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Leukotriene C4 is the major trigger of
stress-induced oxidative DNA damage
Efrat Dvash1, Michal Har-Tal1, Sara Barak1, Ofir Meir1,w & Menachem Rubinstein1

Endoplasmic reticulum (ER) stress and major chemotherapeutic agents damage DNA by

generating reactive oxygen species (ROS). Here we show that ER stress and chemotherapy

induce leukotriene C4 (LTC4) biosynthesis by transcriptionally upregulating and activating the

enzyme microsomal glutathione-S-transferase 2 (MGST2) in cells of non-haematopoietic

lineage. ER stress and chemotherapy also trigger nuclear translocation of the two LTC4

receptors. Acting in an intracrine manner, LTC4 then elicits nuclear translocation of NADPH

oxidase 4 (NOX4), ROS accumulation and oxidative DNA damage. Mgst2 deficiency, RNAi

and LTC4 receptor antagonists abolish ER stress- and chemotherapy-induced ROS and oxi-

dative DNA damage in vitro and in mouse kidneys. Cell death and mouse morbidity are also

significantly attenuated. Hence, MGST2-generated LTC4 is a major mediator of ER stress- and

chemotherapy-triggered oxidative stress and oxidative DNA damage. LTC4 inhibitors, com-

monly used for asthma, could find broad clinical use in major human pathologies associated

with ER stress-activated NOX4.
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E
ndoplasmic reticulum (ER) stress, oxidative stress and
oxidative DNA damage have been associated with major
human pathologies, including neurodegenerative diseases,

metabolic diseases, cardiovascular diseases and cancer1–7. Many
physiological cues as well as chemotherapeutic agents trigger ER
stress, initiating an evolutionarily conserved array of signalling
pathways termed the unfolded protein response (UPR)8. Initial
UPR is aimed at coping with the stress, whereas excessive stress
triggers cell death. Among the several identified stress-triggered
cell death mediators, C/EBPb homologous protein (CHOP) is
considered a major one9,10. CHOP activates several cell death
mechanisms, for example, apoptosis mediated by inhibition of
Bcl2, by activation of BAX and BAK and by induction of ER
oxidase 1 (ERO1)10,11.

ER stress and oxidative stress are tightly associated events,
triggering each other12. A major ER stress-triggered cell death
mechanism involves CHOP-mediated accumulation of excess
reactive oxygen species (ROS)13–16. Several mechanisms by which
CHOP triggers oxidative stress were proposed. CHOP induces
GADD34, a phosphatase that elevates messenger RNA (mRNA)
translation of ER-destined proteins by dephosphorylation of
p-eIF2a. This event combined with CHOP-induced upregulation
of ERO1 elevates disulfide bond formation within the ER client
proteins, leading to increased production of hydrogen peroxide as
a byproduct13. However, ERO1-generated hydrogen peroxide
does not trigger oxidative stress as it is rapidly cleared within the
ER by glutathione peroxidase and does not permeate to other
cellular compartments17. Transfer of calcium ions from the
stressed ER to mitochondria could trigger apoptosis and
subsequent release of abundant mitochondrial ROS to the
cytoplasm12,18. Other studies implicated NADPH oxidase 2
(NOX2) in ER stress-triggered oxidative stress in macrophages
and in the kidney19. Similarly, increased NOX4 activity was
implicated in ER stress-triggered oxidative stress in smooth
muscle cells20. However, the mechanism by which ER stress
induces NOX4 is not known18,21.

Angiotensin II-induced leukotriene C4 (LTC4) was reported to
trigger ROS accumulation22, prompting us to study whether
LTC4 production is involved in ER stress-triggered oxidative
stress. LTC4 has been extensively studied in the context of allergy
and asthma23. Immunological cues trigger biosynthesis of LTC4

in mast cells by assembly of a biosynthetic complex at the nuclear
envelope, consisting of cytosolic phospholipase A2 (cPLA2),
5-lipoxygenase (5-LO), 5-LO activating protein (FLAP) and
LTC4 synthase (LTC4S). cPLA2 generates arachidonic acid by
hydrolysis of membrane-associated phospholipids; 5-LO and
FLAP oxidize arachidonic acid to form leukotriene A4, and LTC4S
couples glutathione to leukotriene A4, thereby generating LTC4.
The multidrug resistance protein 1 (MRP1) transporter then
secretes cytosolic LTC4, and cell surface proteases further
metabolize it by sequential cleavage of the g-glutamyl
and glycine residues off its glutathione segment, generating
the more stable products leukotriene D4 (LTD4) and leukotriene
E4 (LTE4). All three leukotrienes then bind at different
affinities to two G-protein coupled receptors: CysLTR1 and
CysLTR2, triggering pulmonary vasoconstriction and broncho-
constriction24.

Although LTC4S is expressed exclusively in cells of haemato-
poietic lineage such as mast cells, its isoenzyme, microsomal
glutathione S-transferase 2 (MGST2), is ubiquitously expressed
and functional in non-haematopoietic cells25–27. Unlike LTC4S,
whose function has been extensively studied in the context of
asthma and allergies, the physiological role of MGST2 has
remained elusive28. Here, we reveal a previously unrecognized
MGST2-LTC4 signalling cascade, activated by ER stress and by
commonly used chemotherapeutic agents, which is the major

inducer of oxidative stress, oxidative DNA damage and ROS-
mediated cell death.

Results
ER stress triggers biosynthesis of LTC4. Upon triggering ER
stress with Brefeldin A (BfA) or with tunicamycin (Tm) we found
in several non-haematopoietic cell types that MGST2 and 5-LO,
the rate-limiting enzyme of leukotriene biosynthesis, were
downregulated during the early, protective phase of the UPR, and
upregulated at the late, death-promoting phase of the UPR.
Upregulation of MGST2 and 5-LO expression occurred con-
comitantly with elevation of cleaved caspase-3 and secretion to
the culture media of the necrosis marker high mobility group
protein 1 (HMGB1) (Fig. 1a, Supplementary Fig. 1a,b). ER stress
triggered by BfA or by Tm also resulted in nuclear translocation
and co-localization of MGST2, 5-LO, FLAP and cPLA2, thereby
allowing assembly of an LTC4 biosynthetic machinery (Fig. 1b–f,
Supplementary Fig. 1c–e). Untreated cells completely lacked
nuclear FLAP and nuclear cPLA2, whereas ER stress led to near
quantitative nuclear localization of these proteins (Fig. 1c,d,g).
MGST2 and FLAP are transmembrane proteins, 5-LO is activated
by binding to FLAP, and cPLA2 activation triggers its translo-
cation and association with the nuclear envelope29. Therefore,
assembly of these components into LTC4 biosynthetic machinery
must have occurred at nuclear lipid bilayers such as the nuclear
envelope and the nucleoplasmic reticulum, similarly to assembly
of the analogous, LTC4S-based biosynthetic machinery of LTC4 in
mast cells24. This ER stress-triggered assembly of MGST2-based
biosynthetic machinery resulted in extensive production of LTC4

