Ghadessi et al. Orphanet Journal of Rare Diseases
https://doi.org/10.1186/513023-020-1332-x

(2020) 15:69

Orphanet Journal of
Rare Diseases

REVIEW Open Access

A roadmap to using historical controls in
clinical trials — by Drug Information

Check for
updates

Association Adaptive Design Scientific
Working Group (DIA-ADSWG)

Mercedeh Ghadessi', Rui Tang® ®, Joey Zhou®, Rong Liu*, Chenkun Wang?, Kiichiro Toyoizumi®, Chaoqun Mei,

Lixia Zhang®, C. Q. Deng® and Robert A. Beckman'®

Abstract

provides a roadmap for using HCs.

world data, Real world evidence

Historical controls (HCs) can be used for model parameter estimation at the study design phase, adaptation within
a study, or supplementation or replacement of a control arm. Currently on the latter, there is no practical roadmap
from design to analysis of a clinical trial to address selection and inclusion of HCs, while maintaining scientific
validity. This paper provides a comprehensive roadmap for planning, conducting, analyzing and reporting of studies
using HCs, mainly when a randomized clinical trial is not possible. We review recent applications of HC in clinical
trials, in which either predominantly a large treatment effect overcame concerns about bias, or the trial targeted a
life-threatening disease with no treatment options. In contrast, we address how the evidentiary standard of a trial
can be strengthened with optimized study designs and analysis strategies, emphasizing rare and pediatric
indications. We highlight the importance of simulation and sensitivity analyses for estimating the range of
uncertainties in the estimation of treatment effect when traditional randomization is not possible. Overall, the paper
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Background

Scientists may decide to use only historical control
data to fully or partially replace a concurrent control.
Especially when there are either ethical concerns in
recruiting patients for control arms in life threatening
diseases with no credible control arm, it is clear that an
alternative source of control data is essential. Secondly,
challenges in developing underserved indications [1]
may be partially ameliorated by historical controls, mak-
ing drug developers more likely to invest, as programs
will be somewhat more cost-effective. In particular, by
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reducing required patient numbers, historical controls
may make enrollment of rare disease trials more feasible.

Historical data including, but not limited to, histor-
ical controls can also be used either at the study design
phase for refining parameter estimations or for adapta-
tion within a study [2]. An interesting example of the
latter is the use of maturing phase II data to govern ad-
aptations at the interim analysis in a phase III study [3].
In a phase III study with time to event (TTE) endpoints
that take time to develop, interim analyses are usually
performed using data from within the phase 3 study. In
this conventional approach, one must either perform the
interim adaptation based on a very small amount of im-
mature data concerning the slowly developing definitive
endpoint, or rely on a rapidly developing surrogate end-
point that correlates imperfectly with the definitive
endpoint.
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Alternatively, one may use historical data from a previ-
ously conducted phase II study to govern the adaptation
within the phase 3 study, which would then allow the
adaptation to be governed by a larger amount of mature
definitive endpoint data [2]. This example is one of
many of using historical data for study design or adapta-
tion. The example differs from the other examples in
this paper in two important respects: First, the example
involves use of historical data of treatment effect, not
just a historical control; Second, the historical data, are
not part of the final confirmatory evidence package sub-
mitted for approval, which is limited to data within the
phase 3 study only.

Similar to any other approaches, use of HCs is not al-
ways the best approach as there are pros and cons asso-
ciated with it. Thus, researchers should plan for
simulation and thorough sensitivity analysis, and account
for and interpret the results with caution. When HCs
are part of the final confirmatory package, this paradigm
should be reserved for carefully selected products and
clinical conditions in which RCTs are not practical [1, 4,
5]. Using HCs requires a robust justification and involve-
ment of regulatory bodies early on for non-RCT phase
III clinical trials [6].

Resources of HCs

In general, one is searching for HC data that is as similar
as possible to the patients being enrolled in the study of
interest. Similarity of patients should go beyond the
standard baseline characteristics to include other consid-
erations such as the healthcare environment, back-
ground therapy, progress in the standard of care,
psychological effects, etc. Data may come from different
sources with a variety of structure and quality, which re-
sults in different biases and concerns for use of different
types of HCs. This must be accounted for when a deci-
sion is made to use HCs in a clinical trial [3, 7, 8]. Here
we list main resources of HCs in the current practice
and discuss the pros and cons using those resources and
our recommendations.

Real world data (RWD)

It can exist across a wide spectrum, ranging from obser-
vational studies within an existing database to studies
that incorporate planned interventions with or without
randomization at the point of care [9]. Medical charts,
published data of off-label use, registries and natural his-
tory studies are all examples of real world data. In
addition, RWD includes any data relating to patient
health status and/or the delivery of health care routinely
collected from a variety of sources [10]. Studies lever-
aging RWD can potentially provide information on a
wider patient population that cannot be obtained
through classic clinical trials. An existing RWD source,
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however, may have inherent biases that could limit its
value for drawing causal inferences between drug expos-
ure and outcomes. To mitigate the potential bias, a study
protocol and analysis plan should be created prior to
accessing, retrieving, and analyzing RWD, regardless of
whether the RWD are already collected retrospectively
or if they are to be collected prospectively. Protocols and
analysis plans for RWD should address the same ele-
ments that a classic clinical trial protocol and statistical
analysis plan would cover. When considering a prospect-
ive study design, one should consider whether RWD col-
lection instruments and analysis infrastructure are
sufficient to serve as the mechanism for conducting the
study or is it possible to modify them for such a pur-
pose. Ultimately, if the sources of bias can be mitigated,
RWD collected using a prospective study design may be
used to generate or contribute to the totality of the evi-
dence regarding the control arm. The increased use of
electronic data systems in the healthcare setting has the
potential to generate substantial amounts of RWD. Be-
cause of its nature, the quality of RWD can vary greatly
across different data type and sources. For the relevance
and reliability of RWD, RWD sources and resultant
analysis please see Appendix 1. Below some of these
resources are discussed further.

Medical chart

It is a complete record of a single patient’s medical his-
tory, clinical data and health care information at a single
institution, maybe supplemented by prior institutions,
which is usually incomplete. It contains a variety of med-
ical notes made by a physician, nurse, lab technician or
any other member of a patient’s healthcare team, as well
as laboratory, diagnostic and therapeutic procedures
data.

Even though the majority of older paper charts have
been replaced by digital electronic heath records (EHR),
the structure and quality of data is still challenging to
work with due to frequent missing data, inaccuracies, and
difficulties in extracting unstructured free text information
in medical notes, the most informative component.

