods will work in the same way. Transcript-specific 
bias correction requires an approximation to the affin-
ity term, and we discuss this topic in detail later in this 
section.

We have now completed the necessary steps to claim 
the following theorem, which formally establishes the 
correctness of the reparameterization procedure with 
bias correction.

Theorem  1  Assuming each read is uniquely mapped 
to one phasing path, the following two optimization 
instances are equivalent:

•	 Optimizing {cp} , which are the path abun-
dances under the reparameterized objective 

(1)

P(F | T , c) =
�

f ∈F





�

j:p(f )⊂p(Tj)

cj



D(f )/





�

p∈P

cpl̂p





∝
�

f ∈F

cp(f )/





�

p∈P

cpl̂p



.

l̂i =

li
∑

j=1

li
∑

k=j

Ap(Ti[j,k])(j, k)

l̂p =

li
∑

j=1

li
∑

k=j

Ap(j, k)1(p(Ti[j, k]) = p), ∀p ⊂ p(Ti)

∏

f ∈F cp(f )/(
∑

p∈P cpl̂p), conditioned on {cp} corre-
sponding to a valid quantified set of transcripts;

•	 Optimizing {ci} which are the transcript abundances under 
the original objective 

∏

f ∈F (
∑

i∈idx(f ) ci)/(
∑

Ti∈T
cil̂i).

Here l̂i and l̂p are transcript effective length and path effec-
tive length defined with the same set of affinities Ap(j, k).

Proof  This naturally follows in two steps. First, we can 
prove Lemma 2 with bias correction using the identical 
technique of breaking l̂i down to sum over fragments, 
then regroup by path mappings. This means the normali-
zation term can be reparameterized. We finish by repa-
rameterizing the whole likelihood in the same way as in 
the non-bias-corrected case (see Eq. (1)), again with the 
identical technique.�  �

With reads multimapped to different phasing paths 
(within or across genes), let M(f) denote the set of phas-
ing paths f can map onto, and for p ∈ M(f ) let A(f | p) 
denote the affinity of f mapping to p. In this case, we can 
use the same idea of grouping transcripts by the phasing 
path that f maps onto:

The reparameterization theorem holds by replacing cp(f ) 
with 

∑

p∈M(f ) cpA(f | p) in the objective function.

Prefix graphs
Theoretical foundation of prefix graphs
In Theorem 1, we showed that to perform graph quanti-
fication, it is sufficient to optimize the path abundances 
under a reparameterized objective, requiring that the 
path abundances correspond to a quantified set of tran-
scripts. This means that to apply the theorem for opti-
mization of path abundance, we need a set of constraints 
that ensures this condition. One solution is to introduce a 
variable for every compatible transcript and then use the 
definition of cp as the constraints. However, this will lead 
to an impractically large model, as the number of S − T  
paths in the splice graph can be exponentially larger than 
the size of the prefix graph. In this section, we derive a 
set of linear constraints governing {cp} that achieves this 
purpose.

To motivate the next step, assume every inferred frag-
ment either resides within an exon or contains one 

P(f ) =
∑

i∈idx(f )

P(Ti)P(f | Ti)

=
∑

p∈M(f )

∑

i:p⊂Ti

ciA(f | p)

=
∑

p∈M(f )

cpA(f | p).
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junction. In this case, the phasing paths are nodes or 
edges in the splice graph. More specifically, when the 
fragment resides within an exon, the phasing path con-
tains that exon only, and when the fragment contains one 
junction the phasing path contains the two constituent 
exons that form an edge in the splice graph. If the quan-
tified transcript set is mapped onto the splice graph, we 
obtain a network flow. The path abundance for a phasing 
path equals either the flow through a vertex or an edge. 
By the flow decomposition theorem (that every network 
flow over a DAG can be decomposed into finitely many 
paths), given a network flow on the splice graph, we can 
decompose it into S − T  paths with weights. These paths 
naturally map back to a quantified transcript set. As the 
two-way mapping (between quantified transcript sets 
and splice graph flows) preserves path abundances, we 
conclude optimization over a splice graph flow would 
achieve the goal of graph quantification. Specifically, it is 
easy to restructure the constraints to represent a splice 
graph flow, and optimizing the resulting model is equiva-
lent to the transcript quantification model with all com-
patible transcripts included.

This solution no longer works when some phasing path 
p contains three or more exons. This is because one can-
not determine the total flow that goes through two con-
secutive edges (corresponding to a phasing path with two 
junctions) just from the flow graph, and different decom-
positions of the flow can lead to different answers. Infor-
mally, this can be solved by constructing higher-order 
splice graphs (as done by Legault et al. [11] for example), 
or fixed-order Markov models, but the size of the result-
ing graph grows exponentially fast and some phasing 
paths can be very long. Instead, we choose to “unroll” 
the graph just as needed, roughly corresponding to a 
variable-order Markov model, similar to FlipFlop [4] but 
applicable to variable-length paired-end reads.

