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Background: Discriminating hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD) 
is challenging, because both are characterized by left ventricular hypertrophy (LVH). Radiomics might be 
effective to differentiate HHD from HCM. Therefore, this study aimed to investigate discriminators and 
build discrimination models between HHD and HCM using multiparametric cardiac magnetic resonance 
(CMR) findings and radiomics score (radscore) derived from late gadolinium enhancement (LGE) and cine 
images.
Methods: In this single center, retrospective study, 421 HCM patients [median and interquartile range 
(IQR), 50.0 (38.0–59.0) years; male, 70.5%] from January 2017 to September 2021 and 200 HHD 
patients [median and IQR, 44.5 (35.0–57.0) years; male, 88.5%] from September 2015 to July 2022 were 
consecutively included and randomly stratified into a training group and a validation group at a ratio of 6:4. 
Multiparametric CMR findings were obtained using cvi42 software and radiomics features using Python 
software. After dimensional reduction, the radscore was calculated by summing the remaining radiomics 
features weighted by their coefficients. Multiparametric CMR findings and radscore that were statistically 
significant in univariate logistic regression were used to build combined discrimination models via 
multivariate logistic regression. 
Results: After multivariate logistic regression, the maximal left ventricular end diastolic wall thickness 
(LVEDWT), left ventricular ejection fraction (LVEF), presence of LGE, cine radscore and LGE radscore 
were identified as significant characteristics and used to build a combined discrimination model. This model 
achieved an area under the receiver operator characteristic curve (AUC) of 0.979 (0.968–0.990) in the 
training group and 0.981 (0.967–0.995) in the validation group, significantly better than the model using 
multiparametric CMR findings alone (P<0.001). 
Conclusions: Radiomics features derived from cardiac cine and LGE images can effectively discriminate 
HHD from HCM.
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Introduction

Hypertrophic cardiomyopathy (HCM) is characterized 
by left ventricular hypertrophy (LVH) in the absence of 
another cause of hypertrophy (1,2). However, LVH can 
also be secondary to other disorders, such as hypertension 
history, as defined as hypertensive heart disease (HHD). 
Although a history of hypertension, symmetrical LVH, 
indexed left ventricular (LV) mass, without right ventricular 
(RV) insertion late gadolinium enhancement (LGE) and 
systolic anterior motion (SAM) of mitral valve were found 
in a previous study to be effective in discriminating HHD 
from HCM (3). However, not all patients exhibit typical 
characteristics. RV insertion LGE and asymmetric LVH are 
not uncommon in HHD patients (4). Hypertension also co-
occurs in approximately 40–60% of adults with HCM (5). 
Therefore, relying solely on traditional characteristics is 
not sufficient to completely differentiate between HCM 
and HHD. But accurately distinguishing between these two 
diseases is crucial for precise clinical management, and, as 
a result, there is a need to seek a more effective method of 
differentiation.

Radiomics can provide a variety of hidden information 
within image data and has demonstrated significant value in 
the differential diagnosis of various diseases (6). Therefore, 
we hypothesize that radiomics may also hold important 
value in differentiating between HCM and HHD. 
Furthermore, combining multiparametric cardiac magnetic 
resonance (CMR) findings and radiomics features may 
provide additional value.

In this study, we aimed to investigate discriminators and 
build discrimination models between HHD and HCM 
using multiparametric CMR findings and radiomics score 
(radscore) derived from cine and LGE images. We present 
this article in accordance with the STARD reporting 
checklist (available at https://cdt.amegroups.com/article/
view/10.21037/cdt-23-350/rc).

Methods

Study population

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Institutional Review Board of the 
Beijing Anzhen Hospital (No. 2023178X) with a waiver 
for informed consent due to the retrospective analysis of 
the study. Consecutive HCM subjects from January 2017 
to September 2021 and consecutive HHD subjects from 
September 2015 to July 2022 who met the inclusion criteria 
were reviewed.