(Fig. 2a,b, Supplementary Fig. 1f). RNA interference (RNAi)
experiments confirmed the key role of MGST2 in the ER stress-
triggered biosynthesis of LTC4 (Fig. 2c–e). Inducible
overexpression of MGST2 in HEK 293T cells was sufficient for
triggering LTC4 production, thereby further demonstrating
the role of MGST2 in LTC4 biosynthesis in cells of
non-haematopoietic lineage under ER stress (Supplementary
Fig. 1g–i).

ER stress regulates LTC4 receptors expression and localization.
ER stress also regulated the expression of the two LTC4 receptors,
CysLTR1 and CysLTR2, initially attenuating their level and
upregulating it at the late, death-promoting phase of the UPR
(Fig. 3a, Supplementary Fig. 2a). These receptors were initially
localized both inside and outside the nucleus and following ER
stress they were localized mainly at the nucleus (Fig. 3b,c,
Supplementary Fig. 2b), suggesting that LTC4 action following ER
stress is mostly intracrine. Figure 3d schematically represents this
previously unrecognized ER stress-triggered MGST2-LTC4

pathway.

ER stress-induced ROS production is mediated by LTC4. We
employed several independent approaches to study the possible
role of MGST2 and LTC4 in ER stress-triggered oxidative stress.
Effective knockdown of Mgst2 mRNA (Fig. 2c) abolished ER
stress-triggered ROS accumulation (Fig. 4a,b, Supplementary
Fig. 3a,b). To test if ROS accumulation was due to glutathione
depletion by MGST2 or by downstream action of its product,
LTC4, we employed LTC4 inhibitors. Because LTC4 and its
metabolites inflict the symptoms of asthma, several inhibitors of
leukotriene biosynthesis, transport or activity are available. The
CysLTR1 antagonists pranlukast and montelukast, the CysLTR2
antagonist BAY cysLT2 and the dual receptor antagonist BAY
u9773 independently abrogated ER stress-triggered ROS accu-
mulation (Fig. 4c,d, Supplementary Fig. 3c–f), demonstrating that
MGST2-generated LTC4 is the major upstream mediator of ER
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stress-triggered oxidative stress. The MRP1 transporter inhibitor
reversan augmented ROS accumulation (Fig. 4c,d), indicating
that LTC4 activity is mostly intracrine, in contrast with
LTC4S-generated LTC4 in mast cells, which mainly acts on
external target cells. This result was consistent with the observed
nuclear translocation of the two LTC4 receptors under stress.
Overexpression of MGST2 was sufficient for inducing ROS
accumulation, thereby further validating its significant role in
triggering oxidative stress (Supplementary Fig. 3g,h).

We then studied which ROS-generating mechanism is
activated by the MGST2-LTC4 pathway. NADH/NADPH
oxidases (NOXs) are major cellular ROS-producing
enzymes30,31. Of these, ER stress was found to trigger
oxidative stress by upregulating NOX2 and NOX4 activity19,20.
Indeed, RNAi of Nox4 significantly attenuated ER stress
triggered ROS accumulation (Fig. 4e–g, Supplementary
Fig. 4a). We then found that ER stress triggered nuclear
translocation of NOX4 (Fig. 4h,i). In line with its ability to
induce LTC4 and ROS even without ER stress, inducible
overexpression of MGST2 also triggered nuclear translocation
of NOX4 (Supplementary Fig. 4b). Moreover, treatment of cells
with LTC4 receptor antagonists reduced NOX4 levels but not
NOX2 levels under ER stress (Fig. 4j, Supplementary Fig. 4c).
Similarly, Mgst2 knockdown greatly inhibited NOX4 expression
but not NOX2 upon ER stress (Supplementary Fig. 4d).
Furthermore, Mgst2 knockdown significantly inhibited nuclear
translocation of NOX4 under ER stress (Supplementary
Fig. 4e,f). Taken together, these results suggest that the
MGST2-LTC4 pathway activates NOX4 or at least prevents its
degradation under ER stress.

LTC4 mediates ER stress-triggered oxidative DNA damage.
NOX4 is implicated in oxidative DNA damage32,33, suggesting
that the MGST2-LTC4 pathway might also be involved in
triggering oxidative DNA damage. Indeed, LTC4 receptor
antagonists and Mgst2 knockdown abolished ER stress-triggered
oxidative DNA damage, as determined by immunostaining
of 8-hydroxy-20-deoxy guanosine (8-OHdG) residues within the
nuclear DNA, as well as g-H2AX, the marker of nuclear dsDNA
breaks (Fig. 5, Supplementary Fig. 4e–h). These findings elucidate
the critical role of ER stress-generated LTC4 in triggering NOX4-
mediated oxidative DNA damage following ER stress.

MGST2 activation is downstream of CHOP. CHOP is induced
by ER stress before other mediators of cell death. Indeed CHOP
expression was apparent in WISH cells already at 8–12 h
(Supplementary Fig. 5a), whereas MGST2 re-induction was
apparent only at 24 h (Fig. 1a). We found that RNAi of Chop
mRNA significantly attenuated Mgst2 mRNA expression under
ER stress, placing Mgst2 transcriptional induction at the late,
death-promoting phase of the UPR and downstream of CHOP
(Supplementary Fig. 5b). Similarly, RNAi of Chop mRNA greatly
attenuated MGST2 and NOX4 expression at the protein level,
whereas NOX2 expression was not regulated by CHOP
(Supplementary Fig. 5c,d). Furthermore, compared with wild-
type (WT) mouse hepatocytes, Chop deficient hepatocytes34

exhibited reduced nuclear translocation of MGST2 under ER
stress (Supplementary Fig. 5e). We then found that inhibition of
LTC4 biosynthesis by zileuton, as well as inhibition of LTC4

binding to its receptors, greatly attenuated ER stress-triggered
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Figure 1 | ER stress triggers expression and nuclear localization of proteins involved in LTC4 biosynthesis. (a) Immunoblot of proteins expressed in