To motivate our proposed unrolling method, consider 
the properties it needs to satisfy. Roughly speaking, the 
unrolled graph needs to exactly identify every path in P 
to accurately calculate the path abundances. That is, for 
every path p in P , there is a set of vertices or edges in the 
unrolled graph, such that a transcript includes p if and 
only if its corresponding S − T  path intersects with this 
set. We can view this “identify phasing paths” problem as 
an instance of multiple pattern matching. That is, given 
P , for a given transcript Ti , we want to determine the set 
of paths in P that are subpaths of Ti , reading one exon of 
Ti at a time. Similar to our previous example, if P con-
tains only single exons, we only need to recognize [x] (the 
singleton path including only x) when we read exon x, 
and we will recognize a general phasing path p when the 
transcript we have seen admits p as a suffix. To speed up 
the process, we can memorize a suffix of the transcript 

we have seen that is a prefix of some path in p, so we do 
not need to check all preceding exons again when trying 
to recognize p. This is not a new idea and in fact is the 
Aho-Corasick algorithm [17], a classical algorithm for 
multiple pattern matching where the set of nodes in the 
splice graph (set of exons) is the alphabet, P is the set of 
patterns and Ti is the text, and the idea is formalized as 
a finite state automaton (FSA) that maintains the longest 
suffix of current text that could extend and match a pat-
tern in the future. This can be regarded as an unrolling of 
the splice graph, which has the power of exactly matching 
arbitrarily phasing paths, and a flow on the automaton 
is the analog of a splice graph flow that also is unrolled 
enough to recover path abundances, as we will prove in 
this section.

We formalize the idea. Consider the Aho-Corasick FSA 
constructed from P , where we further modify the finite 
state automaton as follows. Transitions between states of 
the FSA, called dictionary suffix links, indicate the next 
state of the FSA given the current state and the upcom-
ing character. We do not need the links for all characters 
(exons), as we know Ti ∈ T  is an S − T  path on the splice 
graph. If x is the last seen character, the next character y 
must be a successor of x in the splice graph, and we only 
generate the state transitions for this set of movements. 
With an FSA, we now construct a directed graph from its 
states and transitions as described above:

Definition 1  (Prefix Graph) Given splice graph GS and 
set of splice graph paths P (assuming every single-ver-
tex path is in P ), we construct the corresponding prefix 
graph G = (V ,E) as follows:

The vertices V are the splice graph paths p such that p is 
a prefix of some path in P . For p ∈ V  , let x be the last 
exon in p. For every y that is a successor of x in the splice 
graph, let p′ be the longest path in V that is a suffix of py 
(py is the path generated by appending y to p). We then 
add an edge from p to p′ to E.

The source and sink of G are the vertices corresponding 
to splice graph paths [S] and [T], where [x] denotes a sin-
gle-vertex path. The set AS(p) is the set of vertices p′ such 
that p is a suffix of p′.

Figure  1 shows an example construction of prefix 
graph. Intuitively, the states of the automaton are the ver-
tices of the graph and are labeled with the suffix in con-
sideration at that state. The edges of the graph are the 
dictionary suffix links of the FSA, now connecting verti-
ces. For p ∈ P , AS(p) denotes the set of states in FSA that 
recognizes p. All transcripts start with S, end with T, and 
there is no path in P containing either of them as they are 
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not real exons, so there exist two vertices labeled [S] and 
[T]. We call them the source and sink of the prefix graph, 
respectively, and we will see they indeed serve a similar 
purpose.

Lemma 3  There is a one-to-one correspondence between 
S − T  paths in the splice graph and [S] − [T ] paths in the 
prefix graph.

Proof  Every transcript can be mapped to an [S] − [T ] 
path on the prefix graph by feeding the transcript to 
the finite state automaton and recording the set of vis-
ited states, excluding the initial state where no string is 
matched. The first state after the initial state is always [S] 
as the first vertex in an S − T  path is S, and the last state 
is always [T] because there are no other vertexes in the 
prefix graph that would contain T. Conversely, a [S] − [T ] 
path on the prefix graph can also be mapped back to a 
transcript, as it has to follow dictionary suffix links (tran-
sitions between FSA states), which by our construction 
can be mapped back to edges in the splice graph.�  �

This implies that the prefix graph is also a DAG: If there 
is a cycle in the prefix graph, it implies an exon appears 
twice in a transcript, which violates our assumption that 
the splice graph is a DAG.

The resulting prefix graph flow serves as a bridge 
between the path abundance {cp} and the quantified tran-
script set {ci}:

Theorem  2  Every quantified transcript set can be 
mapped to and from a prefix graph flow. The path abun-
dance is preserved during the mapping and can be cal-
culated exactly from prefix graph flow: cp =

∑

s∈AS(p) fs , 
where fs is the flow through vertex s.

Proof  Using the path mapping between the splice graph 
and the prefix graph, we can map a quantified transcript 
set onto the prefix graph as a prefix graph flow and 
reconstruct a quantified transcript set by decomposing 
the flow and mapping each [S] − [T ] path back to the 
splice graph as a transcript.

