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Abstract

Technological advances in molecular profiling have enabled the comprehensive identifica-

tion of common regions of gene amplification on chromosomes (amplicons) in muscle inva-

sive bladder cancer (MIBC). One such region is 8q22.2, which is largely unexplored in MIBC

and could harbor genes with potential for outcome prediction or targeted therapy. To investi-

gate the prognostic role of 8q22.2 and to compare different amplicon definitions, an in-silico

analysis of 357 patients from The Cancer Genome Atlas, who underwent radical cystectomy

for MIBC, was performed. Amplicons were generated using the GISTIC2.0 algorithm for

copy number alterations (DNA_Amplicon) and z-score normalization for mRNA gene over-

expression (RNA_Amplicon). Kaplan-Meier survival analysis, univariable, and multivariable

Cox proportional hazard ratios were used to relate amplicons, genes, and clinical parame-

ters to overall (OS) and disease-free survival (DFS). Analyses of the biological functions of

8q22.2 genes and genomic events in MIBC were performed to identify potential targets.

Genes with prognostic significance from the in silico analysis were validated using RT-

qPCR of MIBC tumor samples (n = 46). High 8q22.2 mRNA expression (RNA-AMP) was

associated with lymph node metastases. Furthermore, 8q22.2 DNA and RNA amplified

patients were more likely to show a luminal subtype (DNA_Amplicon_core: p = 0.029;

RNA_Amplicon_core: p = 0.01). Overexpression of the 8q22.2 gene OSR2 predicted short-

ened DFS in univariable (HR [CI] 1.97 [1.2; 3.22]; p = 0.01) and multivariable in silico analy-

sis (HR [CI] 1.91 [1.15; 3.16]; p = 0.01) and decreased OS (HR [CI] 6.25 [1.37; 28.38]; p =

0.0177) in RT-qPCR data analysis. Alterations in different levels of the 8q22.2 region are

associated with manifestation of different clinical characteristics in MIBC. An in-depth com-

prehensive molecular characterization of genomic regions involved in cancer should include

multiple genetic levels, such as DNA copy number alterations and mRNA gene expression,

and could lead to a better molecular understanding. In this study, OSR2 is identified as a

potential biomarker for survival prognosis.
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Introduction

Bladder cancer is one of the most common urologic malignancies with estimated 80,470 new

cases and 17,670 new deaths in the United States in 2019 [1]. Despite treatment advances, mus-

cle invasive bladder cancer (MIBC) is associated with a poor 5-year survival rate of 40–60%

[2]. To develop targeted therapies for MIBC, much effort has been directed at understanding

the pathogenesis of this disease. Technological advances in molecular profiling, such as high-

throughput sequencing technologies, have augmented cytogenetic, fluorescence in situ hybrid-

ization (FISH) and array-comparative-genomic-hybridization (aCGH) studies. These results

have created an additional complexity through the generation of an unprecedented series of

copy number alterations (CNA) and mRNA gene expression data, in addition to classical

oncogene mutations [3–7]. The complexity of this molecularly altered landscape and its poten-

tial interactions requires an in-depth comprehensive analysis and correlation with clinical phe-

notype and prognosis [8].

Common regions of gene amplification on chromosomes are known for various solid

cancers and hematologic malignancies [9]. In an effort to define these regions of co-ampli-

fied neighboring genes, many authors have used the term ‘amplicon’ [10], but the exact defi-

nition of an amplicon is currently a topic of discussion. Bignell et al. defined an amplicon as

“a somatically acquired increase in copy number of a restricted genomic region,” which “is

often found in cancer cells as a mechanism of increasing the transcript and therefore, pro-

tein levels of dominantly acting cancer genes”[11–13]. Based on this definition, the GIS-

TIC2.0 algorithm has been used to select potential target genes in a specific region with a

CNA of�2. If co-amplification of these genes is detected, this region is referred to as an

amplicon [14, 15]. Since amplicons are usually investigated in the context of survival or

prognostic influence on cancer, using CNA may underestimate functionally relevant levels

of the genetic code, such as mRNA and protein expression. As current methods to measure

protein expression are limited, mRNA expression is suggested as the closest and most accu-

rate surrogate for gene activity [16].

The mRNA-based approach for selecting amplicons has been applied by Luo et al., who

used a multigene mRNA expression signature to identify FGFR1-amplified estrogen recep-

tor-positive (ERfl) breast tumors [17]. While this study and other research have mainly

focused on amplicons in breast and gastric cancer, limited knowledge exists for bladder can-

cer [18–20].