WISH cells at different times after induction of ER stress with BfA. Blots are representatives of three replicates. (b–e) Immunostain of the indicated

proteins following treatment of WISH cells with vehicle or BfA. Trans. is transmission light microscopy. Nuclei were counterstained with Hoechst 33258
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isomerase (PDI). Bars, 5 mm. (f) Quantification of per cent co-localization of FLAP and MGST2 with 5-LO, as determined by analysis of confocal microscopy

images. n¼6, Po0.0001 for both pairs. (g) Quantification of per cent nuclear localization of the indicated proteins as determined by analysis of confocal

microscopy of the images shown in panels b–e. nZ6, Po0.0001 for all samples. Values in f and g represent the mean±s.d. Statistical significance was

determined using one-way analysis of variance (ANOVA).
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CHOP induction, whereas overexpression of MGST2 upregulated
CHOP expression under ER stress (Supplementary Fig. 5f,g).
These observations elucidate a positive feedback loop between
CHOP and MGST2 in cells of non-haematopoietic lineage.
A similar positive feedback loop between CHOP and NOX2 was
previously reported in macrophages following ER stress19.

LTC4 mediates ER stress-triggered cell death. Our finding that
MGST2 is downstream of CHOP prompted us to study the role of
MGST2, LTC4 and NOX4 in ER stress-triggered cell death.
Knockdown of Mgst2, as well as LTC4 receptor antagonists,
significantly attenuated ER stress-triggered cell death, in corre-
lation with lower release of HMGB1 and reduced cleavage of
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caspase-3 (Fig. 6a–o). Unlike the effect of LTC4 receptor
antagonists, inhibition of the LTC4 transporter MRP1 by reversan
did not reduce cleaved caspase-3 levels, thereby further demon-
strating the intracrine nature of LTC4 action under stress
(Fig. 6o). In line with these results, exogenously added LTC4 was
cytotoxic, but at a much slower kinetics, and the outer cell
membrane-generated LTD4 was even less toxic than LTC4

(Fig. 6p–r). As observed with nuclear translocation of NOX4 and
ROS production, inducible overexpression of MGST2 triggered
cell death even without ER stress (Fig. 6s,t). NOX4 was implicated
in ER stress-triggered apoptosis20. Indeed, RNAi study revealed
that NOX4-mediated oxidative stress plays a significant role
in ER stress-triggered necrosis and apoptosis (Supplementary
Fig. 6). These experiments indicate that the late ER stress-
activated MGST2-LTC4 pathway is one of the major routes
leading to cell death, mediated by intracrine action of LTC4 and
involving oxidative stress, inflicted by LTC4-triggered activation
of NOX4.

Mgst2 deficiency reduces oxidative DNA damage and cell death.
We then established homozygous Mgst2 deficient mice and
obtained murine embryonic fibroblasts (MEFs) of these mice
(Fig. 7a). In contrast with its effect in primary WT MEFs, ER
stress did not trigger the biosynthesis of LTC4 in the Mgst2
deficient MEFs, thereby, further demonstrating the essential
role of MGST2 in LTC4 biosynthesis under stress (Fig. 7b,c).
Compared with WT MEFs, NOX4 expression at late ER stress
was only slightly lower in Mgst2-deficient primary MEFs
(Fig. 7d,i). However, ER stress triggered nuclear translocation
of NOX4 in WT primary MEFs, and not in Mgst2-deficient
primary MEFs (Fig. 7d). ER stress triggered ROS accumulation
and subsequent DNA damage in WT MEFs but not in Mgst2-
deficient MEFs (Fig. 7e–h). Furthermore, apoptosis and cell
death were significantly reduced in the Mgst2-deficient
MEFs despite induction of CHOP (Fig. 7i–k). Exogenous
LTC4 added at time¼ 0 restored ER stress-triggered cell
death of Mgst2-deficient MEFs, bringing it on par with that
of WT MEFs (Supplementary Fig. 7). This complete restoration
of BfA toxicity was probably possible due to the longer expo-
sure time to exogenous LTC4 as compared with that of the
stress-induced LTC4.

Mgst2 deficiency & LTC4 antagonist attenuate mouse morbidity.
To study the role of MGST2 in ER stress in vivo, we employed
the mouse model of Tm-triggered acute kidney injury35.
Tm administration gave rise to necrotic vacuoles mainly in
the juxtamedular region of the kidney cortex in WT mice
(Fig. 8a). Compared with WT mice, the area of the necrotic
vacuoles was significantly reduced in the kidneys of
Mgst2-deficient mice (Fig. 8a,b). Immunohistochemical
staining using anti aminopeptidase A, a specific marker of
renal proximal tubular cells36, revealed extensive destruction
of these cells in the Tm-treated WT kidneys but not in the
Mgst2-deficient kidneys (Fig. 8c). Cleaved caspase-3 and
nuclear NOX4 were present in kidney sections of Tm-treated
WT mice but not in the kidneys of Tm-treated Mgst2-deficient
mice, leading to greatly reduced oxidative DNA damage
(Fig. 8d). NOX4 was strongly induced in ER-stressed WT-
mouse kidneys but not in kidneys of the Mgst2-deficient mice.
The induction of NOX4 by ER stress in the kidneys but not in
other cell types was probably due to the high basal expression
level of NOX4 in the kidney compared with that in other organs
and tissues37.

We then found that Mgst2 deficient mice were significantly
more resistant than WT mice towards Tm-triggered morbidity
and mortality (Fig. 8e). Furthermore, inhibition of LTC4 with
the CysLTR1 antagonist pranlukast significantly reduced the
morbidity and mortality of Tm-treated WT mice (Fig. 8f). Taken
together, these studies confirm the role of the MGST2-LTC4
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Figure 6 | The MGST2-LTC4 pathway elicits ER stress-triggered cell death. Survival was determined by crystal violet staining and is relative to vehicle-

treated cells. (a,b) Survival of WISH cells transfected with the indicated siRNA, treated with BfA (0.5mg ml� 1, 24 h). Bar, 100mm. n¼ 3, **Po0.02.