To prove the second part, let {cp} be the path abundance 
calculated from the definition given a quantified tran-
script set, and {c′p} be the path abundance calculated from 
the prefix graph flow. We will show {cp} = {c′p} for any 
finite decomposition of the prefix graph flow.

For any transcript Ti and any path p ∈ P , since no exon 
appears twice for a transcript, if Ti contains p, it will 
be recognized by the FSA exactly once. This means the 
[S] − [T ] path to which Ti maps intersects with AS(p) by 
exactly one vertex in this scenario, and it contributes the 
same abundance to c′p and cp . If Ti does not contain p, by 
similar reasoning, it contributes to neither c′p nor cp . This 
holds for any transcript and any path, so the two defini-
tions of path abundance coincide and are preserved in 
mapping from quantified transcript set to prefix graph 
flow. Since the prefix graph flow is preserved in flow 
decomposition, the path abundance is preserved as a 
function of prefix graph flow.�  �

This connection allows us to directly optimize over 
{cp} by using the prefix graph flow as variables (the path 
abundances cp is now represented as seen in Theorem 2), 
and use flow balance and non-negativity as constraints, 
as we describe in the next section. The corresponding 
quantified transcript set is guaranteed to exist by a flow 
decomposition followed by the mapping process.

Fig. 1  An example construction of the Prefix Graph. The source and sink of the prefix graph are [S] and [T], respectively. The set of phasing paths 
P is shown in blue in the left panel, and we do not include the singleton paths for simplicity. We draw the trie and the fail edges for the a–c 
automaton as it reduces cluttering (dictionary suffix link can be derived from both edge sets). The colored nodes in prefix graph are the vertices 
(states) in AS(35) and AS(24)
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Compact prefix graph
We next describe an improvement to the prefix graph, 
which we call the compact prefix graph. In the prefix 
graph, FSA states are vertices of the resulting graph, and 
as AS(p) is a set of vertices, we can say that we recognize 
phasing paths at the vertices of the prefix graph. The idea 
for compact prefix graph is to recognize phasing paths at 
the edges instead. We will still start with the Aho-Cora-
sick FSA, but we will be building the graph in a way that 
the states of the FSA correspond to edges of the resulting 
graph, as described below:

Definition 2  (Compact Prefix Graph) Given splice 
graph GS and set of splice graph paths P , we construct 
the corresponding compact prefix graph G′ as follows. 
The vertex set of the compact prefix graph is the union of

•	 All single-vertex paths on the splice graph;
•	 Any splice graph path p that is the prefix of some 

path p′ in P , while being strictly shorter than p′.

For p in the compact prefix graph, let x be its last exon 
and y be a successor of x in the splice graph. We create an 
edge that has label py (again, appending y to p), originates 
from p, and leads to the node that is the longest suffix of 
py in the compact prefix graph.
The source and sink of G are the vertices corresponding 
to splice graph paths [S] and [T]. The set AS(p) is the set 
of edges p′ such that the edge label on p′ is a suffix of p.

The set AS(p) bears the same meaning as in the origi-
nal prefix graph, as the states of the Aho-Corasick FSA 
are now (roughly) the edges of the compact prefix graph. 
With this intuition, we can prove the same property as 
stated in Lemma 3 for compact prefix graph.

Lemma 4  There is a one-to-one correspondence between 
S − T  paths in the splice graph and [S] − [T ] paths in the 
compact prefix graph.

Proof  Every transcript can be mapped to an [S] − [T ] 
path on the compact prefix graph by walking on the com-
pact prefix graph starting from [S]. Upon reading a new 
exon y, we move to the new vertex on the compact pre-
fix graph by following the edge that has a label ending 
with y. Our construction ensures this edge exists and is 
unique. Similar to our previous reasoning, the finishing 
state is always [T] because there are no other vertexes in 
the compact prefix graph whose label contains T. Con-
versely, a [S] − [T ] path on the prefix graph can also be 
mapped back to a transcript, by mapping an edge with 

label py on compact prefix graph to an edge (x, y) on the 
splice graph, where x is the last exon of p.�  �

With this, we can prove Theorem  3, an analogue of 
Theorem 2 for compact prefix graphs.

Theorem  3  Every quantified transcript set can be 
mapped to and from a compact prefix graph flow. The 
path abundance is preserved during the mapping and 
can be calculated exactly from compact prefix graph flow: 
cp =

∑

e∈AS(p) fe , where fe is the flow through edge e.

The proof is mostly identical to that of Theorem  2 
with a minor technical difference. When a phasing path 
is mapped to a prefix graph edge, the label on that edge 
might not equal the current FSA state, which is guaran-
teed in the non-compact prefix graph case. Instead, the 
current FSA state is a suffix of the edge label. The com-
pact prefix graph, by the virtue of its construction, is 
smaller compared to the original prefix graph with the 
same power and is preferred in practice. It also has the 
desirable property of being a “minimal sufficient” graph 
in many cases, as we will show below.