Inclusion criteria for HCM group: (I) maximal LV end 
diastolic wall thickness (LVEDWT) ≥15 mm in the absence 
of another cause of hypertrophy; (II) maximal LVEDWT of 
13–14 mm with HCM family history or accompanied by a 
positive genetic test.

Inclusion criteria for HHD group: (I) definite diagnosis 
of stage II hypertension for at least 5 years (7); (II) maximal 
LVEDWT ≥12 mm; (III) without LV cavity dilatation, 
severe chronic kidney disease and cardiac diseases that could 
result in a similar magnitude of hypertrophy (8,9).

Exclusion criteria: (I) HCM patient with any hypertension 
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history of any degree; (II) patients with a history of 
myocardial infarction; (III) patients coexisting with other 
heart conditions, such as congenital heart disease; (IV) 
patients with a history of cardiac surgery; (V) patients who 
were less than 14 years old; (VI) images with significant 
artifacts or a lack of LGE sequence.

Ultimately, 421 HCM patients [median and interquartile 
range (IQR), 50.0 (38.0–59.0) years; male, 70.5%] and 200 
HHD patients [median and IQR, 44.5 (35.0–57.0) years; 
male, 88.5%] were retrospectively included in our study. 
Patients were randomly stratified into a training group 
(n=252 for HCM, 120 for HHD) and a validation group 

(n=169 for HCM, 80 for HHD) at a proportion of 6:4. The 
flow chart of our study is shown in Figure 1.

Magnetic resonance image acquisition

Following routine scan protocols, images were acquired 
with a 32-channel surface phased array cardiac coil using a 
variety of scanners from 3 vendors (Ingenia 3.0T, Philips  
Healthcare, Best, Netherlands; MAGNETOM Siemens 
Verio 3.0T, Siemens Health Care, Erlangen, Germany; 
Discovery MR750 3.0T, GE Medical Systems, Milwaukee, 
WI, USA). Cardiac cine images from the base to the apex 

751 HCM patients during January 2017 to September 2021 and 250 HHD 
patients during September 2015 to July 2022 were retrospectively reviewed

HCM patients with any hypertension history of any 
degree (N=223)
Patients with a history of myocardial infarction (N=20 
for HCM, N=30 for HHD)
Patients coexisting with other heart conditions (N=4 
for HCM, N=4 for HHD )
Patients with a history of cardiac surgery (N=25 for 
HCM, N=0 for HHD)
Patients who were less than 14 years old (N=12 for 
HCM, N=0 for HHD)
Images with significant artifacts or a lack of LGE 
sequence (N=46 for HCM, N=16 for HHD)

421 HCM patients and 200 HHD patients were finally included
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Figure 1 The flow chart of our study. HCM, hypertrophic cardiomyopathy; HHD, hypertension heart disease; LGE, late gadolinium 
enhancement; CMR, cardiovascular magnetic resonance; ICC, intraclass correlation coefficient; SCC, Spearman correlation coefficient.
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of the LV were collected using balanced steady-state free 
precession (bFISP) sequences. Retrospective cardiac gating 
was used, and each cardiac cycle included 25 phases. A 
breath-hold two dimensional (2D) phase sensitive inversion-
recovery (PSIR) segmented gradient echo sequence was 
used to collect LGE images at 10 minutes after contrast 
agent administration, as for cine images. Contrast agent 
(gadopentetate dimeglumine, Bayer Healthcare, Leverkusen, 
Germany) was intravenously administered at a dose of 0.2 
mmol/kg body weight. The inversion time was set to obtain 
maximal nulling of remote normal LV myocardium. The 
parameters for CMR images were listed in Table S1. All 
slice thicknesses were 8 mm for the short axis and 5 mm for 
the long axis, with no interval between slice locations. 