(c) Immunoblot of MGST2 in extracts of WISH cells treated as in a. (d,e) Survival of WISH cells treated with BfA and pranlukast. Bar, 200mm. n¼ 3,

***Po0.001. (f,g) Survival of human HaCaT pre-keratinocytes treated with BfA (1.3mg ml� 1, 48 h) and BAY u9773 (80 nM). Bar, 100 mm. n¼4,

***Po0.0001. (h,i) Survival of WISH cells treated with BfA (48 h) and BAY cysLT2. Bar, 500mm. n¼4, ***Po0.001. (j,k) Survival of HaCaT pre-

keratinocytes treated with the proteasome inhibitor MG262 (0.05 mM) and zileuton. Bar, 50mm. n¼4, ***Po0.001. (l,m) Survival of B16 cells treated with

Tm, thapsigargin (Tg) or BfA (1.3mg ml� 1) and the CysLTR1 antagonist MK571. Bar, 200mm. n¼4, ***Po0.001. (n) Immunoblot of the necrosis marker

HMGB1 (top panel) in media of B16 cells treated with BfA (1.3 mg ml� 1) and MK571 (MK). Ponceau S staining served as loading control. (o) Immunoblot

of cleaved caspase-3 in extracts of WISH cells treated with Tm (2mg ml� 1, 48 h) and the indicated inhibitors. (p,q) Survival of B16 cells treated

with LTC4. Bar, 200mm. n¼ 3, ***Po0.001. (r) Survival of B16 cells treated with LTC4 or LTD4. Bar, 200mm. (s,t) Survival of HEK 293T cells stably

transfected with Tet-inducible Mgst2 expression vector, treated with doxycycline (2mg ml� 1, 48 h). Bar, 200mm. n¼ 3, ***Po0.001. Immunoblots

c,n and o are representatives of three replicates. Values in b,e,g,i,k,m,q and t represent the mean±s.d. Statistical significance was determined using

one-way ANOVA.
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pathway in mediating ER stress-triggered kidney damage,
apoptosis, oxidative DNA damage and ER stress-triggered
morbidity in vivo.

Chemotherapeutic agents and the MGST2-LTC4 pathway.
Doxorubicin is an effective antineoplastic agent, killing rapidly
dividing tumour cells by several mechanisms, including inhibition
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of topoisomerase 2 (ref. 38). However, the use of doxorubicin is
limited by its severe cardiotoxicity, attributed to oxidative stress39.
Doxorubicin triggers ROS accumulation in cardiac myocytes
mainly by NOXs (ref. 40). Other chemotherapeutic agents, such
as 5-fluorouracil (5-FU), vincristine and bortezomib generate
ROS as well41–43, suggesting that chemotherapy-triggered ER
stress44 might be a common underlying mechanism by which
chemotherapy triggers oxidative stress. Indeed, doxorubicin and
5-FU induced the expression of MGST2, 5-LO, the two LTC4

receptors, cleaved caspase-3 and CHOP (Fig. 9a). Similarly to the
specific ER stress inducers, doxorubicin, 5-FU and bortezomib
elicited translocation of the LTC4 biosynthetic machinery and its
receptors to the nucleus (Fig. 9b, Supplementary Fig. 8).
Doxorubicin induced MGST2-mediated biosynthesis of LTC4

and translocated NOX4 to the nucleus (Fig. 9c–f).

Remarkably, LTC4 receptor antagonists abolished doxorubicin-
triggered ROS accumulation and significantly inhibited nuclear
DNA damage, as determined by staining with DCFH-DA and
immunostaining of g-H2AX (Fig. 9g–j). In addition, Mgst2
deficiency, LTC4 receptor antagonists and 5-LO inhibition
attenuated the cytotoxicity of all four chemotherapeutic agents
(Fig. 9k,l, Supplementary Fig. 9a–i). As with BfA, exogenous
LTC4 added at time¼ 0 restored doxorubicin-triggered death of
Mgst2-deficient MEFs, bringing it on par with that of WT MEFs
(Supplementary Fig. 9j,k). These results demonstrate that a broad
range of chemotherapeutic agents, acting by different mechan-
isms, activate the MGST2-LTC4 pathway. Importantly, this
pathway is the major mediator of chemotherapy-triggered
oxidative stress, oxidative DNA damage and oxidative stress-
triggered cell death.

WT
0

1

2

***

KO

D
C

F
 (

R
.F

.)

3

0

2

4

KO

***

WT

426

KO KO KO WT WT ES Neg.

bp

805

KO KO KO WT WT ES Neg. KO
0

4

1

2

3

WT

5
***

Actin

CHOP

Time (h): 0 8 12 240 8 12 24

WT

NOX4

Actin

WT

V
eh

ic
le

T
m

NOX4 NOX4

**

0

0.2

0.4

0.6

WT

Vehicle
Tm

V
eh

ic
le

WT

T
un

ic
am

yc
in

V
eh

ic
le

B
fA

WT

Hoechst Merge Hoechst Merge

WT

DCF DCF

V
eh

ic
le

B
fA

W
T

Hoechst MergeLTC4

C. casp. 3

Mgst2 –/–

Mgst2 –/–

Mgst2 –/–Mgst2 –/–

C
el

ls
 (

O
D

54
0)

8-OHdG 8-OHdG

Mgst2 –/– Mgst2 –/–

NOX4+
Hoechst

NOX4+
Hoechst

DCF+
Hoechst

DCF+
Hoechst

8-
O

H
dG

 (
R

.F
.)

M
gs

t2
–/

–

LT
C

4 
(R

. F
.)

Figure 7 | Mgst2 deficiency attenuates ER stress-triggered oxidative stress, DNA damage and apoptosis. (a) Agarose gel electrophoresis of PCR

products obtained by amplification of DNA isolated from tail ends of WT and homozygous Mgst2-deficient (KO) mice. DNA of heterozygous ES cells (ES)

and negative PCR control (Neg.) are also shown. The 426-bp band corresponds to WT DNA sequence from the Mgst2 gene. The 805-bp band corresponds

to the mutated allele. (b,c) Immunostain of LTC4 in WT and Mgst2-deficient MEFs at passage 2 following treatment with BfA. Bar, 20mm. n¼ 3,

***Po0.0001. (d) Immunostain of NOX4 in WT and Mgst2-deficient MEFs at passage 2, treated with vehicle or Tm (4 mg ml� 1, 24 h). Bar, 20mm. This

image is a representative of five replicates. (e,f) ROS detection using DCFH-DA in primary WT and Mgst2-deficient (KO) MEFs, treated with vehicle or BfA

(0.25mg ml� 1). Bar, 20mm. n¼4, ***Po0.001. (g,h) Immunostain of 8-OHdG in primary WT and Mgst2-deficient MEFs, treated with vehicle or BfA. Bar,

20mm. n¼ 3, ***Po0.001. (i) Immunoblot of the indicated proteins in WT and Mgst2-deficient primary MEFs, treated with Tm (3 mg ml� 1). (j) Cultures of