Theorem 4  (Compact Prefix Graph Flow can be Mini-
mally Sufficient) With fixed splice graph G and phasing 
path set P , if they satisfy the conditions that (1) for each 
p ∈ P any prefix of p is also in P and (2) each vertex in 
G has maximum outgoing degree of 2, there is a one-to-
one mapping between the feasible set of path abundance 
{cp | p ∈ P} and the feasible set of compact prefix graph 
flows {fe}.

Proof  The mapping from a compact prefix graph 
flow to {cp} is direct and unique. For the other direc-
tion, assuming the theorem is false, there exist two sets 
of compact prefix graph flow {f ′e } and {f ′′e } with identical 
path abundances {cp} . Since each cp is the sum of several 
flow values, the difference between the sets {�fe} (where 
�fe = f ′e − f ′′e  for all edges e in the compact prefix graph) 
satisfies the following:

We now prove that �fe = 0 for all e, using induction on 
the size of |t(e)| (the number of exons in the edge label 
of e), which we denote k. The induction hypothesis for k 
is that �fe = 0 for all edges e with label no shorter than 
k. For the base case where k > maxe |t(e)| , there are no 
edges with label length k or longer, so the hypothesis 
holds trivially. Here, we use t(e) to denote the label on an 
edge in the compact prefix graph, and t(v) to denote the 

∑

e∈AS(p)

�fe = 0, ∀p ∈ P .
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label on a vertex (the splice graph path it represents) in 
the compact prefix graph.

Assume this holds for k + 1 . For each edge e′ with label 
length k, let p′ = t(e′) , and we write p′ = px . By the con-
struction of the compact prefix graph, p is a strict prefix 
of some phasing paths in P . We now discuss two cases.

•	 If p′ is also in P , there is an equation of form 
∑

e∈AS(p′) �fe = 0 . The set AS(p′) contains the edge 
e′ and several other edges with edge labels longer 
than p′ (as p′ is a suffix of these labels). By the induc-
tion hypothesis, �fe for all edges in AS(p′) other than 
e′ equals 0, which means �fe′ is also 0.

•	 If p′ /∈ P , we first claim that the last exon of p (sec-
ond-to-last exon of p′ ) has two outgoing edges. Oth-
erwise, because there are no other phasing paths p′′ 
with p as a strict prefix, p cannot be a vertex of the 
compact prefix graph; contradiction. We now let y be 
the destination of the other outgoing edge of the last 
exon of p. By similar reasoning, py ∈ P , otherwise p 
cannot be a vertex of the compact prefix graph. With 
a slight abuse of notion, we let cpx denote the total 
flow of edges whose label admits px as a suffix. We 
claim cpx = cp − cpy . Intuitively, the total abundance 
of transcripts containing px equals the abundance of 
transcripts containing p, minus those containing py, 
because all transcripts are S − T  paths in the splice 
graph and px is the only other way p can extend. For-
mally, for every edge (u, v) counting towards cpx , by 
the construction of compact prefix graph, t(u) has p 
as a suffix, meaning u has exactly one other outgoing 
edge that counts towards cpy . This means cpx + cpy 
equals the total outgoing flow of all vertexes u whose 
label ends with p. On the other hand, for every edge 
e′′ = (u′, v′) counting towards cp , t(e′′) takes p as a 
suffix. Since p ∈ P and v′ is the longest suffix of t(e′′) 
in P , we conclude t(v′) also has p as a suffix. Those 
edges such that p is a suffix of t(v′) also count towards 
cp by definition. We conclude that cp equals the total 
incoming flow of all vertexes v whose label ends with 
p. By the flow balance condition, cp = cpx + cpy . 
Finally, since cp is the same between two sets of {fe} , 
and cpy is the same between them too, cpx must also 
be the same. We can then use the argument from the 
first case as if px ∈ P , and conclude �fe′ = 0.

In both cases we conclude �fe′ = 0 for all edges e′ satisfy-
ing |t(e′)| = k , which completes the induction proof. �

In other words, the unrolling of the splice graph by con-
structing a compact prefix graph is, in a certain sense, the 
optimal unrolling. This theorem is also very conservative, 

and both of its requirements are not necessary for the 
uniqueness condition to hold.

Practical considerations of prefix graphs
We discuss three changes to the prefix graph framework 
when we implement it for the analysis of real RNA-seq 
data. These changes are necessary to enable practical 
analysis under our proposed framework, with minimal 
changes to the theoretical foundation.

Approximating Transcript-Specific Bias Correction. 
Positional bias is a common factor taken into considera-
tion by modern transcript quantification methods. How-
ever, they cannot be integrated into our proposed model 
of graph quantification directly, because the positional 
bias term would change depending on every exon in the 
transcript, not just those in a phasing path. Nonetheless, 
since the splice graph is known in full, approximating 
positional bias is possible.