Even though concurrent patients can be selected, there is
a possibility of introducing a patient selection bias, as it
has shown in several studies that patients from clinical trials
tend to have better outcomes than those seen in routine
practice. This could be due to the variability of quality of
routine practice in different regions [11-13]. Regardless of
available matching techniques, it must be borne in mind
that the characteristic that clinicians use for patient selec-
tion when performing clinical trials are subtle and challen-
ging to quantify. In order to avoid this bias, it may be
advisable to consider a pragmatic clinical trial, i.e. a trial
in which the active arm data are also collected in a real
world practice setting. This increases the generalizability of
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the results to the real world at the expense of decreased ac-
curacy, increased missing data, and the need to strictly
minimize study complexity.

In the cases of ultra-rare diseases, medical charts
have been used as the basis for drug approval, e.g. CAR-
BAGLU (Carglumic Acid) for the treatment of the defi-
ciency of the hepatic enzyme N-acetylglutamate synthase
(NAGS), the rarest of the Urea Cycle Disorders (UCDs),
affecting fewer than 10 patients in the U.S. at any given
time and fewer than 50 patients worldwide. This drug was
approved in March 2010 based on a medical chart case
series derived from fewer than 20 patients and comparison
to a historical control.

Patient registry

It is an organized system that uses observational methods
to collect uniform data on specified outcomes in a popula-
tion defined by a particular disease, condition or exposure.
At their core, registries are data collection tools created
for one or more predetermined scientific, clinical, or pol-
icy purposes. Data entered into a registry are generally cat-
egorized either by diagnosis of a disease (disease registry)
or by drug, device, or other treatment (exposure registry).
There is also the option of using only data entered into
the registry concurrently. This “concurrent registry” op-
tion minimizes the impact of time dependent covariates,
such as improvement in supportive care for the condition
of interest, as well as stage migration, the process by
which increasing sensitivity of diagnostic techniques leads
to classification of less severely affected patients for a
given category over time [14, 15].

The interoperability of registries is dependent upon
the use of data standards. The quest for registry stan-
dards is complicated by the number of different regis-
tries, the variety of purposes that they serve, and the
lack of a single governor of registries. Data standards
are consensual specifications for the representation of
data from different sources or settings. Part of the chal-
lenge for standards observance is the reality that often
any given individual organization or registry project per-
ceives little immediate benefit or incentive to implement
data standards. Standards become vitally important,
when data is being exchanged or shared, often benefiting
a secondary user. Standardized data include specifica-
tions for data fields (variables) and value sets (codes)
that encode the data within these fields.

Even with standardization, there is a good chance of
frequent missing data in registries, as the culture of re-
cording evidence and information in current practice is
not comparable to what has been mandated in clinical
trials. Appendix 2 summarizes the recommendation by
Clinical Trials Transformation Initiative (CTTI) for
evaluating an existing registry [15-17].
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Natural history (NH) trial

NH trials track the natural course of a disease to identify
demographic, genetic, environmental, and other vari-
ables that correlate with the disease and its outcomes in
absence of a treatment [18, 19]. However, these studies
often include patients receiving the current standard of
care, which may postpone the disease progression. They
differ from registries in that they can be designed spe-
cifically to collect comprehensive and granular data in
an attempt to describe the disease, which may or may
not be present to varying degrees in a registry. These tri-
als are usually designed to address the special problems
of rare disease clinical trial designs, where there may be
little pre-existing information about natural history and
preferred endpoints for study. The trials are uncon-
trolled and non-interventional. As such, existing NH
trials are also a valuable source of HC.

If there are no pre-existing NH studies available, the
initiation of such studies has been recommended in par-
allel with early stages of drug development including
preclinical, prior to the initiation of interventional trials
[20]. Inclusion criteria of natural history studies should
be broad, to allow characterization of the heterogeneity
of the disease and the effect of covariates on outcome.
However, in many cases rare diseases are rapidly pro-
gressive or fatal and affecting children. The ethical justi-
fication for conducting non-interventional trials prior to
interventional trials under such circumstances may be
questionable, if it delays the interventional trials.

Instead, alternative approaches that involve adaptive
clinical trial designs are recommended [21, 22]. In some
cases, sponsors may have more incentive to address the
rare diseases directly instead of conducting a non-
interventional study. For instance, it may be difficult to
convince a sponsor to fund a NH study without proof of
concept for the therapy it is developing. Despite these
issues, NH studies have been used in some development
programs to approve therapies successfully (Appendix 3).

Completed clinical trials

Completed clinical trials for the drugs with the same
mechanism of action (MOA) or the same drug from pre-
vious phases of development are a great source of high-
quality data, since they are generated in a controlled
environment. The control (placebo or standard of care,
or SOC) arm of completed clinical trials can be treated
as a source of control data for an indication [23, 24].

Current use of HCs in pivotal clinical trials and the
regulatory outcome

Even though our focus is not limited to pivotal studies, we
illustrate the current use of HCs for approvals by regula-
tory agencies (Table 1). The majority of confirmatory clin-
ical trials using historical controls have indications in rare
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Table 1 Examples of HCs used in Clinical Trials for Approvals by Regulatory Agencies
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Drug Carglumic Acid or CARBAGLU Protein C Concentrate Lepirudin or REFLUDAN Antithrombin [Recombinant] or
Candidate (Human) or CEPROTIN ATRYN
Indication  Hyper-ammonaemia Protein C deficiency Immunologic type of Heparin- Hereditary anti-thrombin
associated thrombocytopenia deficient patients
Prevalence < 10 patients (US) < 20 patients (US) N/A N/A
of the < 50 (worldwide)
disease
Other No No No No
treatments
Approved 2010 2007 1998 2009
Division FDA-CDER FDA-CDER FDA-CDER FDA-CDER
Study Retrospective Case Series N/A Uncontrolled study Two prospective, single-arm,
Design open-label studies
Number of 23 subjects 18 subjects Two studies with 39 and 33 31 subjects
subjects Subjects
Endpoint  Ammonia levels Response for Platelet count recovery Incidence of thromboembolic
thromboembolic events events
Type of HC Natural history data N/A Registry data which PI Prospectively designed
established retrospective chart review
Source of  Subject at baseline N/A Subjects not treated with
the HC recombinant hirudin
Size of HC 23 subjects 21 subjects 91 subjects 35 Subjects
Method of  Descriptive statistics Descriptive Statistics Direct comparison Matching
application
Note HC was used only for secondary
endpoint due to the less
availability of platelet data
Drug Anagrelide or AGRYLIN Alglucosidase Alfa or Miglustat or ZAVESCA Blinatumomab or BLINCYTO
Candidate MYOZYME/LUMIZYME
Indication  Reduction of the elevated platelet ~ Pompe disease Type | Gaucher disease Adults relapsed/refractory Acute
count, thrombosis and ameliorate- Lymphoblastic Leukaemia
associated symptoms.
Prevalence N/A 1/40,000 live births 1/100,000 1-2/100,000 adults
of the
disease
Other No No Available No
treatments
Approved 1997 2006 2003 2017
Division FDA-CDER FDA-CDER FDA-CDER FDA-CDER
Study Self-controlled study RCT with two dose groups  Self-controlled study Single arm trial
Design
Number of  About 300 subjects 18 (9 subjects per dose Three studies include 28, 18 and 189 subjects
subjects group) 36 subjects
Endpoint  N/A Invasive ventilator-free sur-  Percentage change from baseline Complete remission
vival and survival rate in liver organ volume
Type of HC Natural history data at baseline Natural history data (Cross-  Natural history data at baseline Several kinds of data
sectional NH)
Source of  Subject at baseline Natural history data Subject at baseline Investigator database
the HC
Size of HC  About 300 subjects 62 subjects 82 subjects 1112 subjects
Method of  N/A Direct comparison for non-  Descriptive Statistics HC was used to show the
application inferiority inference. validity of efficacy threshold by
meta analytic approach.
Note Historical data collected For EMA, analysis with