WT and Mgst2-deficient primary MEFs, treated with vehicle or Tm (2mg ml� 1) and then stained with crystal violet. Bar, 50mm. (k) Relative viability as

determined by neutral red staining of MEFs, treated as in j. n¼ 3, **P¼0.005. Images a and i are representatives of at least three replicates. Values in c,f,h

and k represent the mean±s.d. Statistical significance was determined using one-way ANOVA.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10112

8 NATURE COMMUNICATIONS | 6:10112 | DOI: 10.1038/ncomms10112 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Chemotherapy activates the MGST2-LTC4 pathway in vivo. We
then studied the impact of Mgst2 deficiency and LTC4

inhibition on the toxicity of 5-FU in mice. Mgst2 deficient
mice were significantly more resistant than WT mice to
5-FU, and pranlukast significantly attenuated 5-FU-triggered
morbidity in WT mice (Fig. 10a,b). Immunohistochemical
examination revealed that pranlukast inhibited 5-FU-triggered
formation of necrotic vacuoles, induction of MGST2,
activation of caspase 3, nuclear translocation of NOX4
and oxidative DNA damage in kidneys of 5-FU-treated
WT mice (Fig. 10c). MGST2 is not expressed in cells of hae-
matopoietic lineage25, implying that the MGST2-LTC4

pathway will not be activated in these cells. Indeed, LTC4

inhibitors did not compromise the cytotoxicity of bortezomib
in human myeloma cells, or that of doxorubicin in
T-leukaemia cells (Fig. 10d,e). These results suggest that the
MGST2-LTC4 pathway is not activated by chemotherapy in
cells of haematopoietic lineage.

Discussion
Many chemotherapeutic agents trigger both extensive ER stress
and oxidative stress as part of their mechanism of action45,46. The
present study describes a previously unrecognized ER stress-
activated MGST2-LTC4 pathway as the major executor of
chemotherapy-triggered ROS generation and subsequent DNA
damage. The MGST2-LTC4 pathway appears to be quite general,
as we have identified it in numerous human and mouse cell types,
including epithelial cells, fibroblasts and pre-keratinocytes. We
have further demonstrated its role in ER stress and
chemotherapy-triggered oxidative cell death in vivo using both
genetic and pharmacological mouse models.

The components of this pathway include MGST2-based
biosynthetic machinery of LTC4 and the two LTC4 receptors.
Our findings that expression of genes encoding these components
is attenuated during the early, pro-survival phase of the UPR, and
is restored and further induced at the late phase, links these genes
with the death-triggering mechanisms activated at the late phase
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of the UPR. The MGST2-LTC4 pathway is regulated both by
induction of its components and more importantly, by
their translocation and co-localization at the nucleus. Such
co-localization ensures effective production of LTC4 at its site of
action. Binding of LTC4 to its internalized receptors then sets
in motion nuclear and perinuclear translocation of NOX4,
generating ROS, oxidative nuclear DNA damage, apoptosis
and necrosis. This sequence of events is in line with the

well-documented activation of NOX4 by oncogenic H-Ras, which
leads to production of nuclear ROS, subsequent DNA damage
and apoptosis20,32.

Compared with their structurally related prostaglandins, much
less is known about non-immunological functions of leukotrienes.
Exogenous LTC4 was shown to induce angiogenesis and
endothelial cell proliferation (reviewed in ref. 47). In contrast,
we show that stress-induced intracrine LTC4 triggers oxidative
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DNA damage and cell death. NOX4-generated ROS also elicit
opposite cellular responses. High levels of NOX4-derived ROS
trigger DNA damage and cell death, whereas low levels of ROS,
and particularly hydrogen peroxide, serve as a cue for cell
proliferation48,49. Similarly, extensive hypoxia, nutrient shortage
and accumulation of toxic metabolites trigger ER stress and
subsequent cell death, manifested as necrotic cores in rapidly
growing solid tumours, whereas low levels of continuous ER
stress were shown to send proliferative signals in such tumour
cells50–52. Our finding that LTC4 receptor antagonists greatly
reduced the level of NOX4 under extensive ER stress but had no
effect on its basal expression level is in line with the dual opposite
role of NOX4-generated ROS. The reduced level of NOX4 under
ER stress in the presence of LTC4 receptor antagonists (Fig. 2j
and Supplementary Fig. 3c) suggests that signalling by the
LTC4 receptors is required for preventing ER stress-triggered
degradation of NOX4 in these cells.

The MGST2-LTC4 pathway is downstream of CHOP and is
further upregulated by a positive feedback loop between CHOP
and MGST2. Induction of CHOP by MGST2 is further positively
regulated by NOX4, since knockdown of NOX4 attenuates CHOP

expression53. The almost complete inhibition of ER stress-
triggered ROS generation by knockdown of Mgst2 and by LTC4

receptor antagonists indicates that the CHOP-activated MGST2-
LTC4 pathway is the major trigger of oxidative stress and DNA
damage under ER stress. In addition, this pathway significantly
contributes to ER stress-triggered cell death. Upregulation of
CHOP expression by LTC4 suggests that it may promote cell
death not only by generating ROS but also by increasing other
CHOP-mediated pro-apoptotic activities, such as regulating Bcl2,
BAK and BAX. ER stress-triggered apoptosis may further
promote oxidative stress by release of mitochondrial ROS54,55.
Inhibition of the pro-survival enzyme MGST1 by LTC4 (ref. 56)
may further promote cell death.

Doxorubicin triggers oxidative DNA damage of both mito-
chondrial and nuclear DNA57. Immunostaining of the dsDNA
breaks-associated histone g-H2AX indicated that the MGST2-
LTC4 pathway is a critical mediator of the doxorubicin-triggered
nuclear DNA damage. By attenuating chemotherapy-triggered
ROS production and DNA damage, LTC4 inhibitors may find use
in reducing the risk of secondary malignancies58,59. In particular,
our findings that LTC4 inhibitors did not compromise the efficacy
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of chemotherapeutic agents in cells of haematopoietic lineage
suggest that such agents may reduce the toxic side effects of
chemotherapy when used in haematopoietic malignancies. Since
NOX4 and ER stress have been implicated in additional major
human pathologies, including metabolic diseases and
neurodegeneration60–62, inhibition of its activity by LTC4

receptor antagonists may be of even broader clinical significance.
Indeed, a recent study demonstrated that pranlukast attenuated
the progression of Alzheimer’s disease in a mouse model63.