Let Bi(j, k) denote the affinity value calculated 
from a full bias correction model for the fragment 
generated from base j to k on transcript Ti , and r̂i 
be the reference abundance of transcript Ti . We let 
Ap(j, k) = (

∑

i:p⊂p(Ti)
r̂iBi(j

′, k ′))/(
∑

i:p⊂p(Ti)
r̂i) , where j′ 

and k ′ are the coordinates of the path sequence in the ref-
erence coordinates of Ti . In other words, for each phasing 
path, we calculate the empirical positional bias, collected 
over reference transcriptome and weighted with refer-
ence abundances.

In our experiments, for simplicity we use Salmon out-
puts as reference abundance and calculate positional 
bias accordingly, using the same positional bias model 
as Salmon. It is also possible to model the estimation of 
positional bias terms as an iterative process where we 
alternatively estimate the path abundances cp and the bias 
correction terms Ap(j, k).

Calculation of Path Effective Length: Switching Affini-
ties. We have derived a closed and explicit form for l̂p , the 
path effective length, which can be calculated given the 
affinity values Ap(j, k) with bias correction. In practice, 
the value of Ap(j, k) comes from complicated models of 
biases. We can speed up the calculation of l̂p by reusing 
calculated affinities, however, to obtain the correct value 
of path effective length for each phasing path, we need to 
calculate the affinities for every possible fragment.

For paired-end sequencing, while the reads are of fixed 
length and short, the induced fragment length can vary in 
a wide range. If the longest fragments are of length M and 
the reference sequence has length N, the number of affin-
ity values required may reach O(MN). While this bound 
is not reached in practice, the process of exact calculation 
of path effective length is slow.

While we decided to calculate these exactly for our 
experiments, there are possible approximations to 
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avoid this time-consuming step. Existing methods 
avoid this by essentially using two sets of affinity val-
ues, in calculating transcript effective length l̂i and 
calculating read likelihood P(f | Ti) . To see why this 
is the case, Lemma 1 indicates that existing methods 
to calculate the effective length of a transcript are 
approximately summing up affinity values from frag-
ments generated on this transcript before bias correc-
tion. In other words, the non-bias-corrected affinity 
values are used in calculating l̂i . However, when calcu-
lating read likelihood, the bias-corrected affinity val-
ues are used instead. It is an interesting open question 
that whether “correcting” this discrepancy in existing 
methods for transcript quantification, by calculating 
transcript effective length in the “correct way” of sum-
ming up bias-corrected affinity values, would lead to 
better results.

For our proposed graph quantification methods, 
the aforementioned “two affinities” approximation is 
a justifiable route, as the path effective length l̂p also 
has a closed-form solution without bias correction. 
Recall this means Ap(j, k) = D(k − j + 1) , and each l̂p 
is weighted sum of some D(i). This can be evaluated 
in constant time with proper preprocessing. Alterna-
tively, for multiple RNA-seq experiments sharing the 
same set of splice graphs, we propose to use the idea 
of “two affinities” in a more refined way, with two 
bias-corrected models. We can first derive a com-
mon ground bias correction model shared across all 
experiments, then calculate the exact path effective 
length using the shared bias model. This is costly but 
only needs to be done once. The fragment likelihood 
P(f | Ti) would then be calculated using the bias model 
private to each experiment. We believe the integra-
tion of proper bias correction during calculation of 
path effective length would improve the practicality of 
graph quantification models.

Trimming P,the set of phasing paths. For simplicity, 
we for now consider graph quantification without bias 
correction, meaning Ap(j, k) = D(k − j + 1) . Recall the 
original definition of P : It is the set of all phasing paths 
that have a non-zero path effective length. In practice, the 
fragment length distribution D(·) has a long tail. Using 
M to denote the longest fragment that can be generated 
from D, P would include the set of phasing paths that can 
generate a fragment no longer than M. In practice, such 
a long tail results in a huge P . This is problematic, losing 
the benefits of using graph quantification in theory and 
slowing the inference in practice. We trim P by remov-
ing phasing paths with small effective lengths and no 
mapped fragments. The removed paths are usually those 

extra-long phasing paths that only can generate a frag-
ment thanks to the long tail of the fragment length dis-
tribution. As longer phasing paths involve more complex 
splicing patterns, the numbers of such paths are large, 
and the trimming is highly effective in practice.

To further justify our choice more rigorously, we 
recall the likelihood function under our reparameter-
ized model: P(F | T , c) ∝

∏

f ∈F cp(f )/(
∑

p∈P cpl̂p) . Now, 
we investigate the effect of phasing paths p′ without 
mapped fragments on the likelihood. These phas-
ing paths do not contribute to the fragment likeli-
hood term because there are no fragments f ∈ F  such 
that p(f ) = p′ . However, their abundance contributes 
towards the normalization term. This means if we 
ignore the phasing paths without mapped fragments, 
we underestimate the normalization term during opti-
mization, and in turn, overestimate transcript and path 
abundances. We argue the magnitude of overestima-
tion is small. As we are only removing phasing paths 
with small l̂p , the only way this changes our results 
significantly is that some of these paths have large 
estimated cp . If there is a removed path with a large 
cp when optimized under this model, it means in the 
inferred quantified transcript set there is are many 
fragments mapped to path p, even though exactly zero 
fragments are mapped to p in the sequencing library. 
This mostly happens if there is a dominant transcript 
with high abundance, and p is part of the transcript. 
For such things to happen, the transcript must have 
many fragments mappable, and the fact that no single 
fragment mapped to path p indicates l̂p is small, or the 
modeling might be faulty.