Hurst et al. investigated genome-wide copy number alterations in urothelial carcinoma and

found a 30.4% gain frequency for the 8q22.2-q22.3 region [21]. High-level amplification in this

region has been associated with more aggressive types of urothelial carcinoma [21–24]. How-

ever, current knowledge of 8q22.2’s oncogenic properties in MIBC is limited [21–24].

i. The primary aim of this study is to provide a method for a comprehensive molecular charac-

terization of the 8q22.2 region in bladder cancer using in silico CNA and mRNA gene

expression data.

ii. A second aim of this study is to compare the CNA and mRNA amplicon structure of

8q22.2, investigate the prognostic value of 8q22.2 amplification on survival, and identify

predictive genes. Prognostically significant genes are validated using RT-qPCR in an inde-

pendent cohort of MIBC tumor samples.

iii. Finally, this study is also designed to explore whether the number of chromosomal alter-

ations is associated with a distinct group of patients with clinically or histologically defined

parameters.
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through cBioPortal (URL: https://www.cbioportal.

org/results/oncoprint?genetic_profile_ids_

PROFILE_COPY_NUMBER_ALTERATION=blca_

tcga_pub_2017_gistic&genetic_profile_ids_

PROFILE_MRNA_EXPRESSION=blca_tcga_pub_

2017_rna_seq_v2_mrna_median_

Zscores&cancer_study_list=blca_tcga_pub_

2017&Z_SCORE_THRESHOLD=2.0&RPPA_

SCORE_THRESHOLD=2.0&data_priority=

0&profileFilter=0&case_set_id=blca_tcga_pub_

2017_3way_complete&gene_list=RNF19A%

250ASPAG1%250ARGS22%250APOLR2K%

250AFBXO43%250ACOX6C%250AVPS13B%

250ASTK3%250AOSR2%250AKCNS2%

250ARPL30%250ARIDA%250APOP1%

250ANIPAL2%250AERICH5%

250ASNORA72&geneset_list=%20&tab_index=

tab_visualize&Action=Submit) and the XENA

browser (URL:https://xenabrowser.net) and are

deposited as a supplementary file named S1

Document. RT-qPCR data from our own Lab are

deposited as a supplementary file named S2

Document.
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Material and methods

TCGA cohort

Data for the first muscle invasive bladder cancer (MIBC) cohort for this study was derived

from The Cancer Genome Atlas and has been produced in earlier analyses [7]. Clinicopatho-

logical data on the cohort, CNA data, mRNA data, and mutation data were downloaded from

the open access portal, cBioPortal (https://www.cbioportal.org) provided by the Memorial

Sloan Kettering Cancer Center [25, 26].

Molecular subtypes and focal amplifications and deletions were downloaded from a supple-

mentary excel file from the TCGA analysis performed by Robertson et al., named S1 Table:

Clinical and Molecular covariates, Related to STAR Methods [7]. Focal gains and amplifica-

tions, as well as focal losses and deletions, were grouped together and analyzed as events of

genomic amplification or deletion.

CNA data were generated using Affymetrix SNP6.0 arrays [7]. ‘Broad automated’ mutation

data files, generated according to the MutSigCV algorithm, were obtained from the XENA

browser (https://xenabrowser.net/) [27, 28].

Patients undergoing neoadjuvant chemotherapy and with an unknown tumor stage (Tx) or

T<2 were excluded from further analysis, yielding a final study population of 357 patients

(73% male, 27% female, median age 69, T3/4 68%, N+ 36%) (Fig 1, S1 Document).

Receipt of neoadjuvant chemotherapy and unknown tumor stage (Tx) or T<2 were defined

as exclusion criteria. After exclusion, 357 patients remained for final analysis.

Validation cohort. In silico findings were retrospectively validated in an independent

MIBC (�2) cohort from the Clinic for Urology and Urosurgery at the University Hospital

Mannheim. Formalin-fixed, paraffin-embedded (FFPE) tissue samples were obtained from 46

patients (24% female, with a median age of 72.5 years; 78% T3 and T4 tumors and 27% lymph

node positive patients (N+)) (S2 Document). Histopathologic information has been provided

by ZVP. Specimens were graded according to the most recent TNM classification (2017) and

the WHO 2010 classification of genitourinary tumors. Prior to commencement the review

board 2 of the University of Heidelberg approved the study under the number 2015-

549N-MA, in accordance with the Declaration of Helsinki. All patients provided written

informed consent for this study.

TCGA bladder cancer copy number alterations and gene expression data

Varying degrees of co-amplified genes in the 8q22.2 region for patients in the TCGA bladder

cancer cohort were visualized using a heatmap (oncoprint) (S1 Fig). For this study we only

addressed high CN gains or amplifications and did not differentiate between balanced and

unbalanced gains. We chose to define genes as amplified on the DNA level if they showed a

GISTIC2.0 algorithm value�2, as reported by Mermel et al. [29].

Amplification at the mRNA level was defined as mRNA overexpression with a z-score-nor-

malization value�2 (https://docs.cbioportal.org/5.1-data-loading/data-loading/file-formats/z-

score-normalization-script). This value was based on the fact that a z-score of 2 (2 standard

deviations from the mean) is the default setting used when downloading mRNA data from

cBioPortal [26]. We further performed analyses with more or less restrictive z-scores (S1 and

S2 Tables).

As in the work of Heidenblad et al., the size of the 8q22.2 amplicon was defined by the min-

imal common region (i.e., number of genes) of amplification present in a given percentage of

the patient population [22]. Based on the presence of a regional amplification in 8q22.2,

patients were divided into amplified (AMP) and non-amplified (NONAMP) groups.
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We then compared the mRNA gene expression between AMP and NONAMP to determine

if amplification of genes resulted in mRNA overexpression (S3 Table).

