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The non-coding control region (NCCR) of polyomaviruses includes the promoters for early and

late genes, a transcription enhancer and the origin of DNA replication. Particularly virulent

variants of the human pathogens BKPyV and JCPyV, as well as of simian virus 40 (SV40), occur

in vitro and in vivo. These strains often harbour rearrangements in their NCCR, typically deletions

of some DNA segment(s) and/or duplications of others. Using an SV40-based model system we

provide evidence that duplications of enhancer elements, whether from SV40 itself or from the

related BKPyV and JCPyV, increase early gene transcription and replicative capacity. SV40

harbouring subsegments of the strong cytomegalovirus (HCMV) enhancer replicated better than

the common ‘wild-type’ SV40 in the human cell lines HEK293 and U2OS. In conclusion,

replacing the SV40 enhancer with heterologous enhancers can profoundly influence SV40’s

infective capacity, underscoring the potential of small DNA viruses to overcome cell type and

species barriers.

The ever-growing family of polyomaviruses includes more
than a dozen distinct members detected in humans (Lim
et al., 2013; Yu et al., 2012). Of these, BKPyV and JCPyV,
together with the carcinogenic Merkel cell polyomavirus
(MCPyV), are the best-characterized ones. BKPyV and
JCPyV are known to infect a large part of the human popu-
lation worldwide (Egli et al., 2009). They usually remain
symptomless, but both of them can cause severe diseases in
immunocompromised individuals including organ trans-
plant recipients. BKPyV causes BKPyV-associated nephro-
pathy and haemorrhagic cystitis, while JCPyV causes
progressive multifocal leukoencephalopathy. The simian
virus 40 (SV40) is a close relative of BKPyV and JCPyV and
replicates particularly well in kidney cells of Old World
monkeys, including the rhesus monkey and African green
monkey (Butel & Lednicky, 1999). The genome of all poly-
omaviruses is organized as a circular double-stranded DNA
of ~5 kb with a non-coding control region (NCCR) located
between the divergently transcribed units of early and late
genes. The NCCR includes the early and late promoters, the
transcription enhancer and the origin of DNA replication.
Incidentally, the SV40 enhancer was the first enhancer to be
discovered and was, thus, the first example of this essential
class of eukaryotic regulatory elements (Banerji et al., 1981;

Moreau et al., 1981; Schaffner, 2015). Despite its conserved
function, the NCCR/enhancer region is the most variable
segment among polyomavirus genomes and can evolve
quickly. Over time, evidence has accumulated that this vari-
ability can affect host cell preference (Couture & Lehman,
1993; Katinka et al., 1980; Ondek et al., 1987; Rochford
et al., 1987; Schirm et al., 1987; de Villiers et al., 1982;
White et al., 2009). The archetypal, commensal forms of
BKPyV and JCPyV do not contain repeats in their NCCRs,
but duplication and/or deletion of sequences turned out to
be a hallmark of particularly virulent patient isolates and of
laboratory strains of BKPyV (Bethge et al., 2015; Gardner
et al., 1971; Gosert et al., 2008; Seif et al., 1979; Sundsfjord
et al., 1990; Watanabe et al., 1984) and JCPyV (Gosert et al.,
2010; Padgett et al., 1971). Importantly, it has also been
suggested that NCCR rearrangements in JCPyV and BKPyV
help the virus to overcome restrictions of cell type specific-
ity and, thereby, contribute to the spread of pathology. Sim-
ilarly, the archetypal SV40 from monkey isolates does not
contain direct repeats but the laboratory strain commonly
referred to as ‘wild-type’ has two tandem copies of a 72 bp
enhancer segment (Ilyinskii et al., 1992; Lednicky & Butel,
1997; Lednicky et al., 1998; Newman et al., 1998). Such
NCCR rearrangements were suspected to duplicate
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activating sequences and remove inhibitory ones. Interest-
ingly, the genuine SV40 enhancer can be substituted with
enhancers from unrelated viruses or from cellular genes, as
was shown by the so-called ‘enhancer trap’, a selection sys-
tem that utilizes an SV40 genome lacking the 72 bp repeats
and adjacent enhancer sequences to regain infectivity by
incorporating heterologous enhancer-active DNA segments
(Günther et al., 2012; Weber et al., 1984). In the current
work we have focused on the enhancer segments of SV40,
BKPyV, JCPyV and of human cytomegalovirus (HCMV)
for their ability to alter the host range of SV40, thus expand-
ing on preliminary findings that a synthetic enhancer
assembled from transcription factor binding sites can facili-
tate SV40 early gene expression and DNA replication in
human embryonic kidney-derived cells (Günther et al.,
2012). These studies are important since dual infections
involving BKPyV, HCMV and SV40 have been reported in
immunosuppressed transplant patients (Li et al., 2002;
Nada et al., 2005). Moreover, co-infections and subsequent
rearrangements can contribute to a broader cell and host
tropism, at least in vitro (Henriksen et al., 2014;
Kristoffersen et al., 1997; Myhre et al., 2010), and possibly
support interaction, adaptation and pathology of polyoma-
viruses in new species including humans (Rinaldo & Hirsch,
2013).