Inference
While the restructuring process described in the pre-
vious section reduces the size of the optimization 
problem, we still need to solve it efficiently. We start 
with the base case, that is, the genome contains a sin-
gle gene, and every read pair maps to exactly one path. 
Recall that P is the set of phasing paths we consider, 
p(f) is the path fragment f maps to. For a phasing path 
p, cp is the path abundance, l̂p is the path effective 
length. For the prefix graph, we let fe denote the flow 
through an edge, fv denote the flow through a vertex, 
and AS(p) is the set of vertices (as FSA states) that 
recognize p. We also use In(v) to denote the incoming 
edges of vertex v, and Out(v) similarly for the outgo-
ing edges. The full instance in this case, with the prefix 
graph proposed the previous section, is:
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This is slightly different from what we described in "Repa-
rameterization" section. First, we maximize the logarithm 
of the likelihood objective. Second, we explicitly fix the 
normalization constant to be 1, instead of placing it on the 
divisor of the fragment likelihood. This does not change 
the objective, and the only difference is that in the original 
form {cp} can be arbitrarily scaled, while here the scaling is 
fixed. The variables and the constraints come from the pre-
fix graph flow, and cp is represented as in Theorems 2 and 
3. This is a convex problem, as the target function is convex 
with respect to {cp} , and the constraints are all linear. We 

can solve the problem with general-purpose convex solvers.
With the presence of multi-mapped reads (to multi-

ple genes and/or multiple paths within one gene), we can 
employ a standard EM approach. Recall M(f) is the set of 
phasing paths onto which f can map, and for p ∈ M(f ) let 
A(f | p) denote the affinity of f mapping to p, as described 
in Section 2.1. We also let z denote the hidden allocation 
vector, where zf ,p denotes the probability that the fragment 
f is mapped onto splice graph path p. We can alternatively 
optimize for {zf ,p} and {cp} until convergence as follows:

z(t) and c(t) denote the variables at iteration t. We hide the 
constraint from prefix graphs for clarity. The optimiza-
tion for z(t)f ,p can be run in parallel, so we focus on the 
M-step that optimizes c(t+1) = {c

(t+1)
p } , hiding the super-

script whenever it is clear from context. When we opti-
mize over the whole genome, the instance becomes 
impractically huge. This is because we need to infer the 
flow for every prefix graph (one for each gene) across the 
whole genome, and we need to satisfy flow balance for 
each graph and normalization for all graphs together.

We let G denote the set of genes. Denote the gene abun-
dance cg =

∑

p∈Pg
cpl̂p , where Pg is the set of phasing 

paths in gene g. We then define relative abundance 
c∗p = cp/cg for every phasing path p. Plugging cp = cg c

∗
p 

into the expression for M-step, we have the following 
transformed objective:

Here, sg =
∑

f ∈F

∑

p∈Pg
z
(t)
f ,p can be interpreted as the 

estimated read count of gene g. Again for clarity, we hide 
the prefix graph constraints for c∗p , which retain their 
original form because all prefix graph constraints are aff-
ine. Now, we can decouple optimization of c∗p and cg , as 
the objective function is split into two parts, and each 
constraint only involves one of them. The optimization 
for c∗p can be done for each gene independently, and it is 
exactly the single-gene optimization as we described 
above except we weight log cp(f ) with z(t)f ,p . The optimiza-
tion for cg has the form max

∑

g∈G sg log cg constrained 
by 

∑

g∈G cg = 1 , from which we derive that cg ∝ sg . Since 

z
(t)
f ,p = c(t)p A(f | p)/





�

p′∈M(f )

c
(t)
p′ A(f | p′)




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c
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



�
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z
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
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�
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max
�
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∑

g∈G sg =
∑

p∈P

∑

f ∈F z
(t)
f ,p =

∑

f ∈F 1 = |F | , we have the 
following localized EM algorithm:

The M-step is run independently for each gene and can 
be parallelized. We do not list the prefix graph constraint 
over cp for clarity, and cg is implicitly derived as the right-
hand side of the normalization constraint.

Experiments
Based on the expression quantification method Salmon 
[3] and its effective lengths, we implement our method 
and call it Graph Salmon. We apply Graph Salmon on 
three bipolar disease (BD) RNA-seq samples and three 
control samples [18] to estimate the expression network 
flow on neurogenesis-related genes (GO:0022008), which 
are known to have complex alternative splicing patterns 
and novel isoforms. We use this as a case study to show 
that Graph Salmon is applicable with variable fragment 
lengths and that the relative usage of splice junctions 
under the incomplete reference assumption are different 
from those under complete reference assumption.