Prognostic value of 8q22.2 and clinical parameters. To identify whether the number of

chromosomal alterations in a patient was associated with specific clinical criteria, clinicopatho-

logic data for patients were compared for each amplicon definition. Respective parameters

included age (�70 vs. <70), gender (male vs. female), tumor stage (T2 vs. T3/4), lymph node

status (N0 vs. N+), and molecular subtype (luminal vs. basal). Molecular subtype analysis was

further extended to include five mRNA expression based molecular subtypes, as described by

Robertson et al. [7] (S4 Table). Univariable Cox proportional hazard ratios and Kaplan-Meier

curves were used to assess overall survival (OS) and disease-free survival (DFS). Clinical vari-

ables and 8q22.2 amplicon definitions or individual genes (RNA_AMP_Gene) with a p-value

of<0.2 were further subjected to a multivariable Cox regression analysis [30].

Biological analysis and identification of target genes on 8q22.2. Biological functions

and molecular processes of genes of the 8q22.2 region were identified using UniProtKB

(https://www.uniprot.org) and GeneCards (https://www.genecards.org) [31, 32] (S5 Table).

We further assessed, whether amplification at the 8q22.2 locus was associated with genomic

events such as mutations and chromosomal aberrations, including amplifications and deletions.

A list of 18 highly mutated (i.e., mutations in more than ten percent of patients in the TCGA

cell 2017 cohort) known oncogenes and tumor suppressor genes in MIBC, as reported by Robert-

son et al., were chosen for comparison between AMP and NAMP groups [7] (S6 and S7 Tables).

The frequency of amplifications and deletions of frequently altered genomic regions in

MIBC were compared for the AMP and NAMP groups (S8 Table).

Validation of prognostic markers with RT-qPCR. Gene expression of COX6C and OSR2
was quantified using reverse transcription quantitative real-time polymerase chain reaction

(RT-qPCR) methodology, as described previously [33, 34]. Briefly, RNA was extracted from

10 μm thick FFPE tissue slides with the bead-based XTRAKT FFPE kit (Xtract1 kit; STRA-

TIFYER Molecular Pathology GmbH, Cologne, Germany). After lysing and purifying, nucleic

acid isolates were treated with DNAse I. After DNA digestion RNA was transcribed with

Super Script III reverse transcriptase (Thermo Fisher Scientific, Waltham, MA, USA) and

sequence specific primers (S9 Table). Relative quantification of mRNA expression of COX6C
(ENSG00000164919), OSR2 (ENSG00000164920) and the reference gene CALM2 (ENSG00

000143933) was measured on a StepOnePlus Real-Time PCR system (Life Technologies, Karls-

bad, California, USA) with the SuperScript III Platinum One-Step quantitative RT-PCR system

(Invitrogen, Karlsruhe, Germany) [35]. To normalize Ct values the Ct Value of the housekeep-

ing gene CALM2 was subtracted from the Ct values of the target genes (ΔCt). mRNA expres-

sion was further reported as 40-ΔCt. [35–37]. Median, 1st and 3rd quartile 40-ΔCt values of

COX6C and OSR2 were used as cut-off points for survival analysis.

A protocol of the workflow used in this study can be accessed at protocols.io (http://dx.doi.

org/10.17504/protocols.io.bmewk3fe).

Statistics

All p-values were calculated for two sided tests. Spearman coefficient analysis was performed

to assess gene correlations using a cutoff of�0.5 for positive correlations, including all statisti-

cally significant negative correlations (S10 Table). Contingency analysis was visualized using

mosaic plots and differences between DNA_Amplicon_Core and RNA_Amplicon_Core defi-

nitions were compared using Fisher’s exact test. Chi-Square tests were used to compare clini-

copathologic data of patients for different amplicon definitions. Comparisons included age,

gender, tumor stage, lymph node status, and molecular subtype.
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Association with mutations and genomic events was investigated using Chi-Square tests,

and the Bonferroni correction was used to correct for multiple testing.

Survival analyses were conducted using univariable Kaplan-Meier regressions and tested

for significance with the log-rank and Wilcoxon tests. Multivariable analyses were performed

using Cox-proportional hazard regression models. For results from the univariable analysis a p

value cut-off of<0.2 was chosen to include relevant clinical or pathologic parameters that

would have been missed with a more restrictive p value of<0.05 [30]. Variables for the multi-

variable analysis included significant (p<0.2) clinicopathological characteristics on univariable

analysis (pT-Stage, pN-Stage, age, gender,) and genes (RNA_AMP_COX6C, RNA_AM-

P_OSR2), or amplicon definitions (DNA_Amplicon_Core, RNA_Amplicon_Core). Statistical

analyses of numeric continuous variables were performed with non-parametric tests (Wil-

coxon rank-sum test, Kruskal-Wallis test). Contingency analyses of nominal variables were

performed with Pearson’s chi-squared test. All statistical analyses were performed using

GraphPad Prism 8.0 (GraphPad Software Inc., La Jolla, California, USA) and JMP SAS 14.0

(SAS, Cary, North Carolina, USA). Results were considered to be significant if significance lev-

els lower than 0.05 were obtained (the exception being significance levels lower than 0.2 on

univariable analysis that were included in the multivariable analysis).