In conclusion, the present study highlights a previously
unrecognized MGST2-LTC4 pathway, elicited by ER stress. This
pathway is the major mediator of ER stress and chemotherapy-
triggered oxidative stress and oxidative DNA damage, acting
through NOX4 and participating in ER stress-triggered cell death.

Methods
Cells and reagents. The murine B16 melanoma cells B16-F10 (ATCC CRL-6475),
human amniotic WISH epithelial cells (CCL 25), human embryonic kidney cells
(HEK 293T), human CCRF-CEM T-cell leukaemia lymphoblasts (ATCC CCL-119)
and human U266 myeloma cells (ATCC TIB-196) were obtained from ATCC.
WISH cells might be contaminated with HeLa cells, but that contamination has no
effect on the conclusion of the study, as HeLa cells are also epithelial-like cells.
Human HaCaT pre-keratinocytes were provided by P. Boukamp. WT and
Chop-deficient mouse hepatocytes were provided by B. Tirosh. Primary MEFs were
isolated from WT and Mgst2-deficient (129/Sv) mice and studied at passages 2 or 3.
All cell lines were tested and found to be free of mycoplasma contamination. B16
cells, HEK 293T cells, HaCaT cells, WT and Chop-deficient mouse hepatocytes and
primary MEFs were grown in DMEM. WISH cells were grown in MEM. CCRF-
CEM and U266 cells were grown in RPMI 1640 medium. All media were
supplemented with 10% foetal bovine serum, 50 U ml� 1 penicillin and 50mg ml� 1

streptomycin. Leukotrienes and leukotriene inhibitors were purchased from
Cayman. The following antibodies were used for immunofluorescence staining (IF)
and for immunoblotting (IB): Anti MGST2 (HPA010707, 1:50 for IF and 1:250 for
IB), anti HMGB1 (H9537, 1:1,000 for IB) and anti FLAG M2 (F3165, 1:2,500 for
IB) were from Sigma-Aldrich; anti LTC4 (ADI-905-902, 1:100 for IF) was from
Enzo; anti 5-LO (#610695 and ab39347, 1:50 for IF and 1:250 for IB) was from BD
Transduction Laboratories and Abcam, respectively; anti NOX4 (#3187-1, 1:50 for
IF and 1:1,000 for IB) and anti NOX2 (gp91-phox #5653-1, 1:1,000 for IB) were
from Epitomics; anti CysLTR1 (ab93481, 1:50 for IF and 1:1,000 for IB), anti FLAP
(ab79923, 1:50 for IF), anti cPLA2 (ab58375), anti Lamin A (ab8980, 1:1,000 for
IF), anti PDI (AB2792, 1:100 for IF) and anti g-H2AX (ab2893, 1:1,000 for IF) were
from Abcam; anti CHOP (GADD 153, sc-793, 1:500 for IB) (R-20) and anti
CysLTR2 M-42 (sc-98863, 1:50 for IF and 1:200 for IB) were from Santa Cruz
Biotechnology; anti 8-OHdG (12501, 1:5,000 for IF) was from QED Bioscience;
anti cleaved caspase-3 Asp 175 (#9661, 1:500 for IB) was from Cell Signaling;
anti-Actin (#69100, 1:10,000 for IB) was from MP Biomedicals. The secondary
antibodies goat anti-rabbit IgG-H&L (Cy3; ab6939, 1:1,000 for IF) and rabbit
anti-mouse IgG- H&L (HRP, ab6728, 1:10,000 for IB) were from Abcam. Alexa
Fluor-488-labelled goat anti-mouse IgG (A-11001, 1:1,000 for IF) and goat
anti-rabbit IgG (A-11008, 1:1,000 for IF) secondary antibodies were from
ThermoFisher Scientific. All other reagents and media were from Sigma-Aldrich.

Cell culture, induction of ER stress and inhibition of LTC4. Cell culture media
were supplemented with 10% foetal bovine serum and antibiotics (DMEM-10 and
MEM-10) and grown in humidified 8% CO2 incubator at 37 �C. ER stress and
cellular cytotoxicity were elicited by treating cells for 24 h with Tm (0.75 mg ml� 1),
BfA (0.66 mg ml� 1), Tg (50 nM), MG262 (0.2 mg ml� 1), bortezomib (25 ng ml� 1),
doxorubicin (3 mM), 5-FU (0.125 mg ml� 1) or vincristine (0.05 mM), unless
otherwise stated. Leukotriene inhibitors were used at the following concentrations:
MK571, 10 mM; reversan, 20 mM; zileuton, 12.5 mM; BAY u9773, 1 mM; pranlukast,
10mM; BAY cysLT2, 10 mM; montelukast, 5 mM, unless otherwise stated.

Immunoblotting. Cells were seeded in 6-well plates (800,000 cells per well) and
grown for 24–48 h before treatments. Following treatments the cultures were
washed three times with ice-cold phosphate-buffered saline (PBS) and the cells
were collected with trypsin-EDTA. Cell pellets were re-suspended in two packed
cell volumes of RIPA lysis buffer (50 mM Tris-HCL, pH 7.5, 150 mM NaCl, 5 mM
EDTA, 1% Triton X-100, 0.5% Sodium deoxycholate, 0.1% SDS). The re-suspended
pellets were kept on ice for 20 min. The clarified (14,000g, 20 min.) lysates were
collected and stored at � 80 �C. Clarified culture supernatants (40ml) were used for
IB of HMGB1 in the culture supernatants, and Ponceau s staining was used as
control for equal loading. The bicinchoninic acid (BCA) Protein assay reagent kit
(Pierce) was used for measuring protein concentration, using bovine serum
albumin as a standard. Protein samples were boiled in SDS–polyacrylamide
gel electrophoresis sample buffer containing 25 mM dithiothreitol, and the
supernatants were resolved by gradient SDS–polyacrylamide gel electrophoresis

(7.5–12% acrylamide). Proteins were then transferred onto a nitrocellulose
membrane, which was incubated with the indicated primary antibodies. The Super
Signal Detection Kit (Pierce) was used for visualizing the primary antibodies.
Mouse MGST2 could not be detected by IB with any of the commercially available
antibodies. Images of whole immunoblots are shown in Supplementary Fig. 10.