First we tested two major forms of SV40: the archetypal one
with only one 72 bp enhancer segment and the laboratory
776 strain with two copies. Since the SV40 archetype grew
almost as fast as the wild-type in monkey kidney CV-1 cells
(not shown), both viral forms were tested by competition in
a co-transfection experiment. Even if the archetype was ini-
tially present in fourfold excess, it was swiftly overtaken by
the laboratory strain such that in a second round of mixed
infection, seeded with an aliquot of culture supernatant
from the first round, only the laboratory strain with two
72 bp repeats was detectable (Fig. 1a). This result indicates
that duplication of an active subsegment can confer a robust
competitive advantage over the shorter form, despite the
fact that there is, in principle, redundancy in the informa-
tion content of enhancers (Schaffner et al., 1988).

Besides the 72 bp segment, which occurs in one or two cop-
ies, the SV40 promoter contains three imperfect repeats of
21 bp, each harbouring two binding sites for the tran-
scription factor Sp1. Viral growth efficiency in CV-1 cells
was reduced when only one or two copies of this 21 bp seg-
ment were present [Fig. 1b; see also Barrera-Saldana et al.
(1985)]. In the same setting we also tested NCCR enhancer
segments that had become repeated in strains of BKPyV
and JCPyV upon their adaptation to growth in cell culture.
SV40 lacking its own 72 bp repeats was reconstituted with
one or more of these segments, transfected into CV-1 cells,
and the efficiency of virus propagation was monitored. As is
evident in Fig. 1b, the time to lysis was less for viruses con-
taining repeated enhancer segments, in support of the
model that this usually results in faster virus growth. The
relatively weak activity of archetypal, non-repeated
enhancers in SV40, BKPyV and JCPyV must nevertheless be

of biological relevance - it probably helps these viruses to
remain under the radar in immunocompetent hosts.

We also tested the different repeat numbers for their tran-
scriptional efficiency. For this we used the versatile globin
gene-based reporter system (Westin et al., 1987). Enhancer
segments were inserted upstream of the reporter’s TATA
box and transcript levels determined by the S1 nuclease
assay. Note that reporter and reference genes do not repli-
cate in transfected cells, which precludes possible confound-
ing effects due to template copy number variation. The
assay also indicates the location of the transcription start
from the genuine reporter cap site and thus would reveal an
altered transcription initiation, for example from within the
enhancer. Three cell lines were tested: monkey CV-1,
human embryonic kidney-derived HEK293, and mouse
fibroblast-type Dko7 cells (Fig. 1c–e). In CV-1 cells, the
number of 21 bp promoter segments and 72 bp enhancer
SV40 repeats correlated with transcriptional activity; the
BKPyV and especially the JCPyV repeats were weakly active
(Fig. 1c). Of note, while transcriptional activity is clearly
correlated with viral growth, the relationship did not appear
to be linear; SV40 with BKPyV repeats grew better in CV-1
cells than would be expected from the transcript quantifica-
tion (Fig. 1b vs c). This might indicate a contribution of
SV40 sequences in the viral growth assay (see also below).
In HEK293 cells, the BKPyV enhancer repeats were highly
active and repeat numbers correlated well with transcrip-
tional activity; even a single copy outperformed the SV40
enhancer, which was only poorly active in these cells
(Fig. 1d). Given the strong activity of BKPyV enhancer
repeats in HEK293 cells, we wondered whether SV40 with
two or three BKPyV repeats would be able to productively
multiply in these cells. To this end, cloned viral genomes
were liberated by restriction digestion and transfected. After
two, four and six days, the supernatant medium was ana-
lysed for viral load. As shown in Fig. 1f, in human cells the
SV40-BKPyV recombinants yielded almost two orders of
magnitude more virus than the wild-type SV40 (2�72 bp),
again indicating that the repeated enhancer segments of the
(rearranged) BKPyV Dunlop strain work well in HEK293
cells. Our findings also suggest that the BKPyV enhancer
cooperates well with the SV40 early promoter. In this
context we note that archetypal BKPyV neither produces
T antigen nor replicates in HEK293 cells unless large T anti-
gen is provided in trans in modified, so-called HEK293TT
cells (Broekema & Imperiale, 2012). Furthermore, the
archetypal BKPyV early promoter is weak even in natural
host cells like human kidney RPTECs – most likely because
it contains only a single Sp1 site compared to six in the
SV40 promoter (Bethge et al., 2015).