Results

8q22.2 is a highly amplified region in TCGA cohort and can be divided into

a core and extended region

More than ten percent of patients in the Cancer Genome Atlas (TCGA) cohort show CNA

amplifications within the 8q22.2 region (https://www.cbioportal.org). The 8q22.2 amplicon

can further be defined by a minimal common or core region consisting of two genes, RNF19A
(ENSG00000034677) and SPAG1 (ENSG00000104450), that are present in all patients with

amplifications in this region. This region can be extended to seven genes from RNF19A to

VPS13B (ENSG00000132549), Ext1, and 15 genes from RNF19A to ERICH5 (ENSG00000

177459), Ext2 (Table 1).

When using mRNA gene expression data only the core amplicon definition could be repli-

cated due to a high variance in gene co-expression at the mRNA level.

Histopathological and clinical analysis of 8q22.2

Patient data are described in Table 2, with patients having a median age of 69 years (IQR:

60;77). Most patients were male (male: 259, female: 98) with advanced tumor stages (T3/

4 = 242, T2 = 115) and lymph node negative disease (N+ = 120, N0 = 214). Association of clini-

copathological data showed that patients with high mRNA expression in the RNA_Ampli-

con_Core are more likely to harbor lymph node positive disease, as compared to

RNA_NONAMP patients (p = 0.04) (Table 2). Additionally, the luminal subtype was identified

more often in patients with AMP_Core, as compared to NONAMP_Core patients

(DNA_AMP_Core: p = 0.029; RNA_AMP_Core: p = 0.01; DNA_Amplicon_Ext1: p = 0.048;

DNA_Amplicon_Ext2: p = 0.04) (Table 2). With regard to age, gender, tumor stage, and adju-

vant chemotherapy, no associations were detected (Table 2).

Univariable and multivariable survival analysis (DFS and OS) of the 8q22.2

region and genes in the TCGA cohort

Kaplan-Meier analysis of 5-year DFS and 5-year OS could not detect a statistically significant

prognostic influence of 8q22.2 amplicons, either at the DNA or RNA level on survival (S3 and
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S4 Figs). Univariable analyses of OS and DFS (HR (hazard ratio) [CI (95% confidence inter-

val)]; p-value) are summarized in Table 3, with age (�70 vs. <70 (HR [CI] 1.63 [1.19; 2.23];

p = 0.002), T stage (T3/4 vs. T�2) (HR [CI] 1.99 [1.36; 2.92]; p<0.001), and lymph node status

(N+ vs. N0) (HR [CI] 2.11 [1.52; 2.93], p<0.001) significantly influencing OS. T stage (HR [CI

2.59 [1.67; 4.03]; p<0.001) and lymph node status also (HR [CI] 2.59 [1.67; 4.03]; p<0.001)

significantly influenced DFS.

A univariable analysis of individual genes showed that RNA_HIGH_COX6C was signifi-

cantly associated with improved OS (HR [CI] 0.66 [0.43; 1]; p = 0.04), while RNA_HIGH_-

OSR2 was significantly associated with lower levels of DFS (HR [CI] 1.97 [1.2; 3.22]; p = 0.01)

(Table 3, Figs 2 and 3). No significant associations could be detected for any of the other ampli-

con genes at the RNA level.

Upon multivariable analysis of OS, age (HR [CI] 1.76 [1.24; 2.49]; p = 0.002) and lymph

node status (HR [CI] 2.05 [1.44; 2.91]; p<0.001) remained significant, while no significant

influence could be shown for any of the other variables (Table 3).

T stage (HR [CI] 2.31 [1.41; 3.79]; p<0.001) and lymph node status (HR [CI] 2.01 [1.36; 2.92];

p<0.001) along with RNA_AMP_OSR2 (HR [CI] 1.91 [1.15; 3.16]; p = 0.01), were significant

prognostic factors for the multivariable analysis of DFS. None of the other clinical and histopatho-

logic variables significantly influenced DFS in both the univariable and multivariable models.

Table 1. Core and extended 8q22.2 amplicons.

Genes in region Amplified patients (n = number) % of AMP patients in relation to the cohort

DNA_Amplicon_Core RNF19A and SPAG1 n = 58 16%

RNA_Amplicon_Core RNF19A and SPAG1 n = 30 8%

DNA_Amplicon_Ext1 RNF19A –VPS13B(seven genes) n = 50 14%

DNA_Amplicon_Ext2 RNF19A –ERICH5 (15 genes) n = 37 10%

Comparison of amplicons according to the extended amplified region and gene level. The percentage of AMP patients appears to be higher in DNA_Amplicons as

compared to RNA_Amplicons.

https://doi.org/10.1371/journal.pone.0248342.t001

Table 2. Patient demographics of AMP and NONAMP patients according to DNA_Amplicon and RNA_Amplicon definitions of amplicons in the 8q22.2 region.