over a 20-year span and

propensity score was also
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Table 1 Examples of HCs used in Clinical Trials for Approvals by Regulatory Agencies (Continued)
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Drug Carglumic Acid or CARBAGLU Protein C Concentrate Lepirudin or REFLUDAN Antithrombin [Recombinant] or
Candidate (Human) or CEPROTIN ATRYN
time trend observed. performed.
Drug Arsenic trioxide or TRISENOX Eteplirsen or EXONDYS Elbasvir and Grazoprevir or Nitisinone or ORFADIN
Candidate 51 ZEPATIER
Indication  Acute promyelocytic leukaemia Duchenne muscular Treatment of Chronic Hepatitis C  Hereditary Tyrosinemia 1
dystrophy (DMD) genotypes 1, 4 or 6 in adults
Prevalence  6/10,000,000 per year 20 / 100,000 N/A 1/100000
of the
disease
Other Yes No Newly available during the No
treatments development
Approved 2010 2016 2016 2002
Division FDA-CDER FDA-CDER FDA-CDER FDA-CDER
Study Single arm trial Placebo controlled study Parallel or single arm study Single arm study
Design followed by extension
study
Number of 40 subjects 12 subjects 1294 subjects from 3 studies 207 subjects
subjects
Endpoint  Complete remission Controlled trial: change Sustained virologic response Survival
from baseline of dystrophin
positive fibers
Extension study: 6MWT
Type of HC Registry data Registry data Previous clinical trial data Registry data
Source of  Hospital stored data Matching from 2 DMD Previous clinical trial data Survey result
the HC patient registries
Size of HC 27 subjects 13 subjects Depending on the trials 108 subjects
Method of  Just showed as reference Direct comparison One sample testing. Just showed as reference
application HC was used for efficacy
threshold.
Note Initially agency and Not a rare disease. Large improvement against
advisory panel voted historical data
against the approval
Drug Sodium Ferric Gluconate Sebelipase Alfa or Asfotase Alfa or STRENSIQ Cerliponase Alfa or BRINEURA
Candidate Complex or FERRLECIT KANUMA
Indication  Iron deficiency anemia undergoing  Lysosomal acid lipase Hypophosphatasia late infantile neuronal ceroid
chronic hemodialysis (Wolman disease) lipofuscinosis type 2
Prevalence N/A 1/500,000 1/100,000 1/100,000
of the
disease
Other Yes No No No
treatments
Approved 2001 2015 2015 2017
Division FDA-CDER FDA-CDER FDA-CDER FDA-CDER
Study Multiple dose historical control Historical control study Single-arm Single arm trial
Design study
Number of 88 subjects from 2 dosing groups 9 subjects 70 subjects from 2 studies 22 subjects
subjects
Endpoint  Change in Hemoglobin Time to Death Overall survival Response rate
Type of HC Registry data Natural history data Natural history data Natural history data
Source of  Subjects with oral Iron Retrospective clinical chart  Retrospective clinical chart Natural history cohort
the HC reviews reviews
Size of HC 25 subjects 21adjudicated as 48 subjects 42 subjects

appropriate for comparison
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Table 1 Examples of HCs used in Clinical Trials for Approvals by Regulatory Agencies (Continued)

Drug Carglumic Acid or CARBAGLU Protein C Concentrate Lepirudin or REFLUDAN Antithrombin [Recombinant] or
Candidate (Human) or CEPROTIN ATRYN

Method of  Direct comparison Direct comparison by Direct comparison by survival Matched analysis with HC
application survival analysis analysis

Note Another study also supported the

efficacy

diseases, where there are no approved therapies for SOC.
Other common applications for HC in the confirmatory
setting are: medical devices [9], label expansion, pediatric
indications, and small populations such as biomarker sub-
groups. ICH and FDA E10 guidance accept the use of ex-
ternal controls as a credible approach only in exceptional
situations, in which either the effect of treatment is dra-
matic and the usual course of the disease highly predict-
able and the endpoints are objective and the impact of
baseline and treatment variables on the endpoint is well
characterized. In the majority of cases listed in Table 1,
the treatment had either a large effect size and/or ad-
dressed a life-threatening disease with no treatment op-
tions, to be considered. However, the second example was
not an exceptional case like the others. It was a phase III
trial that used data from Phase II studies to determine the
null hypothesis. The approvals of the drugs have been
based on the totality of benefit-risk assessments, involving
a qualitative judgment about whether the expected bene-
fits of a product outweigh its potential risks. For example,
EXONDYS 51 (eteplirsen) that treats duchenne muscular
dystrophy was approved, although initially the agency
raised doubts about results from small sample size of 12-
patients and the advisory panel voted against the approval.

Minimize disadvantages of using HC in clinical
trials [25, 26]

As discussed in Resources of HCs section, there may be
potential biases in using HCs that have to be accounted
for. In classical designs, even though randomization and
blinding techniques do not guarantee the complete elim-
ination of unknown confounders, they reduce the chance
of bias and dissimilarity among the arms of a clinical trial.
In a non-randomized study, an external control group is
identified retrospectively, which potentially could lead to a
selection bias or a systematic difference among groups
that could affect the final outcome. These biases could
come from dissimilarity in a wide range of factors: patient
demographics may vary among different population; time
trends bias may occur when a control arm is chosen from
patients who were observed at some time in the past, or
for whom data are available through medical records; the
SOC treatment and concomitant medications may have
improved over the years; the severity of actual disease as-
sociated with a particular stage designation may have de-
creased due to more sensitive diagnostic technologies

(stage migration). For example, the medical devices and
the accuracy and precision of measurements may have im-
proved. It has been shown that untreated patients in HCs
have worse outcomes than a current control group in a
randomized trial [27, 28], possibly due to more stringent
inclusion and exclusion criteria in the trial, subtle selec-
tion bias, as well as improvement in medical care and po-
tential increased access to care. Moreover, assessment
bias or the lack of blinding of the investigator, patients
or healthcare personnel may also affect the evaluation of
subjective endpoints.