Image analysis

We used deep learning-based commercial software (cvi42, 
version 5.11.2, Circle Cardiovascular Imaging Inc., 
Calgary, Canada) to draw LV epicardial and endocardial 
borders from the base to the apex automatically, and then 
the borders were manually adjusted by an experienced 
operator. The left ventricular ejection fraction (LVEF), left 
ventricular end diastolic volume (LVEDV), left ventricular 
end systolic volume (LVESV) and left ventricular mass 
(LVM) were automatically calculated by the software. LVM 
index (LVMi), LVEDV index (LVEDVi), and LVESV index 
(LVESVi) were calculated by dividing the respective indices 
by body surface area. Maximal LVEDWT was manually 
measured by an experienced observer.

The epicardial and endocardial borders of LGE 
images were manually delineated by two experienced 
operators. We also defined a visually normal-appearing 
area of myocardium without hyperenhancement as a 
normal myocardial region of interest. LGE was defined as 
myocardium 6 standard deviations (SD) above the mean 
signal intensity. Quantification of LGE was automatically 
measured by cvi42 software.

SAM was defined as mitral valve leaflets moving toward 
the septum of the LV during systole. The presence of SAM 
as well as the location of LGE were visually analyzed by 
two experienced observers blinded to the clinical data. LVH 
asymmetry was defined as the maximal LVEDWT >1.5-fold 
the wall thickness of the opposing segment.

Radiomics feature extraction and selection

After the borders of LV cine and LGE images were drawn, 

images were resampled to an in-plane voxel size of 1×1×1 mm3  
and voxel intensity values were discretized by using a 
fixed bin width of 25 HU prior to feature extraction. 
Pyradiomics of Python (version 3.7) was used to extract 
radiomics features from the LGE images and the end-
diastolic phase of cine images. The radiomics features 
include semantic, first-, second- and higher-order features. 
Semantic features include location, shape, size features, etc. 
First-order features describe the distribution of individual 
voxels and are median, mean, minimum or maximum of the 
intensities on the image. Second-order features describe 
interrelationships between voxels, which include gray-
level size-zone matrix (GLSZM), gray-level co-occurrence 
matrix (GLCM), gray-level dependence matrix (GLDM), 
gray-level run-length matrix (GLRLM) and neighborhood 
gray-tone difference matrix (NGTDM). Higher-order 
features impose filter grids on the image, which include 
log, exponential, logarithm, gradient, square, square root, 
wavelet and local binary pattern (LBP).

HHD samples comprised less than half of the HCM 
samples, which may cause adverse impacts on the 
performance of an optimal subset with the logistic classifier. 
Thus, to balance the size of the majority group, the 
synthetic minority oversampling technique (SMOTE) was 
performed with joint weighting of features in the optimal 
subset to generate samples from the minority group (10,11). 
By using these methods, we can enhance the representation 
of the minority group while retaining the original structure 
of the samples (10,11).

Because most of the extracted high-dimensional features 
were redundant, dimensionality reduction was essential. 
We first used the intraclass correlation coefficient (ICC) to 
assess the reliability and reproducibility of the features and 
selected features with an ICC higher than 0.8 in both the 
interobserver and intraobserver analyses (12,13). Then, a 
Spearman correlation matrix for all features was calculated, 
and one random feature was excluded in any feature pair 
with a Spearman correlation coefficient (SCC) greater 
than 0.7 (14). Finally, multivariate logistic regression was 
applied to choose the optimized subset of features (13). The 
radscore was calculated by summing these features weighted 
by their coefficients (which were determined using logistic 
method) (Figure 2). All features were standardized by using 
the z score standardization.