Clinicopathologic variables DNA_Amplicon_Core RNA_Amplicon_ Core DNA_Amplicon_Ext1

DNA_Amplicon_Ext2

AMP NONAMP P-value AMP NONAMP P-value AMP NONAMP P-value AMP NONAMP P-value

Age � 70 30 143 0.59 14 159 0.84 28 145 0.25 23 150 0.08

< 70 28 156 16 168 22 162 14 170

Sex male 41 218 0.73 22 237 0.92 36 223 0.93 25 234 0.47

female 17 81 8 90 14 84 12 86

T stage �2 17 98 0.61 13 102 0.17 15 100 0.72 11 104 0.73

3/4 41 201 17 225 35 207 26 216

N stage N0 32 182 0.12 13 201 0.04 28 186 0.2 19 195 0.09

N+ 26 94 15 105 22 98 18 102

Adjuvant chemotherapy Yes 8 55 0.55 4 59 0.59 7 56 0.73 4 59 0.42

No 26 138 14 150 21 143 16 148

Molecular subtype (basal vs. luminal) luminal 41 169 0.029 25 185 0.01 35 175 0.048 27 183 0.04

basal 14 118 5 127 12 120 8 124

Comparison of clinical parameters between AMP and NONAMP patients for DNA Amplicon Core, DNA Amplicon Ext1, DNA Amplicon Ext2, and RNA Amplicon

Core. Significant p-values are highlighted in bold.

https://doi.org/10.1371/journal.pone.0248342.t002
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Validation of the biomarkers COX6C and OSR2

The median gene expression of normalized Ct values of OSR2 and COX6C was significantly dif-

ferent between both genes (COX6C: 30.62; OSR2: 34,53; p<0.001; S7 Fig). OSR2 mRNA overex-

pression (�median) showed a trend towards lower DFS rates (HR [CI] 4.54 [0.93; 22.16];

p = 0.06) and predicted significantly worse OS rates (HR [CI] 6.25 [1.37; 28.38]; p = 0.018). In

contrast to improved survival in the in silico analysis, COX6C overexpression (�median)

showed a trend towards worse OS (HR [CI] 2.6 [0.92; 7.29]; p = 0.07) and DFS (HR [CI] 3.05

[0.81; 11.52]; p = 0.099) in RT-qPCR data (Fig 4). Interestingly, selecting the 3rd quartile as a cut-

off point for COX6C overexpression resulted in a significant decrease in OS (HR [CI] 4.49 [1.69;

11.91]; p = 0.0026) and DFS (HR [CI] 4.29 [1.28; 14.42]; p = 0.018). In multivariable analyses

COX6C overexpression (�median) significantly predicted OS (HR [CI] 3.41 [1.05; 11.1];

Table 3. Univariable and multivariable analysis of Overall Survival (OS) and Disease-Free Survival (DFS) for amplicon definitions.

Clinicopathologic variables Univariable Multivariable

Overall survival Disease-Free Survival Overall survival Disease-Free Survival

HR (95% CI) P-value HR (95% CI P-value HR (95% CI P-value HR (95% CI) P-value

Age �70 vs <70 1.63 [1.19; 2.23] 0.002 1.23 [0.86; 1.77] 0.25 1.76 [1.24; 2.49] 0.002

Gender Male vs Female 0.81 [0.58; 1.14] 0.23 0.92 [0.62; 1.36] 0.66

T stage T3/4 vs T�2 1.99 [1.36; 2.92] <0.001 2.59 [1.67; 4.03] <0.001 1.5 [0.98; 2.32] 0.065 2.31 [1.41; 3.79] <0.001

Lymph node status N+ vs N0 2.11 [1.52; 2.93] <0.001 2.38 [1.64; 3.46] <0.001 2.05 [1.44; 2.91] <0.001 2 [1.36; 2.92] <0.001

Molecular subtype (basal vs. luminal) 1.28 [0.92; 1.77] 0.14 1.24 [0.85; 1.8] 0.26 1.19 [0.85; 1.7] 0.31

DNA_Amplicon_Core AMP vs NONAMP 0.91 [0.59; 1.4] 0.66 1.1 [0.7; 1.76] 0.66

RNA_Amplicon_Core AMP vs NONAMP 0.6 [0.32; 1.14] 0.12 1.04 [0.59; 1.82] 0.88 0.64 [0.32; 1.32] 0.22

DNA_Amplicon_Ext1 AMP vs NONAMP 0.79 [0.49; 1.28] 0.34 1.09 [0.67; 1.78] 0.73

DNA_Amplicon_Ext2 AMP vs NONAMP 0.74 [0.42; 1.31] 0.3 1.05 [0.6; 1.84] 0.86

RNA_AMP_COX6C HIGH vs LOW 0.66 [0.43; 1] 0.04 0.83 [0.53; 1.29] 0.4 0.76 [0.47; 1.22] 0.25

RNA_AMP_OSR2 HIGH vs LOW 1.54 [0.98; 2.43] 0.06 1.97 [1.2; 3.22] 0.01 1.41 [0.86; 2.32] 0.17 1.91 [1.15; 3.16] 0.01

Univariable and multivariable analysis of Overall survival (OS) and Disease-Free Survival (DFS), including clinicopathologic characteristics, amplicon definitions, and

gene definitions. Variables from univariable analysis with a p-value of <0.2 were entered into a multivariable model. P-values with a statistical significance of <0.05 are

highlighted in bold.