In the next set of experiments, we tested the ability of the
enhancer of the immediate early-1 gene of HCMV for its
ability to promote SV40 growth, relative to the perfor-
mance of the genuine SV40 enhancer. The HCMV
enhancer, unlike the one of SV40, is strongly active in a
great variety of cells and thus widely used in biotechnology
for protein production in mammalian cells. A genomic
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Fig. 1. Effect of duplication of enhancer segments on viral growth. (a) Growth competition between SV40 harbouring one 72 bp

enhancer segment (archetype) vs two 72 bp segments (‘wild-type’ lab strain). Top, schematic of the control region for early tran-
scription in the two strains tested. The cloned SV40 genomes containing 1�72 bp (archetype; light orange bar) or 2�72 bp
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HCMV segment harbouring the enhancer was fragmented
by sonication, mixed with an enhancerless linear SV40
genome and transfected into CV-1 cells. Using the
‘enhancer trap’ selection system (Fig. 2b) (Boshart et al.,
1985; Günther et al., 2012; Weber et al., 1984), we obtained
ten chimeric SV40-HCMV viruses, containing indepen-
dent, but overlapping, enhancer inserts of various lengths
and orientations relative to early transcription (Fig. 2c). In
separate infections of CV-1 cells, most of the clones grew
well but the one with the shortest HCMV insert (no. 10)
performed poorly in this and other experiments. In the
monkey cells, however, SV40 multiplied faster than the
most efficient SV40-HCMV recombinant clone 7 (Fig. 2d).
To determine whether any of the SV40-HCMV clones
could propagate in human cells, a serial competition exper-
iment (similar to the one in Fig. 1a) was done with the
following four human cell lines: HEK293 (embryonic
kidney-derived), U2OS (osteosarcoma), HepG2 (hepa-
toma) and Hela (cervix carcinoma); monkey CV-1 cells
were used as a control. We used HEK293, rather than the
derived, widely used HEK293 T cells because the latter con-
stitutively express SV40 T antigen, which would have con-
founded the results. An equimolar mix of recombinants
was ensured by quantifying viral genomes from lysate
supernatants. From each cell type, two dishes were infected:
one received only the ten SV40-HCMV recombinants; in
the other one SV40 was also included. After seven days,
cells and supernatants were harvested and processed as
indicated in Fig. 2e. DNA bands from the fourth round of

selection were cloned and individual colonies were
sequenced. Selection in HepG2 and HeLa cells was discon-
tinued after the first round because no viral DNA was
detectable. Interestingly, even though all of the recombi-
nants harboured overlapping segments of the HCMV
enhancer, the competition indicated some cell type prefer-
ences (Fig. 2f): in HEK293 cells, clone 6 emerged as the
predominant virus; clone 1 was strongly represented in
U2OS cells but played at the most a minor role in HEK293
cells. Unlike the situation in monkey CV-1 cells, SV40 was
not able to compete in these human cells with the more
efficient chimeric SV40-HCMV clones. Also in another
experiment with human embryonic retinoblast-derived 911
cells, clones 5, 6, 7 and 9 replicated faster than SV40 (not
shown). Thus, with the heterologous HCMV enhancer,
SV40 readily multiplied in three of the five tested human
cells (HEK293, U2OS and 911), in line with the concept
that the transcription enhancer is a major determinant of
SV40’s cell type and species specificity.