IF staining. Cells were cultured (8� 105 per 2 ml or 3� 105 per 300 ml medium,
24 h) on cover slips for confocal microscopy (bar size¼ 5 mm) or in m-slide 8-wells
(ibidi) for fluorescence microscopy (other bar sizes). The cultures were treated as
described and then fixed using 4% paraformaldehyde, 0.5% Triton X100 in PBS for
2 min, followed by paraformaldehyde (4% in PBS, 20 min). The slides were washed
with PBS (15 min), blocked with bovine serum albumin (2% in PBS, 30 min) and
washed with PBS (5 min). The slides were then stained with primary antibody
(in PBS, 45 min), washed with PBS (15 min) and incubated in the dark with Alexa
488-labelled second antibody (1:1,000, 45 min.), or with Cy3-labelled secondary
antibodies (1:1,000, 45 min). For LTC4 IF staining, the cultures were treated
as described in the presence of the MRP1 transporter reversan (10 mM).
The cultures were then fixed with 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide
(EDAC, 1% in HBSS, 1 h), blocked with bovine serum albumin (2% in HBSS) and
stained with rabbit anti LTC4 (1:100, 1 h), followed by Alexa-488-labelled second
antibody (1:1,000, 1 h, ref. 64). Cell nuclei were stained with Hoechst 33258
(2.5 mg ml� 1, 5 min).

ROS staining. Staining of ROS was performed with the superoxide anion indi-
cator, dihydroethidium (5 mM, 30 min). The cells were then washed three times
with PBS, and nuclei were counterstained with Hoechst 33258 (5 mM, 5 min).
Alternatively, cells were stained with dichloro-dihydro-fluorescein-diacetate
(DCFH-DA, 10mM, 40 min) and then washed three times with PBS. Nuclei were
counterstained with Hoechst 33258 (5 mM, 5 min). Cells were then immediately
observed under a fluorescence microscope and photographed.

Immunohistochemistry. Mouse kidney sections were fixed in 4%
paraformaldehyde, embedded in paraffin and sections of 5 mm were prepared.
The sections were de-paraffinized and rehydrated in warm 10 mM sodium
citrate, pH 6.0. Sections were then stained with haematoxylin-eosin, or
immunostained with antibodies to Aminopeptidase A (ab36122, Abcam, 1:150),
MGST2 (Atlas Antibodies HPA010707, 1:50), cleaved caspase-3 (Asp175, Cell
Signaling #9661, 1:300), NOX 4 (Abcam ab109225, 1:100) or 8-OHdG (QED
Bioscience 12501, 1:200). The sections were then incubated with biotin-conjugated
secondary anti-rabbit IgG antibody (711-065-152, 1:200) or anti-mouse IgG
(715-065-151, 1:100), (both from Jackson ImmunoResearch Laboratories), followed
by incubation with avidin-biotin-peroxidase complex (ABC kit, Vectastain,
Vector laboratories). Cell nuclei were counterstained with haematoxylin. The
sections were then dehydrated and stabilized with Entellan mounting medium
(Merck-Millipore).

Image analysis. Staining intensities were measured using the ImageJ program
(NIH) and normalized to nuclei counts. Fields containing at least 300 nuclei were
analysed in triplicates. Damage to the kidney proximal tubules was determined by
selecting the entire proximal tubular areas using the lasso tool of Photoshop,
and vacuoles were counted using the ImageJ program. The extent of protein
co-localization and nuclear localization was quantitated in confocal microscopy
images using the Coloc 2 algorithm of FIJI-ImageJ (ref. 65). Per cent NOX4 or
8-OHdG immunostained nuclei was determined by the ratio of immunostained
nuclei and Hoechst 33258-stained nuclei.

RNAi. Cells in 6-well or in 96-well plates in media lacking antibiotics were
transfected for 48 h with siRNA pools (siGENOME, Dharmacon RNAi
Technologies) directed against murine Mgst2 mRNA (NM_174995.2), human
Nox4 (NM_016931.1) or human Chop mRNA (NM_001195053.1), using
DharmaFECT 1 reagent (Dharmacon) according to the manufacturer’s protocol.
ER stress inducers were added at 48 h post-transfection.

Reverse transcription and real-time PCR. Total RNA (1 mg), isolated from cells
using PerfectPure RNA Cultured Cell Kit (5 Prime) was reverse transcribed using
random hexamers and Superscript II RNase H� Reverse Transcriptase (Invitro-
gen). The reaction mixtures were diluted 20-fold, and 4.5 ml was then used as the
template for regular PCR or real-time PCR. Human Mgst2 mRNA (Nm_002413.3)
specific primer pair combinations were: forward: 50-AAAGATGGCCGGGAACTC-30 .
Reverse: 50-ATCTTGCCTTTCCAACTTGC-30 . Human Chop mRNA (DDIT3,
NM_004083.4) specific primer pair combinations were: forward: 50-AAGGCAC
TGAGCGTATCATGT-30 . Reverse: 50-TGAAGATACACTTCCTTCTTGAACA
C-30 . Human TATA box binding protein (TBP) mRNA served as a
reference transcript, using the following specific primer pair combination:
forward: 50-CCCATGACTCCCATGACC-30 . Reverse: 50-TTTACAACCA
AGATTCACTGTGG-30.
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These probes were designed using Roche ProbeFinder Software Version 2.35
(Roche Diagnostics). Quantitative PCR was performed using a Roche LightCycler
480 real-time PCR System, and TaqMan Universal PCR Master Mix (Applied
Biosystems). The reactions (10ml final volume) contained 0.25 mM primers
(Sigma-Aldrich) and 0.1 mM probe (No. 13 for murine Mgst2 mRNA, No. 18 for
human Mgst2 mRNA, No. 21 for human Chop mRNA and No. 51 for TBP mRNA,
Roche). The amplification programme was: initial denaturation at 95 �C for 15 min,
followed by 45 cycles of 95 �C for 15 s, 60 �C for 1 min and 40 �C for 30 s. Gene
expression level was normalized to the TBP reference mRNA. The fold change in
gene expression compared with mRNA from control cells was calculated using
LightCycler Software version 4.05. The results are presented as the mean±s.d. of
triplicates.

Cell viability assays. Adherent cell viability was determined either by Crystal
violet staining or by neutral red staining in 96-well plates66. Cell cultures in 96-well
plates were fixed and stained with 5% crystal violet in 66% aqueous methanol.
Staining intensities were determined with an enzyme-linked immunosorbent assay
(ELISA) reader at 570 nm. Alternatively, cell viability was measured by neutral red
staining. Briefly, cells were incubated with neutral red (70 mg l� 1 in 0.1 ml
DMEM-10, 37 �C, 30–60 min), washed 3X with PBS, re-suspended in lysis buffer
(0.1 ml) and OD was measured with an ELISA reader at 540 nm. Calibration curves
were prepared by seeding known amounts of cells onto 96-well plates. After 6 h, the
cells were stained with neutral red and the OD was read as described above.
Viability of cells growing in suspension was determined using WST-1 (Roche) and
was determined following 2 h incubation with an ELISA reader at 450 nm.