Discrimination model building

Discrimination models were built using multiparametric 
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Cine feature extraction and selection process
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Figure 2 Extraction and selection of radiomics feature. (A1) The epicardial (green line) and endocardial (red line) borders of cardiac cine images, 
which were used to extract radiomics features. (A2) Heatmap of training samples for logistic model in cardiac cine images, which reflected the 
normalized feature value distribution of the optimal 20 features between HCM and HHD groups in the training group. Red represents positive 
feature values, while blue represents negative feature values. The deeper the color, the larger the feature value. (A3) Heatmap of validation samples 
for logistic model in cardiac cine images, which reflected the normalized feature value distribution of the optimal 20 features between HCM and 
HHD groups in the validation group. (A4) Cine radscore plot in training samples, which reflected the cine radscore distribution between HCM 
(blue line) and HHD (red line) groups in the training group. (A5) Cine radscore plot in validation samples, which reflected the cine radscore 
distribution between HCM and HHD groups in the validation group. (B1) The epicardial (green line) and endocardial borders  (red line) of 
cardiac LGE images. (B2) Heatmap of training samples for logistic model in cardiac LGE images. (B3) Heatmap of validation samples for logistic 
model in cardiac LGE images. (B4) LGE radscore plot in training samples. (B5) LGE radscore plot in validation samples. LGE, late gadolinium 
enhancement; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease. 
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CMR findings with or without the radscore. Characteristics 
that were statistically significant with P<0.05 in univariate 
logistic analysis were included in multivariate logistic 
analysis. Finally, discrimination models were built based on 
multivariate logistic regression. To evaluate the differential 
diagnostic performance of the cine radscore, LGE radscore, 
combined radscore and combined model in different 
scanners, we compared the area under the receiver operator 
characteristic curve (AUC) of these methods for various 
MR scanners by using Delong test.

Reproducibility

The contours of 30 randomly selected subjects (18 HCM 
patients and 12 HHD patients) were redrawn after 3 months 
by observer 1. Observer 2, blinded to the first observer’s 
result, drew the same set of subjects (13). Radiomics 
features were extracted by the same method and were used 
to analyze intraobserver and interobserver reproducibility. 
In addition, multiparameter CMR characteristics (e.g., 
SAM, LVH asymmetry) were reanalyzed by observer 1 and 
observer 2 to assess reproducibility.

Statistical analysis

Because the quantitative data in this study does not conform 
to a normal distribution according to the Shapiro-Wilk 
test. They were expressed as the median and IQR, and the 
Mann-Whitney U tests were used to compare differences 
between two groups. Categorical variables are presented 
as frequencies or percentages, and the chi square test or 
Fisher’s exact test was used to compare differences between 

two groups. We evaluated the discriminating performance 
of the radscore and discrimination models by AUC in both 
the training and validation groups. The Youden index was 
used to assess optimal cut-off value of different models. 
The calibration of different models was assessed using 
calibration curves, which were plotted by bootstrapping 
with 1,000 resamples and accompanied by the Hosmer-
Lemeshow goodness-of-fit test. The likelihood ratio test 
was used to compare the performance of nested models 
and the Delong test was used to compare the performance 
of non-nested models. The ICC and Kappa coefficient 
were used to evaluate interobserver and intraobserver 
reproducibility. Two sides P value <0.05 was considered 
statistically significant. The statistical analysis was performed 
with IPM statistics (IPMs, version 2.4.0, GE Healthcare, 
Milwaukee, WI, USA), SPSS software (IBM SPSS Statistics 
for Windows, Version 25.0; IBM Corp., Armonk, NY, USA), 
MedCalc Software (MedCalc for Windows, version 19.3.1, 
Ostend, Belgium), Python (version 3.7, https://www.python.
org) and R programming language (version 3.4.2, http://
www.r-project.org).

Results

Patient characteristics and multiparametric CMR findings

The patient characteristics of the HCM and HHD patients 
are presented in Table 1. Patient characteristics showed no 
difference between the training group and the validation 
group (Table S2). The multiparameter CMR findings and 
MRI scanners of HCM and HHD patients are provided in 
Table 2.