Taken together, these results underscore the functional

plasticity of the enhancer elements in polyomavirus

NCCRs, which can subvert the replicative restriction occur-

ring in host cell types not primarily infected (secondary

host cell tropism). The in vitro experiments here suggest

that in the absence of a functional immune control, re-

arrangements including enhancer recombinations in

the case of co-infections might not only contribute to

organ pathology, but enhance cross-species transmission.

(wild-type; deep orange) were liberated by BamHI cleavage from the vector plasmid, mixed in ratios of 1 : 1, 2 : 1 and 4 : 1 (100
+100 µl, 200+100 µl, 400+100 µl) and transfected into CV-1 monkey kidney cells by the calcium phosphate method. After the
spread of infection, viral DNA was extracted from the cells by the alkaline precipitation–neutralization method, digested to distin-

guish the fragents containing 1�72 bp vs 2�72 bp, run on an agarose gel and quantified. A 300 µl portion of centrifuged medium
supernatant was used to infect a new dish of CV-1 cells and the procedure repeated. Upon re-infection, cell lysis and analysis,
only bands with the double 72 bp repeat were visible. (b) Effect of single and multiple repeat elements on SV40 growth. The three

21 bp repeats [green; SV40 genome position (pos.) 41–103] with binding sites for Sp1 transcription factor are considered part of
the early promoter, rather than the enhancer. Diminished copy numbers of this segment (2�, 1�) also affect virus growth. The
SV40 72 bp repeats (orange; pos. 107–250) were replaced by three, two, or one repeat derived from the BKPyV ‘Dunlop’ lab

strain (blue; pos. 149–333); SV40 recombinants with one or two 98 bp segment from JCPyV were also generated (purple; pos.
12–206). For each construct, three independent transfection mixes were prepared to transfect in parallel three dishes of CV-1
cells. Dishes were regularly inspected for the progress of the infection; the day when half of the cells were dead, with a shrunken
nucleus and ready to detach from the dish, was taken as the endpoint (shown on the righthand side). The enhancer segments cor-

respond to those of virus strains 776 (SV40) (Fiers et al., 1978; Reddy et al., 1978), Dunlop (BKPyV) (Seif et al., 1979) and Mad-1
(JCPyV) (Frisque et al., 1984). (c–e) Transcript levels induced by different copy numbers of enhancer repeats. The enhancer
region of each construct shown above was subcloned into the OVEC reporter gene (Westin et al., 1987), and transfected

together with a reference gene (OVEC-REF) into the three indicated cell lines (monkey kidney CV-1, human embryonic kidney-
derived HEK293, and mouse fibroblast-type Dko7). Two days later, RNA was extracted and quantified by S1 nuclease mapping.
Transcript levels with SV40 wild-type repeats were set to 1. The colour code of the bars is as in (b). The error bars, showing SEM,

are derived from two independent transfection experiments. (f) Recombinants with two or three enhancer repeats from BKPyV
outperform SV40 if tested for virus production in HEK293 cells. Cells were transfected with virus genomes liberated by KpnI
digestion from the vector plasmid. Two, four and six days after transfection, supernatant samples were collected, and cell debris
was removed by centrifugation. Quantification of DNaseI-protected SV40 genomes was carried out by quantitative PCR (Taq-

Man) on an ABI 7500 (Thermofisher) as described (McNees et al., 2005). Three parallel quantifications of each sample yielded
essentially identical results; thus error bars are not visible. Virion production was verified by infection of CV-1 cells (not shown).
Virus growth is in agreement with the poor activity of the SV40 enhancer in these human cells (Günther et al., 2012) and the high

activity of the BKPyV segments (d).
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Here, transplant patients might represent a critical, under-
estimated mixing vessel.
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