https://doi.org/10.1371/journal.pone.0248342.t003

Fig 1. REMARK diagram of the study cohort based on the TCGA cell 2017 MIBC cohort.

https://doi.org/10.1371/journal.pone.0248342.g001
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p = 0.04). In contrast to the in silico data, OSR2 overexpression (�median) was not an indepen-

dent prognostic factor for DFS (HR [CI] 4.3 [0.8; 23.21]; p = 0.09) (S11–S15 Tables).

Kaplan-Meier regressions showing (A) OS of OSR2 mRNA expression�median vs.<

median; (B) OS of COX6C mRNA expression�median vs.< median; (C) DFS of OSR2

mRNA expression�median vs. < median and (D) DFS of COX6C mRNA

expression�median vs.< median.

Note that an mRNA expression greater than the median is associated with a significantly

lower OS for OSR2 (p = 0.0066) and COX6C (p = 0.0287). OSR2�median is also associated

with a significantly reduced DFS (p = 0.0399).

Association of copy number alterations and mRNA levels in the 8q22.2

region

Concordance of DNA and mRNA level could only be assessed between the two core amplicon

definitions, and was significant between both definitions (p<0.001). Twenty-three patients

were identified as AMP by both 8q22.2 amplicon core definitions, with RNA_Amplicon_Core

showing a higher sensitivity (23 of 30 RNA_AMP_Core patients vs. 23 out of 58 CNA_AMP_-

Core patients). DNA_Amplicon_Core was associated with higher specificity (292 CNA_NO-

NAMP_Core out of 299 patients vs. RNA_NONAMP_Core 292 out of 327).

A classical amplicon definition would suggest an increase in transcript levels in DNA amplified

samples. As anticipated, RNF19A and SPAG1 showed a higher median gene expression in the

Fig 2. Univariable analysis of OS and DFS of individual genes according to RNA_AMP_Gene. (A) Forest plot

depicting hazard ratios (HR) with 95% confidence intervals (95% CI) of DFS of RNA_HIGH_Gene versus

RNA_LOW_Gene. Genes of the 8q22.2 region are arranged according to their genomic location on 8q22.2. � indicates

a p-value of 0.01. (B) Forest plot depicting hazard ratios (HR) with 95% confidence intervals (95% CI) of OS of

RNA_HIGH_Gene versus RNA_LOW_Gene patients. Genes of the 8q22.2 region are arranged according to their

genomic location on 8q22.2. � indicates a p-value of 0.04.

https://doi.org/10.1371/journal.pone.0248342.g002
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AMP group. A marked difference between both groups could also be observed for POLR2K
(ENSG00000147669), COX6C, and RIDA (ENSG00000132541). Interestingly, RGS22 (ENSG

00000132554), KCNS2 (ENSG00000156486), and NIPAL2 (ENSG00000104361) showed negative

gene expression in both groups. Several genes also showed a switch from negative gene expression

in the NONAMP group to positive gene expression in the AMP group (Fig 5, S3 Table) [38].

Median z-scores of mRNA gene expression of DNA_Amplicon_Core are shown in gray for

AMP and black for NONAMP. Genes are arranged in descending order based on the percent-

age of copy number amplifications (GISTIC2� 2) in MIBC. P-values: ��<0.001, �0.018 for

OSR2 and NS (p-value for RGS22 = 0.89; KCNS2 = 0.11 and NIPAL2 = 0.77.

Spearman coefficient analysis of correlations of mRNA expression of genes revealed a

strong correlation within the core region (Rho = 0.64, p<0.001). POLR2K, COX6C, and

RIDA2 were highly correlated (COX6C - POLR2K, Rho = 0.63 p<0.001; RIDA–COX6C,

Rho = 0.54 p<0.001; RIDA–POLR2K, Rho = 0.64; p<0.001). Interestingly, NIPAL2 and

VPS13B showed the highest correlation overall (Rho = 0.69; p<0.001). COX6C and ERICH5
showed multiple weak negative correlations with several genes (S10 Table).

Fig 3. COX6C and OSR2 are independent prognostic factors for survival in silico. (A) Kaplan-Meier regression showing disease-free survival (DFS) of

RNA_HIGH_OSR2 vs. RNA_LOW_OSR2. RNA_HIGH_OSR2 is associated with a statistically significant worse DFS compared to NONAMP (p = 0.006).