The literature is mostly focused on choosing an HC
that matches with the currently designed clinical trials
and reducing bias in the analysis. We recommend a dif-
ferent and more fundamental solution. If possible, start
with choosing a high-quality HC for the indication and
design the current study as closely as possible to the se-
lected HC. The recommendations are consistent with
Pocock’s Criteria published in 1976 [29]: Choosing an
HC with the same: a) Inclusion/Exclusion criteria, b)
type of study design, c) well-known prognostic factors,
d) study quality, and e) treatment for the control group
in a recent previous study in the design; and finally ei-
ther use a concurrent HC or adjust for biases such as
time dependent biases at the analysis step to the extent
feasible. For example, placebo control groups of concur-
rent clinical trials are preferred if possible. If a placebo
group is unethical, consider selecting trials with active
control groups that received the same SOC treatment
and design the trial as an add-on design using the same
SOC, provided there is no pharmacological antagonism
between the experimental therapy and the SOC and
there is an acceptable toxicity profile of the combination.
Otherwise, the rest of this paper provides guidance re-
garding selecting HCs for replacement or augmentation
of a control arm for an existing clinical trial design, in
case the existing clinical trial cannot be redesigned to
match closely with the selected HCs.

It is of primary importance to improve the quality and
usability of the data and subsequently increase the feasi-
bility of using HCs in clinical trials. Thus, we recom-
mend using standards as much as possible in HC data
collections. A standard has been developed by the Clin-
ical Data Standards Interchange Consortium (CDISC)
[30] for regulated drug development submissions and
drug safety. However, there are still some challenges.
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Missing data can have a substantial impact on registry
findings, as well as any clinical or observational study. It
is important to take steps throughout the design and op-
erational phases to avoid or minimize missing data; un-
derstanding the types of and reasons for missing data
can help guide the selection of the most appropriate
analytical strategy for handling the missing data, or the
potential bias that may be introduced by such missing
data.

Analysis methods can also help to minimize the disad-
vantages of using HCs in clinical trials. Several meta-
analysis methods have been developed to analyze the
historical data for epidemiology research, benchmarking
and comparison of drug efficacy for a specific indication,
developing the safety profile of a drug or device, market-
ing or hypothesis generation. Some of these methods are
applied on summary data, and some require individual
data. However, traditionally, this wealth of information
has not been used directly in the analysis of the current
data, which could increase the accuracy and precision of
estimated relevant endpoints. The challenges for doing
so are to determine: how much the HCs are similar to
each other and to the current data; what is the optimal
weight of the given HCs in the current analysis, in case
of conflict between HCs or with the concurrent control
data; and how to incorporate the HCs in the analysis
with minimum bias.

Overall, these analysis methods can be classified as
Frequentist and Bayesian. While Bayesian methods seem
flexible as the amount of historical information to be
combined with the study information can be adjusted
based on the similarity among different available datasets
(HCs and concurrent data), they have their own chal-
lenges. It's noteworthy that the combination of informa-
tion is not the same as “borrowing information”, since
the inference is based on the combined information and
not only on the study information with some borrowed
information from HCs. However, all the listed methods
use the “borrowing” term. There is no clear guidance of
selection of specific priors and how dynamic borrowing
is applied with control of the Type I error rate (i.e. the
probability of making type I error) [31]. No one solution
that works in all situations. Our recommendation is to
perform simulations and to create a benchmark (see
Appendix 4 and simulation section) to characterize each
method for comparison to help with the decision-
making process and, if using Bayesian methods, with the
choice of proper prior [32, 33].

Generally, the historical information is discounted in
recognition of the enhanced uncertainty when combin-
ing information from the past. Dynamic borrowing
controls the level of borrowing based on the similarity of
the historical control with the concurrent data. It bor-
rows the most from past data when the past and current
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data are consistent and the least otherwise. If you have
multiple HCs, the inter-trial variability is a measure of
the suitability of the dataset for borrowing [34—40]. On
the other hand, static borrowing sets a fixed level of bor-
rowing, which is not determined by the level of
consistency or inconsistency among the past and current
datasets. The control for Type I error when borrowing
can be addressed by simulation as discussed in the fol-
lowing sections. Recommendations for the use of simu-
lations are given in the FDA draft guidance for adaptive
designs released in 2018 [33].

Frequentist approaches

Normally frequentist approaches may involve analyzing
historical controls to estimate a threshold or parameter
required for a simulation in a hypothetical scenario or
balancing the population of different arms for a fair
comparison. For details on frequentist approaches please
refer to Appendix 4. The approaches can be further clas-
sified into two subgroups depending on whether individ-
ual data is available or only summary data. Mixed
Treatment Comparison (MTC) or network analysis,
Simulated Treatment OQutcome (STC), or Matching-ad-
justed indirect comparison (MAIC) work with summary
data [41]. If individual data is available, the Propensity
score (PS) method is commonly used to match or strat-
ify patients, to weigh the observations by the inverse
probability of treatment, or to adjust covariates [42—44].
However, King et al., argues that matching based on pro-
pensity score often increases imbalance, inefficiency,
model dependence, and bias [45]. They claim that “The
weakness of PSM comes from its attempts to approxi-
mate a completely randomized experiment, rather than,
a more efficient fully blocked randomized experiment.
PSM is thus uniquely blind to the often large portion of
imbalance that can be eliminated by approximating full
blocking with other matching methods”.

Threshold Crossing introduces a new framework for
evidence generation [1]. The HCs are used for estima-
tion of futility and success thresholds. A single arm trial
is conducted after obtaining these estimations. Bias-vari-
ance, a model suggested by Pocock [29], assumes a bias
parameter with a specified distribution as a representa-
tive of the difference between past and present. Test-
then-pool [37] compares the similarity of historical and
concurrent control data with significance level «. If they
are similar, it pools the HC and the concurrent control
data; otherwise discards HC. In other words, it borrows
nothing or all of the information from HCs.

Meta-analytical approach is a hierarchical modeling
approach, which uses a data model and a parameter model
to infer the parameter of interest (e.g. treatment effect). It
is normally mentioned in the context of Bayesian ap-
proach, but it can be performed using a non-Bayesian
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approach [see Appendix 4]. Adaptive Design allows adap-
tations or modifications to different aspects of a trial after
its initiation without undermining the validity and integ-
rity of the trial [46]. This topic is out of the scope of this
paper; however, one flavor of such design is Adaptive
Borrowing that adjusts the recruitment of a concurrent
control based on the evaluation of the similarity of HCs
and concurrent control via several interim analyses. The
Analysis can be performed using Bayesian and non-
Bayesian approaches.