Stable and inducible Mgst2 overexpression. A cDNA encoding human Mgst2
(hMgst2) fused to a FLAG tag at the N-terminus (Epoc Life Science) was inserted
into pcDNA4/TO (Life Technologies) to generate pcFLAG-hMgst2. HEK 293T
cells (3� 105 cells per 2 ml DMEM) were cultured for 24 h and then transfected
with pcDNA4/TO or pcFLAG-hMgst2 (1 mg ml� 1) using jetPEI (2mg ml� 1,
Polyplus-transfection) as a transfection reagent. After 24 h, the cells were trypsin-
digested and analysed by IB with anti-FLAG antibody, or seeded at 5� 104cells per
100ml DMEM-10 on poly-D-lysine-coated 96-well plates for further experimenta-
tion. HEK 293T clones stably expressing Tet-inducible hMgst2 were generated by
co-transfection with pcFLAG-hMgst2 and pcDNA6/TR (Life Technologies) and
selection with zeocin (350 mg ml� 1) and blasticidin (1mg ml� 1). Viable clones
were isolated and tested for doxycycline-induced hMgst2 over-expression by IB
with anti-FLAG antibody.

Generation and genotyping of Mgst2-deficient mice. Mgst2-targeted ES cells
were obtained from the 129/SvEvBrd (129/Sv) mouse strain gene trap library of ES
cells of the Texas Institute for Genomic Medicine (TIGM, College Station, TX). ES
cells were aggregated with zona free morulae from outbred ICR mice, and the
resulting blastocysts were transferred into the oviducts of pseudo-pregnant females
for gestation67. Chimeric mice were identified by the presence of agouti coat colour.
Germ-line transmission of male chimeras was verified by mating to ICR females.
Chimeric males were mated with 129/Sv females to generate F1 offspring. Germ-
line transmission of the target allele was confirmed by PCR as follows: tails were cut
from all offspring and genomic DNA isolated by DirectPCR Lysis Reagent (Tail,
Viagen Biotech), containing freshly prepared proteinase K (0. 125 mg ml� 1, 17 h at
55 �C followed by 45 min at 85 �C, Sigma-Aldrich). The genomic DNA was
amplified with two pairs of primers for the wild type and the mutant alleles:

Wild-type forward primer: 50-GCTGTGGTCATGTGACAAGG-30 .
Wild-type reverse primer: 50-TCCTTCCCCCTCTCTCTGTT-30.
Mutant forward primer: 50-CTTGCAAAATGGCGTTACTTAAGC-30 .
Mutant reverse primer: 50-TGGGTGGGATAAGGGTTACA-30 .
The PCR conditions were: initial 4 min denaturation at 95�C, then 32 cycles of

95�C for 40 s, 58�C for 30 s and 72�C for 60 s. Then, the last extension was
performed at 72�C for 5 min.

The Mgst2-deficient mice bred normally and appeared indistinguishable from
their wild-type littermates, with no significant differences in food intake or body
weight. Haematoxylin–eosin staining of liver, kidney and heart tissue sections also
revealed no significant morphological differences.

Animal studies. The Animal Care and Use Committee of the Weizmann Institute
of Science approved all experimental procedures involving animals. The following
studies were performed:

Mouse model of Tm-induced acute kidney injury. Experiments were performed
on WT and Mgst2-deficient 129/Sv female mice (10–12-week-old, weighing at least
20 g). The mice were housed with a 12:12-h light–dark cycle and with
free access to standard diet and water. One group of WT mice and one group of
Mgst2-deficient mice received a single intraperitoneal (ip) injection of Tm
(1.5 mg kg� 1 body weight) in 150 mM glucose. Control WT and Mgst2-deficient
mice received vehicle alone. The animals were observed twice daily and euthanized
painlessly with CO2 immediately upon showing either 20% reduction of body
weight or two other obvious signs of distress, including lethargy, ruffled fur,

shaking, paralysis or confused movements. Four days after Tm administration the
mice were euthanized, kidneys were removed, immersed in 10% neutral-buffered
formaldehyde for 48–72 h. The tissues were paraffin embedded and processed for
light microscopy. Sections were cut to a thickness of 5 mm and stained with
haematoxylin–eosin or subjected to immunohistochemistry. To assess the extent
of kidney injury, areas corresponding to the kidney cortex were selected from
whole-kidney images and vacuoles ranging in size from 100 to 500 pixels and
circularity Z0.3 were counted using the ImageJ program. The per cent area of
vacuoles versus the overall selected area is plotted. No vacuoles were observed in
untreated WT or Mgst2-deficient mouse kidneys.

Mouse models of Tm and chemotherapy-induced morbidity. Experiments were
performed on WT and Mgst2-deficient 129/Sv mice as above. Female mice were
given a single ip injection of Tm (2.5 mg kg� 1 body weight, in 150 mM glucose).
The animals were observed for signs of distress and euthanized as above. In
another set of experiments, WT female mice (10 per group) were given Tm
(1.5 mg kg� 1, ip) once at time¼ 0. Vehicle (1% DMSO in PBS) or pranlukast
(1 mg kg� 1 in 1% DMSO in PBS) were administered ip at time¼ 0 and daily
for 2 additional days. Mice were observed and euthanized as described above.
Similarly, WT and Mgst2-deficient 129/Sv female mice (10 per group) were given
a single ip injection of 5-FU (300 mg kg� 1) at time¼ 0 and observed for distress
as above. In another set of experiments WT mice (9 female and 9 male per group)
were given a single ip injection of 5-FU (300 mg kg� 1) at time¼ 0 and vehicle
(1% DMSO in PBS) or pranlukast (1 mg kg� 1 in 1% DMSO in PBS) were
administered ip at days 0, 1, 2, 5, 6 and 7. The mice were observed for distress and
kidneys were collected post mortem for histology and immunohistochemistry
as above.

Statistical analysis. Statistical analysis was performed using KaleidaGraph
program (Synergy Software). All data were analysed using one-way analysis of
variance (ANOVA) and post hoc Tukey’s honest significant difference (HSD) test on
at least three replicates. Data are shown as mean±s.d. for the indicated replicates.
Data on survival of mice was analysed by the Gehan–Breslow–Wilcoxon test.
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