(B) Kaplan-Meier regression showing overall survival (OS) of RNA_HIGH_COX6C vs. RNA_LOW_COX6C. RNA_HIGH_COX6C is associated with

improved OS compared to RNA_LOW_COX6C (p = 0.0511).

https://doi.org/10.1371/journal.pone.0248342.g003

Fig 4. COX6C and OSR2 are independent prognostic factors for survival in RT-qPCR data.

https://doi.org/10.1371/journal.pone.0248342.g004
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Associations with genomic events and gene functions of the 8q22.2

amplicon

When analyzing mutations in 18 known oncogenes and tumor suppressor genes, the DNA_AMP_

Core showed a higher rate of mutations in TP53 (65% vs. 46%) and KMT2A (19% vs. 10%), as

compared to the DNA_NONAMP_Core. In contrast, FGFR3, CREBBP and ERBB2 were more

frequently mutated in the DNA_NONAMP_Core group (DNA_AMP_Core vs. DNA_NO-

NAMP_Core; FGFR3: 4% vs. 15%; CREBBP: 4% vs. 13%; ERBB2: 4% vs. 13%). (S5 Table)

Interestingly, there was a significant difference in the mutational status of ERBB2 between

the RNA_AMP_Core and RNA_NONAMP_Core. No patient in the RNA_AMP_Core group

showed mutations in ERBB2, whereas 13% of RNA_NONAMP_Core patients exhibited muta-

tions in this gene (p = 0.04). (S6 and S7 Tables)

Amplification of 8q22.2 was significantly associated with gains in 6p22.3, 1q23.3, 8q22.3,

3p25.2, 19q12, 1q21.2 and 7p21.1. Associated deletions included 1p36.11 and 3p14.2. 1q23.3,

8q22.3, 3p25.2 and 19q12 remained significant after correction for multiple testing was per-

formed (S8 Table). Biological and functional gene analysis revealed most genes in the 8q22.2

region to be involved in protein or RNA/DNA processing pathways (S5 Table).

RNF19A and FBXO43 (ENSG00000156509) are both involved in protein ubiquitination,

whereas POLR2K mediates the transcription of DNA into RNA. COX6C and STK3
(ENSG00000104375) show potential involvement in apoptosis, as cytochrome oxidases can

initiate the apoptotic process; however, STK3 produces a pro-apoptotic kinase, which is part of

the Hippo signaling pathway.

Discussion

Comprehensive molecular analysis within multiple levels of the genetic

code

This is the first in-depth comprehensive molecular characterization of the 8q22.2 region in the

MIBC genome using the TCGA cell 2017 cohort. This study highlights the importance of plac-

ing comprehensive characterization at the center of any analysis regarding the potential role of

restricted genomic regions in cancers. In this study, a comprehensive approach was used to

take the structure and genomic proximity of the region into account, and it included multiple

levels of the genetic code to allow for a more accurate assessment of interactions and gene

Fig 5. Median mRNA expression of DNA_Amplicon_Core between AMP and NONAMP groups.

https://doi.org/10.1371/journal.pone.0248342.g005
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activity. Once a restricted genomic region has been structurally defined, its correlation with

phenotype and prognostic impact on survival can be assessed using clinicopathologic and sur-

vival data. A similar concept has already been used by Jones et al., who used integrative analysis

of gene copy number alterations and mRNA expression to identify potential drivers of tumor

recurrence in breast cancer [39].

Genes of the 8q22.2 region exhibit typical and paradoxical patterns of copy

number alterations and RNA expression levels

While data from breast cancer and other cancers suggest that amplified CNA leads to subse-

quent mRNA overexpression, our results show that genes of the 8q22.2 region express a heter-

ogenous concordance pattern between CNA and mRNA gene expression levels [38, 40–42].

While the classical pattern of CNA amplification leading to mRNA overexpression seems to be

conserved in the core region of RNF19A and SPAG1, genes such as KCNS2 and NIPAL2 dem-

onstrate a contrasting pattern, with a higher median gene expression in non-amplified

patients. This paradoxical pattern of opposing CNA and mRNA expression levels has been

described in lung adenocarcinoma by Tokar et al., who proposed that epigenetic regulatory

mechanisms were responsible for these changes [43]. These mechanisms include microRNA-

mediated control of mRNA expression levels and methylation.

Genomic proximity of genes does not seem to be responsible for the heterogenous concor-

dance pattern observed between CNA and mRNA in 8q22.2, as KCNS2 and NIPAL2 exhibit a

paradoxical pattern and lie in the middle of the region, with STK3 between them, exhibiting

the classical CNA-mRNA expression pattern.

Additionally, potential tumor growth and progression in the CNA_AMP_Core group

could have increased through TP53 and KMT2A mutations, as this group harbored a higher

percentage of these mutations than did the CNA_NONAMP_Core. When investigating head

and neck squamous cell cancer cell lines, Cheng et al. found concurrent 3q26.3 amplification

and TP53 mutation to be associated with a reduced survival rate [44]. Additionally, Zhang

et al. found that KMT2A promoted melanoma cell growth by targeting the hTERT signalling

pathway [45]. Interestingly, FGFR3, CREBBP and ERBB2 were more frequently mutated in

the NONAMP group. Future research into the associations of 8q22.2 amplifications and muta-

tions in bladder cancer is needed.