Implementation
The splice graphs are constructed using the reference 
exons and splice junctions of Gencode [19] version 26. 
Since Salmon’s effective lengths are needed for path 
effective lengths, we first run Salmon on the samples. 
We also use Salmon read mappings (obtained with the –
writeMappings argument) and convert their coordinates 
onto splice graph nodes and edges. Prefix graphs are con-
structed with the converted read mappings. Each edge 
in the prefix graph corresponds to a path in the original 
splice graph, and we compute the path effective length 
by taking the average of the effective lengths of the cor-
responding region in reference transcripts that include 
the corresponding path (for detail see Additional file  1: 
Section 1.1). With the converted read mappings and path 
effective lengths, the probabilistic model of graph quanti-
fication can be specified.

Since only neurogenesis-related genes are of interest 
and the rest of the genes are assumed to have complete 

Global E-step: z
(t)
f ,p = c(t)p A(f | p)/





�

p′∈M(f )

c
(t)
p′ A(f | p′)





Gene-Level M-step: c(t+1) = arg max
c

�

p∈Pg





�

f ∈F

z
(t)
f ,p



 log cp

s.t.
�

p∈Pg

cpl̂p =
�

p∈Pg

�

f ∈F

z
(t)
f ,p/|F |, ∀g ∈ G

reference transcripts, we assume that Salmon correctly 
estimates the probability of each paired-end read gener-

ated from each gene when the read is mapped to multi-
ple genes. We use Salmon’s gene-level weight assignment 
as the read counts and only solve the flow optimization 
problem within each gene, which corresponds to one 
round of the gene-level M step for each gene.

Graph Salmon reveals unique between‑sample differences 
of PSI for neurogenesis genes
The mean fragment lengths of the six samples range from 
349.17 to 375.28 bp. The standard deviations of fragment 
lengths are between 53.00 and 82.15 bp. Meanwhile, 30% 
of the exons (or subexons) across the splice graphs are 
less than 56 bp long, and the 40% quantile of subexon 
lengths is 79 bp. Graph Salmon is needed in this data-
set because of the large standard deviation of fragment 
lengths compared to subexon lengths.

We computed Percentage Spliced In (PSI) of 2441 
skipped exon events using the Graph Salmon network 
flow and compare them with PSIs calculated using 
Salmon’s expression quantification based on the refer-
ence transcripts. Given three exons, the PSI is defined as 
the total abundance of transcripts that include all three 
of them, divided by total abundance of transcripts that 
include the first and the last (but not necessarily the mid-
dle one).

The correlations of Graph Salmon PSI and Salmon 
PSI of the same sample are around 0.51 to 0.57 (for 
both Spearman and Pearson), while the correlations of 
PSI between different samples computed by the same 
quantification method are over 0.75 (for both Spearman 
and Pearson and both methods). The large correlation 
between different samples can be explained by the fact 
that they are from the same tissue and should follow the 
tissue-specific expression and alternative splicing pat-
terns. The smaller correlation between different quanti-
fication methods indicates the incomplete reference and 
complete reference assumptions lead to very different 
splice junction abundance estimates.

An example of different PSI computed by Graph 
Salmon and Salmon is shown in Figure 2 and Additional 
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file 1: Figure S2 on LPAR1 gene. LPAR1 gene encodes a 
lysophosphatidic acid (LPA) receptor that functions in 
the LPA signaling pathway, which is related to cognitive 
behavioral deficits such as schizophrenia and depres-
sion when dysregulated [20]. We focus on the event that 
describes the percentage of expression of the inclusions 
of exon 6 (position 110973480–110973558 in GRCh38) 
between exon 3 (position 111037840–111038043 in 
GRCh38) and exon 7 (position 110972072–110972220 in 
GRCh38). Graph Salmon computes the PSIs to be 0.45 to 
0.64 for BD samples and 0.07 to 0.33 for control samples, 
whereas PSIs computed by Salmon are larger than 0.95 
for all six samples.

Even though this difference is not evaluated by rigor-
ous statistical testing, it indicates that when the reference 
is incomplete, previous reference-based alternative splic-
ing analysis may lead to different results. Considering the 
incomplete reference assumption in alternative splicing 
analysis enlarges the pool of candidate alternative splic-
ing events.

Evaluation the prefix graph size with increase of read 
length and sequencing coverage
Even though the prefix graph is able to encode the phas-
ing information of variable-length fragments, the size of 
prefix graph can greatly increase to a degree such that 
inference on prefix graph becomes a computational bur-
den. We evaluate the size of the prefix graph under sev-
eral ranges of read lengths and sequencing coverages by 
simulated RNA-seq data.