Bayesian approaches
Most of the Bayesian methods aim for discounting or
down-weighting the historical control [34]. The power
prior method estimates an informative prior for the
current study. The informative prior is the product of an
initial prior (non-informative prior) and a likelihood
function of the parameters of a given model given the
HC data that is raised to a power between 0 and 1 («g).
The resulting ‘posterior’ is used as an informative prior
for the current study. Alphay can be set to a fixed value
(static borrowing) or can be set based on heterogeneity
of HCs and the current data (dynamic borrowing). As
mentioned before, Adaptive Designs can also use
Bayesian approaches for the analysis of the data.
Meta-analytic or hierarchical modeling applies dy-
namic borrowing by placing a distribution of the degree
of borrowing across current and historical controls, in
which its variation is controlled by the level of the het-
erogeneity of the data. Meta-analytic Combined
(MAC) and Meta-analytic Predictive (MAP) are two
approaches of meta-analysis. It performs a meta-analysis
of historical data and current trial data and infers the
parameter of interest at the end of the new trial. MAC
can be either a non-Bayesian or Bayesian approach using
non-informative or vague prior to estimate the MAC
model. MAP is a full Bayesian approach; it derives a
“MARP prior” from historical data by derivation of a pos-
terior distribution which expresses the information of all
HCs. In the next step it combines the estimated “MAP
prior” with the current trial data to get a posterior distri-
bution of the parameter of interest (such as treatment
effect) [See Appendix 4] [34]. The Offset approach,
however, recommends using simulation and graphical
tools to identify a range of plausible values for the true
mean difference between historical and current control
data. It argues that an estimate of bias based on com-
parison between the historical and new data gives little
guidance on the value to be chosen for discounting the
historical data. The offset approach claims that HC will
be almost completely discounted, without a strong
assumption regarding its relevance [47]. It should be
pointed out that the differences between the current trial
and HCs could be due to pure chance in sampling,
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specifically for rare diseases with small sample sizes. Ig-
noring HC information might lead to bias. Thus, add-
itional scientific input is warranted.

Sensitivity analysis

One crucial step in properly using HCs is performing sen-
sitivity analyses, beyond what has been proposed by FDA
for randomized clinical trials based on the primary ana-
lyses [48], to assess the robustness of the results. These
analyses should interrogate any assumptions or criteria
that could cause variation in the final result with regards
to using HCs as a component of a clinical trial, i.e. the im-
pact of cohort selection to address selection bias, the im-
pact of missing data on key results, the method of
matching patients with the historical controls, the level of
borrowing using different priors and methods (power
prior vs. mixed prior), the alteration of weighting factors
when using any weighing schemes, the impact of exclu-
sion of some historical controls when more than one is
used, the unmet components of Pocock’s requirements for
including a historical control, and the heterogeneity of his-
torical controls with each other and with the concurrent
control. Sensitivity analysis provides the full spectrum of
potential truth in the presence of biases [49].

Decision making

Quantitative methods to extrapolate from existing infor-
mation to support decision-making are addressed in a
recent EMA draft guidance [50]. Here we propose a de-
cision making tool (Fig. 1: Decision Making Diagram for
using HCs in Clinical Trials), a procedure for planning,
conducting, analyzing and reporting of studies using
HCs, or as a supplement to a concurrent control arm,
while maintaining scientific validity.

Simulation role

Clinical trials simulation plays a critical role in the
drug development process by quantifying and evaluat-
ing design operating characteristics and possible deci-
sions in the face of uncertainties [51]. It is also an
important tool for selecting methods for bias control
or for performing sensitivity analyses when HC is
used in a trial. The operational characteristics of the
design is of interest for Bayesian and frequentist ap-
proaches in order to assess the sensitivity of the
decision-making process. For the Bayesian approach, a
sensitivity analysis particularly for mismatch with
regards to historical control, might be of interest.
How to design, perform, and report such simulation
studies deserve further attention and standardization
[52]. Dejardin et al. demonstrate an example clinical
trial simulation being applied to compare the per-
formance among different Bayesian approaches for
borrowing information from HC data [53]. The case
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study was a phase III comparative study of a new
antibacterial therapy against Pseudomonas aeruginosa.
Since the target population, patients with ventilator
associated and hospital-acquired pneumonia, was a
rare condition, HC became an attractive option. After
identifying a non-inferiority combination design, mor-
tality rate at 14 days as the primary endpoint, and
maximum 300 subjects in total, the authors simulated
trial data based on specific knowledge, e.g. mortality
rate in randomized controlled studies. In order to re-
duce the impact of uncontrolled factors on HC valid-
ity, dynamic Bayesian borrowing was implemented to
control the weights on use of compatible and incom-
patible HC data. Bayesian approaches with three dif-
ferent power priors were compared with regards to
two outcomes: limited inflation in type I error and in-
crease in power. The simulation predicted comparable
performance among the three methods and therefore
recommended the one with easiest implementation.
This example illustrates best simulation practices and
the benefits of applying them in the context of HCs.
Best practices for simulation and reporting have re-
cently been addressed by the DIA ADSWG [52]. The

recent FDA draft guidance on Adaptive Designs also
gives recommendations on clinical trial simulations
[33] saying that simulations can be used to estimate
not only basic trial operating characteristics, e.g. type
I error probability and power, but also other relevant
characteristics for more complex adaptive designs,
such as expected sample size, expected calendar time
to market or time to study completion, and bias in
treatment effect estimates. The whole process is stan-
dardized in the diagram below (Fig. 2: Clinical Trial
using HCs Simulation Process) that can be general-
ized to any clinical trial simulation.

Simulation can also be used for the comparison of dif-
ferent methods for choosing the “best” model for a spe-
cific design. Le. One should compare the most effective
area, “sweet spots”, among these methods, with lower
MSE, lower type I error, and higher power compared to
others when borrowing (using Frequentist or Bayes ap-
proaches) from historical controls [54]. Borrowing re-
duces type I error and increases the power of the study
when the current control rate is close to the historical
observed rate. This is intuitive as we are borrowing in-
formation nearly identical to the true current value. As
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the true current control diverges from the observed his-
torical data, we can acquire reduced power (in one dir-
ection) and inflated type I error (in the other direction).
Assessing the magnitude and relative likelihood of these
costs in comparison to the possible benefits is the key
issue in determining whether historical borrowing is ap-
propriate in any given setting. In assessing a borrowing
method in terms of MSE, type I error, and power, we
can answer several questions. First, how broad the sweet
spot is and how much power increases. The larger a re-
gion, where borrowing dominates the separate analysis,
the more appealing the method will be. Second (and
most important for possible confirmatory trials), where
is the type I error and how much type I error inflation
occurs? Third, how much of a power loss do we have
when the true control is much lower than the historical
data? These three regions (reduced power, sweet spot,
and inflated type I error) create a decision problem in
deciding how and whether to adopt borrowing.