Amplification of 8q22.2 could also be viewed in an overarching context of chromosomal

aberrations, as amplified patients showed significantly more frequent gains of 1q23.3, 8q22.3,

3p25.2 and 19q12, even after correcting for multiple testing. Concomitant gain of 3p25.2 was

also reported by Hurst et al. [21]. Findings by Riester et al. further support the association of

amplifications in specific regions of MIBC with survival, since gains in the 1q23.3 region were

associated with poor survival in two cohorts of metastatic urothelial carcinoma [15].

Additional investigations are necessary to determine whether 8q22.2 amplification is a rele-

vant genomic event in the pathogenesis of BC or simply a bystander of more complex chromo-

somal changes.

RNA_HIGH_OSR2 is an independent prognostic factor for survival

Analysis of the prognostic impact of individual genes of the 8q22.2 region revealed OSR2 to be

an independent prognostic factor for survival. RNA_HIGH_OSR2 was associated with a worse

prognosis for DFS (HR [CI]; 0.5 [0.32; 0.85]; p = 0.01) in the in silico analysis and decreased

OS (HR [CI]; 6.25 [1.37; 28.38]; p = 0.018) in RT-qPCR data.

While the exact role of OSR2 in tumorigenesis is unknown, its methylation appears to play

a role. Li et al. investigated the diagnostic value of OSR2 hypermethylation in gastric cancer
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patients and found significant differences in methylation status between cancer samples and

normal controls. The authors concluded that hypermethylation of OSR2 and two other genes

could provide a good alternative for non-invasive detection of gastric cancer [46]. Kostareli

et al. found that promoter hypermethylation of ALDH1A2, OSR2, GATA4, GRIA4, and IRX4
showed a significant inverse correlation to transcript levels in oropharyngeal squamous cell

carcinoma (OPSCC). A signature of low methylation levels in ALDH1A2 and OSR2 promoters,

as well as high methylation levels in GATA4, GRIA4, and IRX4 promoters correlated well with

improved survival in 3 independent patient cohorts [47].

Thus, the promotor hypermethylation status of OSR2 could be a potential predictor of sur-

vival in MIBC and a potential target of epigenetic therapies. In addition to copy number ampli-

fications on the 8q22.2 OSR2 promotor, methylation could potentially influence OSR2 mRNA

expression. Further research is needed to investigate this association.

Amplicon definitions are associated with unique respective

clinicopathologic variables

Comparative analysis should include two gene expression levels (CN and mRNA) in correla-

tions with phenotype and prognostic impact on survival. This is important because the prognos-

tic value of the 8q22.2 core region, containing amplifications of RNF19A and SPAG1, seems to

be highly dependent on the chosen amplicon definition. A potential relationship between an

mRNA defined amplicon and lymph node status may exist, as RNA_AMP_Core patients were

more likely to show lymph node positive disease. This is consistent with research conducted by

Lindquist et al., who found gains in 22 genes on chr3p25 and chr11p11, which remained signifi-

cantly associated with lymph node involvement in MIBC. The addition of CNA data improved

discrimination relative to the use of clinical variables alone (p = 0.04). Gains in chr3p25 and

chr11p11 were further associated with shorter overall survival periods [14].

Associations of chemotherapy resistance and 8q22 amplification have been shown by other

groups. Clearly additional experiments are needed to address the potential involvement of

8q22.2 in treatment resistance [48, 49].

Furthermore, luminal subtype MIBC may be associated with the presence of amplicons, as

patients with core and extended amplicons in the 8q22.2 region were more likely to harbor a

luminal subtype. The luminal infiltrated subtype shows a mesenchymal expression signature

[7]. Thus, genes on 8q22.2 involved in mesenchymal differentiation, such as COX6C, could

play a role in the pathogenesis of luminal MIBC. Further studies in this regard are essential in

order to understand the underlying mechanisms.

This study has several weaknesses, including a lack of uniformity in techniques, algorithms,

bioinformatics, and definitions used for the in silico investigation of amplicons in cancer.

Results of this study should be interpreted cautiously due to the heterogeneity of the

cohorts, the small sample size of the validation cohort and the use of varying overexpression

definitions (z-scores and median). Validation in larger independent cohorts is needed.

Additionally, we could not address the relevance of balanced or unbalanced gains because

loss of heterozygosity was not assessed.

Nonetheless, our study is the first one to highlight the significance of the 8q22.2 region in

MIBC and to identify potential targets in this region.

Conclusions

High OSR2 mRNA levels are associated with decreased DFS in silico and OS in RT-qPCR

data, respectively, and could serve as a potential biomarker for MIBC. Although
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RNA_Amplicon_Core mRNA expression is high in lymph node positive patients, future

research on this association is necessary.

The typical pattern of CNA and high mRNA expression could not be validated in every

gene of the 8q22.2 region, as some genes showed an inverse relationship between CNA and

mRNA expression.

The associations found in this study were detected through an in-depth and comprehensive

molecular characterization, which included multiple levels of the genetic code and correlations

with phenotype and prognostic impact on survival.

Clearly, this approach needs to be further validated in large independent cohorts and other

genomic regions of MIBC.
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