The simulation setup is as follows. Since the splice 
graph and prefix graph is constructed for each gene, we 
select a subset of genes for simulating RNA-seq reads 
and evaluating prefix graph sizes for computational effi-
ciency. 500 genes are randomly selected under the con-
dition that they are multi-isoform genes and the total 
number of S − T  paths in their splice graphs exceed 10. 
We use the reference transcripts as the set of expressed 
transcripts from the randomly selected genes. Paired-end 
RNA-seq reads are simulated by polyester [21] under one 
of the various sequencing coverage settings (50X, 200X 

a

b

Fig. 2  Graph Salmon and Salmon give different PSI estimates in an example of BD RNA-seq sample. a Network flow of BD 1 and control 3 samples 
estimated by Graph Salmon. The subgraph includes exons 1, 3 to 7, and exons are represented by nodes and the node label indicates the index of 
exon. PSI of inclusion of exon 6 between exon 3 and 7 is computed. Edges involved in the PSI calculation are solid; the rest are dashed. b Network 
flow of the same samples computed by Salmon with reference transcripts
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coverage) and under one of the read length settings (100 
bp, 300 bp, 500 bp). The length of sequenced fragments is 
twice the read length plus the insert size. Graph Salmon 
is applied to the simulated RNA-seq dataset as described 
in Section 3.1. We use the edge count of the prefix graph 
of each gene to evaluate the size of prefix graph because 
the number of prefix graph edges is the number of 
parameters to be inferred in graph quantification.

With increased read lengths, the number of prefix graph 
edges greatly increased as shown in Fig. 3a. But the edge 
counts for most of the genes occupy the smaller end of the 
figure axes, and the genes with extremely large number 
of prefix graph edges are rare. We also observe that with 
a fixed number of expressed isoforms, the rate of edge 
count increase is not as fast as an exponential growth.

The prefix graph edge counts do not increase a lot with 
the increase of sequencing coverage (Fig.  3b). This is 
expected since a larger coverage increases the probabil-
ity that a phasing path in splice graph is captured by some 
sequencing fragment, but the total number of possible phas-
ing paths is bounded by the splice graph structure and the 
read length. Overall, these results indicate the prefix graph 
for graph quantification can be applied to next-generation 
RNA-seq data under various coverage; but the computation 
is impractical when applied to third-generation RNA-seq 
with read lengths of several thousand base pairs.

Conclusion
We improve the graph quantification model of FlipFlop 
to incorporate phasing information from variable length 
reads or fragments. The key algorithmic contributions 
are a provably correct reparameterization process and 
the introduction of the prefix graph inspired by Aho-
Corasick automata for inference.

To demonstrate the feasibility of our method to han-
dle variable length fragments, we apply our method to 

neurogenesis-related genes of bipolar disease RNA-seq 
samples and control RNA-seq samples. The RNA-seq sam-
ples contain paired-end reads with mean fragment lengths 
around 350 bp and standard deviation around 53–82 bp. We 
show that our method successfully estimates network flows 
on prefix graphs and the estimated flow (under the incom-
plete reference assumption) only has around 0.5 correlation 
(both Pearson and Spearman) with the flow estimated by 
Salmon under the complete reference assumption.

The size of the prefix graph depends on the length of 
the phasing paths exponentially. Unfortunately, for long-
read sequencing, especially with transcript-long reads, 
the prefix graph may be as large as the set of all S − T  
paths (equivalently the set of all possible transcripts) and 
its efficiency compared to the naïve implementation of 
graph quantification (where we enumerate every compat-
ible transcript) may diminish. It is still open what algo-
rithmic tools are required to avoid this inefficency.

An intrinsic issue with graph quantification is non-identifi-
ability: Many configurations of transcript abundances lead to 
the same read generation model, and thus it is impossible to 
distinguish which configuration is closer to the ground truth 
if our goal is to recover an underlying transcriptome. While 
our prefix graph representation is compact, for many down-
stream analyses, we are invariably forced to perform a flow 
decomposition to transform prefix graph flow into quanti-
fied transcript sets. The non-identifiability problem mani-
fests in this step, as different decompositions can lead to the 
same prefix graph flow, which as we proved implies the same 
model of read generation. Therefore, it is possible to assess 
the severity of non-identifiability problem by inspecting dif-
ferent ways of decomposing a fixed prefix graph flow.

This work focuses on theoretical improvements of the 
graph quantification model, while its practical utility is still 
largely unexplored. For example, our proposed approach 
may be a promising method for transcript assembly similar 

a b

Fig. 3  Size increase of prefix graph under different read lengths and sequencing coverages. a Scatter plot between the prefix graph edge count 
under base read length (100 bp) and that under an increased read length (300 bp and 500 bp). b Scatter plot between the prefix graph edge count 
under 50X sequencing coverage and that under 200X sequencing coverage
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to FlipFlop, where we use quantification for assembly. The 
method also has potential use cases in alternative splic-
ing analyses and other related tasks in RNA-seq. However, 
careful benchmarking is needed to determine the cases 
when graph quantification is superior than standard quan-
tification with a given set of transcripts for each task.
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