Fig. 3 shows a useful plot that can be generated via
simulation to compare the sweet spot of different
methods. This visualization shows type I error (lower
curves, right axis) and power (upper curves, left axis) on
the y-axis as a function of closeness of the event rate in
historical data to the true control event rate on the x-
axis for hierarchical models. Different line styles show
different methods. Borrowing behavior tends to be ‘flat-
ter’ for hierarchical models (blue curves), borrowing
moderately over a long range, while still displaying

dynamic borrowing (borrowing is reduced when the true
control rate is far from the historical data). This moder-
ate, long-range borrowing is also reflected in the type I
error inflation that has a lower slope than other methods
(although it still does reach reasonably high values).
Generally, the sweet spot of improved type I error and
higher power extends farther down (for values under
0.65) than other methods.

Finally, documented software (code) for all simula-
tions should be made accessible to all stakeholders

boundries of sweet spot range
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for reproducibility. However, if simulations are
computationally intensive or the code is complex, it
will be challenging to independently verify the
results [52].

Summary of recommendations

In Summary, for choosing a proper and high-quality HC
for a credible result in a non-randomized clinical trial,
the following steps are necessary in reduction of selec-
tion bias if the study design cannot be altered to mimic
the selected HCs with regards to the time trend, popula-
tion, change of SOC, logistics, and other risk factors.
The important prerequisite for choosing a proper HC is
to have a clear understanding of the disease, detailed
characteristics of the affected population, precise defin-
ition of the endpoint and clear definition of the diagno-
sis in terms of what and how it has to be measured. It is
also very important to know how to compare the
measurements between the treatment groups while
addressing interfering events such as rescue medication,
drop-outs, death, non-adherence, and non-compliance.
In other words, there has to be a very well-defined and
precise scientific question or objective and analytic plan
up-front before picking a historical control, so that the
selection bias and ad-hoc analysis are minimized.

In general, choosing a simple endpoint reduces the
complexity and subjectivity of the assessment and in-
creases the precision of measurement and clarity of
treatment efficacy. First, systematically review the litera-
ture for well-organized and maintained completed RCTs,
Natural Histories, RWD, and registries for reproducibil-
ity of the existing evidence. Guidance provided from sys-
tematic reviews and meta-analyses could be helpful.
Select an appropriately similar HC or HCs for the ex-
perimental setting. Explore and seek to understand the
similarities and differences of different resources. It is
recommended to choose more than one HC from differ-
ent sources to capture the heterogeneity of treatment
and the disease in different populations, which could
give an estimation of treatment effect in the real world.

Second, select an applicable approach to account for
biases in study design. Even with a well-thought design
and proper selection of HCs, we may not be able to elim-
inate all the biases due to differences between the concur-
rent treatment group and HCs. Thus, we still need to
consider adjusting for these biases by varying the level of
borrowing information using Bayesian or frequentist
methodologies (Section 7 and Appendix 4). If there are
several HCs for example, one might give a different weight
to HCs based on the variability or quality of the data. Ad-
just for selection bias by adjusting for patient’s covariance,
if the detailed data are provided [55-59]. Otherwise, use
summaries of baseline covariates. Use matching based on
distance metrics (e.g. Euclidean distance) for direct
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standardization or use propensity score for stratification
or covariate adjustment for indirect standardization in ob-
servational studies [60, 61]. Refer to Encyclopedia of Bio-
statistics for specialized methods for time-to-event
endpoints [62]. Address the assessment bias due to the
lack of blinding and randomization by recruiting patients
receiving placebo or SOC in a much smaller scale when
using HC, if possible and/ or have several blinded asses-
sors assess the endpoint to estimate the difference of
treatment effect between the arms.

Third, using simulation, plan for an extensive sensitiv-
ity analyses to demonstrate the robustness of the results
and to determine the weaknesses or strengths of the
analyses by varying assumptions, especially if there is no
concurrent control group and the comparison is solely
done with HCs [1]. Fourth, for any innovative approach,
it is highly recommended to include regulatory bodies at
the design stage to discuss and explore the potential
concerns and issues together. This would increase the
quality of the evidence for potential submission in the
future, as their familiarity with the approach would help
them to coach the scientist properly in the design of the
study. Fifth, document the nature of both historical
and/or concurrent placebo control groups used in your
study: Explain why and where these control groups are
needed. Explain how the external control groups were
chosen and what are the similarities and difference with
the current study design and population. Specify how
these differences have been addressed in the design and
the analyses. Report the results of primary and sensitivity
analyses with caution if there is no concurrent control
group and the comparison is solely done with HCs.

However, we acknowledge the difficulty of addressing
the above points for rare diseases. An alternative option in
a rare disease for which none of these resources are avail-
able is to prospectively design and implement a well-
thought registry or to conduct a natural history study,
which may require collaboration with external entities in a
larger scale and may delay therapeutic studies. In such
cases, it may be preferable to have a randomized thera-
peutic study than a natural history study in which no one
receives therapy. Adaptive designs such as the “informa-
tional design” that allow adaptation at the end of the study
may be useful for rare diseases where information for
designing a therapeutic study may be sparse [19-21].

Conclusion

FDA is embracing the use of RWD to open up opportun-
ities for more resourceful and innovative approaches, es-
pecially in orphan and rare diseases [63]. Consequently,
pharmaceutical companies are changing their traditional
mindset with development of new hybrid models for inte-
grated decision making. In this evolving era, pharmaceut-
ical and regulatory bodies may be more open to use of
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HCs as a replacement for or supplement to a concurrent
control when a concurrent control is either unethical or
impossible, or the condition under study is difficult to en-
roll. HCs introduce multiple biases compared to a concur-
rent randomized control. However, these biases may be
minimized by careful choice of HCs, design of the study
to mimic the HC conditions, and numerous other
methods for design, conduct, and analysis of the studies.
With careful attention to these approaches, we can apply
HCs when they are needed while maximizing scientific
validity to the extent feasible.

Appendix 1

Generally, current RWD data sources have not met our
standards below. However, in order to utilize RWD in fu-
ture clinical designs and in registration trials, we would
highly suggest the following as guidance. The relevance of
the RWD, RWD sources and resultant analysis is assessed
by evaluating several factors as outlined below

e RWD contains sufficient detail to capture the use of
the study drug, exposures and the outcome of
interest in the appropriate population;

e Data element available for analysis are capable of
addressing the specified question when valid and
appropriate analytical methods are applied (i.e. the
data are amenable to sound clinical and statistical
analysis);

e RWD and RWE provided are interpretable using
informed clinical / scientific judgement. Important
considerations for the assessment of this factor
include:

e Whether the use of the study drug in a real-
world population is representative as captured
within the data source, and is generalizable to the
relevant population being evaluated;

e Whether the RWD source is used regionally,
nationally and/or internationally

e The overall percentage of patient exposure to the
study drug that are captured in the RWD source;

e The validation protocols and resultant data that
are used to evaluate how well the RWD source
reflects the patient population’s experience;

e Whether the RWD study design, study protocol,
and/or analysis plan is appropriate to address the
regulatory question and capable of being
accomplished in a sufficiently timely manner

e Whether the RWD contains elements to capture
specific study drug identification information

e Whether the RWD adequately captures patient
history and preexisting conditions, as well as
follow-up information needed evaluate the
question being addressed;
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e Whether sufficient data elements are collected to
adjust for confounding factors that may impact
the exposure or outcome of interest;

e Whether any linkages performed are sufficiently
appropriate and account for differences in coding
the reporting across sources

e The RWD source reporting schedule, including
time interval between database close and release,
and length of reporting periods;

e The prior documented use of RWD source for
determining outcomes-based quality assessment,
validated predictive risk modeling, signal detec-
tion, performance improvement benchmarking,
and other clinically-meaningful uses;

e Whether the data elements collected are
sufficient for assessing outcomes;

e Whether supplemental data sources are available
and sufficient to provide any missing information
or evidence required for any informed decision.

The reliability of RWD, RWD sources, and resultant
analyses is assessed by evaluating several factors outlined
below. The primary factors include how the data col-
lected (data accrual), whether the people and processes
in place during data collection and analysis provide ad-
equate assurance that errors are minimized, and that
data quality and integrity are sufficient (data assurance).

O Data Accrual: To ensure the reliability of RWD, the
RWD source should have an operational manual or
other documentation that pre-specifies the data ele-
ments to be collected, data element definitions,
methods for data aggregation and documentation, and
the relevant time windows for data element collection.
B The preparedness of individual sites for complete
and accurate collection of RWD;
B Whether a common data capture form was used;
B Whether a common definitional framework was
used;
B Adherence to a common temporal framework for
collection of key data points;
B The timing of establishing the study plan,
protocol, and analysis plan relative to collection or
retrieval of RWD;
B The sources and technical methods used for data
element capture;
B Whether patient selection and enrollment criteria
minimize bias and ensure a representative real-world
population (e.g. all-come’s design, consecutive patient
enrollment);
B The timeliness of data entry, transmission, and
availability
O Data Quality Control: Data quality control is
essential for providing confidence in the reliability of
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RWD and RWE sources. Important factors for
considerations include:
B The quality of data element population;
B Adherence to source verification procedures and
data collection and recording procedures for
completeness and consistency;
B Completeness of data necessary for specified
analyses, including adjustment for confounding
factors;
B Data consistency across sites and over time;
B Evaluation of on-going training programs for data
collection and use of data dictionary at participating
sites;
B Evaluation of site and data monitoring practices, if
applicable;
B Use of data quality audit program

Appendix 2

Clinical Trials Transformation Initiative (CTTI) recom-
mendations to determine if an existing registry is appro-
priate for embedding clinical trials

O Assess whether the historical evidence generated by
an existing registry has demonstrated the reliability,
robustness, and relevancy necessary to provide a
platform for collecting data in an embedded clinical
trial to support regulatory decision-making, with assur-
ance of patient protections (Figs. 4 and 5) [15-17].

B Data are relevant:

B Data are adequate in scope and content

B Data are generalizable: Registry reflects high site

and patient participation rates compared with total

population

B Data are robust

B The registry should be designed to capture reliable

data from real-world practice (no protocol-driven

treatment)
O Assess if an existing registry contains the elements
needed to support a randomized clinical trial.
Satisfaction of all the following requirements suggests
that the existing registry, together with any appropriate
configurable elements, may provide high-quality evi-
dence suitable for regulatory decision-making:

B Are the data previously generated by the baseline

registry historically regarded as robust and reliable

(i.e., high-quality data)?

B Can the baseline registry and its dataset provide

the core data needed to answer the question at hand

(i.e., relevant or fit for purpose)?

B Can any processes or data not provided by the

baseline registry be added or the registry reconfigured

to accommodate these needs (e.g., programming to

allow identification of suitable trial participants or
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documentation of informed consent, modular add-on
datasets or linkages to other databases, and appropri-
ate data accessibility with maintenance of patient and
data privacy)?

Appendix 3
Several studies accepted by FDA based on natural his-
tory data

O Lysosomal Acid Lipase Deficiency presents a severe
to fatal outcome. KANUMA (Sebelipase Alfa) therapy
was developed for older children, which is less severe.
A large number of very severely affected infants was
identified. HC was very useful for approval for infant
based on survival analysis and growth failure.

O A disease that causes very brittle bones in infants,
children and adults that comes in variety of forms
called hypophosphatasia, which would impact how a
child would walk. The disease was assessed
retrospectively and helped for the approval of a drug
called STRENSIQ (Asfotase Alfa).

O Pompe disease is a progressive, multisystemic,
debilitating, and often fatal neuromuscular disease
characterized by a deficiency of acid alpha-glucosidase
(GAA), a lysosomal enzyme. The company subse-
quently conducted an open-label study of MYOZYME
(Alglucosidase Alfa) in patients with Pompe disease be-
cause it’s unethical to conduct a double-blind study for
patients who were likely to die soon. A total of 62 un-
treated patients from the natural history study who
closely matched the patients in the pivotal trial were
identified to serve as a historical control group [64].

A study rejected by FDA based on natural history

data:

O A natural history study was undertaken in parallel
with a Phase 4 study as a backup for Fabry disease,
because a treatment was on the market and the
company was concerned that patients randomized to
the placebo arm would drop out of the study. The
company had suggested to FDA that the patients in the
natural history study could serve as a control group.
However, FDA did not agree because only a minority
of patients in the natural history study qualified for the
Phase 4 trial and it was not possible to ensure that
patients from the historical database were comparable
to patients in the prospective study. FDA was also
concerned about the difficulty of adequately
determining and adjusting for important baseline
characteristics as well as the potential influence of
selection bias. In the end, the company was able to
conduct its Phase 4 study without using the natural
history study patients as a historical control group
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because patients assigned to the placebo arm stayed in
the trial [65].

Appendix 4
Details on frequentist approaches to analyzing clinical
trials with HC

« Naive Comparison compares the result of a trial
without using historical data with the result of using

historical trails side by side without any adjustment for
variation among the trials with regards to patient
population or the outcome of control arm. It is
depreciated as it does not adjust for trial variation;
however, it has been used in accepted Health
Technology Assessment (HTA) submissions.

+ Benchmarking combines several historical controls,
considering within and between study variations, then
the distribution of the expected outcomes for a new
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study for the same treatment could be constructed, and
a threshold for the expected outcome can be defined
[41].

+ Phase II “pick the winner” different experimental
drug is compared with a historical control. No
formal statistical comparison between the arms are
conducted, and the simple winner of the all arms is
the winner of the trial. It is appropriate for
comparison of multiple experimental regimens but it
is not appropriate for adding an experimental drug
to the standard of care [46].

« Assume drug A has enough evidence that is superior
compared to the SOC in a randomized clinical trial.
However, you need to show its superiority or non-
inferiority to a competing treatment (B) that is already
in the market and all that is available is published sum-
mary of the treatment B. How can you use this data
without conducting another lengthy RCT?
B Mixed treatment Comparison (MTC) or network
analysis is the standard approach. All the data for
treatment A and B with a common comparator are
collected. The relative effect estimates against the
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common comparator is obtained, and MTC is
performed to derive a summary estimate of A vs. B.
However, this method has challenges such as
handling heterogeneity between the studies properly.
B Simulated Treatment Outcome (STC) generates a
Prediction model for outcome of treatment A, the
simulated outcome for treatment A in trial B is
generated using Treatment B summary data, and the
result of the treatment A and B are compared. It may
introduce biases when the outcome model is not
linear such as PFS and OS, binary outcomes, and
counts.
B Matching-adjusted indirect comparison (MAIC)
adjusts the population receiving treatment A to
match average baseline characteristics of population
who received treatment B [41]. Then it compares the
outcome across balanced population.
« Propensity score (PS) is commonly used for adjusting
confounding factors, especially in observational studies.
PS is the probability of assigning a treatment
conditioning on baseline characteristics. It is used to
match patients, to stratify patients, to weigh the inverse
probability of treatment, or to adjust covariates, so that
the treatments groups would be comparable by
reducing the selection bias in terms of observed
baseline characteristics [42]. Since the matching and
stratification approaches are not using PS directly in
the analysis, they are less sensitive to misspecification
of the PS model. However, King et al. [45], argues that
matching based on propensity score often increases
imbalance, inefficiency, model dependence, and bias.
They suggest that researchers should use other
matching methods for example matching based on
distance metrics (Malhanobis or Euclidean distance)
instead and use PS for many other productive
applications such as regression adjustment and inverse
weighting.
« Threshold Crossing is inspired by three concepts of
dynamic borrowing using a multi-stage approach, ICH
E10 guidelines, and a non-inferiority margin that has to
be predetermined before the trial with the help of sys-
tematic review of preexisting studies. It introduces a
new framework for evidence generation. It defines an
estimand by defining the treatment-eligible population,
the measurable variable of interest, the measure of
intervention effect, and the impact of interfering events
such as non-compliance, death, rescue medication, etc.
It predefines the agreement on the rules for estimation
of the variable of interest in the historical controls. The
HCs are selected in an unbiased and the estimation is
performed. Using the estimation of efficacy, with the
help of expert knowledge and agreement of regulators
efficacy and futility thresholds are determined. A single
arm trial efficacy is then conducted, blinding the
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assessors to the endpoints or using several assessors.
The impact of unknown and unmeasured potential
confounders and assumptions are evaluated by per-
forming sensitivity analysis and a decision for transition
to subsequent steps is made [1].
« Adaptive Design allows adaptations or modifications
to different aspects of a trial after its initiation without
undermining the validity and integrity of the trial [46].
B The data from parallel clinical trials could be used
to adjust for new findings.
B Adaptive borrowing based on the evaluation of
similarity of historical control and concurrent control
based via several interim analysis, and adjusting
recruitment for concurrent control
B Use of an informational cohort within a study to
make adaptations to study design in the absence of
available natural history data.

Details on Bayesian approaches to analyzing clinical

trials with HC:

+ Meta-analytic or hierarchical modeling can also be
performed using a frequentist approach. However, it is
more common in a Bayesian context. It applies dynamic
borrowing by placing a distribution across current and
historical controls. If the current study is close to the
HCs, the estimated variation among the studies will be
small. If the current study is far from the HCs, the
estimated variation among the studies will be large.
Meta-analytic Combined (MAC) and Meta-analytic Pre-
dictive (MAP) are two versions of this approach [34].

+ MAC performs a meta-analysis of historical and
current control data, where the estimated parameter is
the parameter in the actual trial (no prior is required).
MAC is retrospective as the current clinical trial data
should be available for the meta-analysis.

« MAP, on the other hand, performs a meta-analysis of
only historical controls and estimates a prior for the
parameter of the actual trial (MAP prior), which is
combined with the current data (likelihood part) to es-
timate a posterior to estimate the current clinical trial
parameter, using Bayesian analysis. It is prospective as
the current clinical trial data is not needed for the
meta-analysis and estimation of the prior.

+ In another study using simulations it was shown that
methods that estimate parameters for the between-trial
heterogeneity generally offer the best trade-off of
power, precision and type I error, with the meta-ana-
lytic-predictive prior being the most promising method.
+ The results show that it can be feasible to include
historical data in the analysis of clinical trials, if an
appropriate method is used to estimate the
heterogeneity between trials, and the historical data
satisfy criteria for comparability [66].
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+ When a “MAP prior” is used as the prior in a
Bayesian Analysis to estimate the posterior of
parameters of interest, then the results of MAP and
MAC are the same. This implies that:
O The result of a Bayesian analysis with prior
information give inference on “trial data and HCs
data” combined. It is no borrowing of information
but a combination of information.
O The MAC includes always all historical
information whereas the MAP and Bayes approach
allows controlling the amount of historical
information this is included in the inference. Thus,
these methods provide a level for reduction of
potential bias or detection of bias.
O Due to vague or non-informative prior for MAC,
it will give the same results as a frequentist meta-
analysis. This implies that a frequentist MAC incor-
porates full prior (historical) information as for
Bayesian analysis but in a less controlled manner. Ac-
cordingly, concerns about introduction of bias by
prior information in Bayesian analysis are equivalent
for those bias in frequentist MA.
« Bias-variance model was suggested by Pocock [29].
The difference between past and present was repre-
sented by a bias parameter with specified distribution
(mean and variance). There are several variations of
this model, and it is mostly applied in dose-response
and carcinogenicity studies.
+ Test-then-pool is a basic form of dynamic borrowing
and compares the similarity of historical and
concurrent control data with significance level a. If
they are similar, it pools the HC and the concurrent
control data; otherwise discards HC. In other words,
the amount of weight (0 or 1) assigned to the historical
data depends on the data in the current trial [37].
+ Power prior method estimates an informative prior for
the current study. The informative prior is the product
of an initial prior (non-informative prior) and the
likelihood for the HC data that is raised to a power
between 0 and 1 (o). A different power can be specified
for each historical control. When alpha is set to 0, HC is
100% discounted, whereas when alpha is set to 1, the HC
is pooled without discounting. The resulting ‘posterior’ is
used as an informative prior for the current study. The
static borrowing version of this method sets ay to a fixed
value that may not depend on the similarity of historical
and concurrent control data, i.e. set a fixed weight on
historical control, i.e. 20%. Alternatively, a, can be set
based on the comparison of historical controls and/or
the current data. The dynamic borrowing version of this
method allows the degree of discounting to be influenced
by the difference between the historical and concurrent
control data by empirically estimating or placing a ‘vague’
prior distribution on the power parameter [37].
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