Table 1 Clinical characteristics of HCM and HHD patients in the training group and validation group

Characteristics
Training group Validation group

HCM (n=252) HHD (n=120) P value HCM (n=169) HHD (n=80) P value

Gender <0.001 0.004

Male 177 (70%) 107 (89%) 120 (71%) 70 (88%)

Female 75 (30%) 13 (11%) 49 (29%) 10 (13%)

Age (years) 50 [38–59] 45 [34–57] 0.22 50 [38–60] 42 [36–57] 0.07

Body surface area (m2) 2.0 [1.8–2.1] 2.1 [1.9–2.1] <0.001 2.0 [1.8–2.0] 2.1 [1.9–2.1] <0.001

Systolic blood pressure (mmHg) 119 [112–121] 140 [130–145] <0.001 119 [112–121] 142 [126–147] <0.001

Diastolic blood pressure (mmHg) 75 [71–78] 90 [80–96] <0.001 75 [71–79] 90 [79–95] <0.001

Quantitative data were expressed as median and interquartile range [IQR], categorical variables were present as frequencies (percentages). 
HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; IQR, interquartile range.
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Feature extraction and selection

A total of 1,409 radiomic features for each patient were 
finally extracted from both the LGE images and the cine 
images at the end diastolic phase. Radiomics features 
include 14 semantic features, 18 first-order features, 75 
second-order features and 1,302 high-order features. 
Among the cine images, 1,091 features with ICCs higher 
than 0.8 by intraobserver and interobserver analysis were 
selected. Subsequently, we used Spearman correlation 
analysis to further select 81 features. Finally, multivariate 
logistic regression was used to determine the 20 optimal 
features. Among the LGE images, 1,155 features with ICCs 
higher than 0.8 by intraobserver and interobserver analysis 
were selected. Then, 108 features remained using Spearman 
correlation analysis. Finally, 20 optimal features remained 
using multivariate logistic regression. The cine radscore and 

LGE radscore were calculated by summing these optimal 
features weighted by their efficiency (Appendix 1: Eq. 
[S1,S2]). We also calculated the combined radscore using 
multivariate logistic regression with the cine radscore and 
LGE radscore (Appendix 1: Eq. [S3]), which achieved an 
AUC of 0.964 (0.948–0.980) in the training group and 0.924 
(0.890–0.958) in the validation group (Figure 3).

Discrimination model establishment and evaluation

The maximal LVEDWT, LVEDVi, LVESVi, LVEF, LVH 
asymmetry, SAM, quantification of LGE, mid-wall LGE, 
RV insertion point LGE, cine radscore and LGE radscore 
were identified as significant characteristics at P<0.05 
in univariate logistic analysis. In multivariate logistic 
regression without the radscore, the maximal LVEDWT, 

Table 2 Multi-parameters MRI characteristics and MRI scanners of HCM and HHD patients in the training and validation group

Parameters or scanners
Training group Validation group

HCM (n=252) HHD (n=120) P value HCM (n=169) HHD (n=80) P value

LV morphology and function

Indexed LV end-diastolic volume (mL/m2) 63 [54–74] 93 [60–118] <0.001 61 [53–73] 86 [66–122] <0.001

Indexed LV end-systolic volume (mL/m2) 21 [16–27] 53 [24–89] <0.001 21 [17–28] 59 [27–90] <0.001

LV ejection fraction (%) 66 [59–72] 38 [20–59] <0.001 64 [57–70] 32 [20–60] <0.001

Maximal LVEDWT (mm) 20 [17–23] 16 [14–17] <0.001 20 [17–24] 16 [14–17] <0.001

Indexed LV mass at diastole (g/m2) 61 [51–80] 74 [50–85] 0.08 64 [49–82] 71 [55–89] 0.25

Quantification of LGE (%) 4 [1–11] 3 [0–6] <0.001 5 [1–13] 1 [0–4] <0.001

LVH asymmetry 216 (86%) 56 (47%) <0.001 135 (80%) 32 (40%) <0.001

SAM 64 (25%) 2 (2%) <0.001 28 (17%) 1 (1%) <0.001

LGE 210 (83%) 86 (72%) 0.009 140 (83%) 44 (55%) <0.001

Mid-wall LGE 199 (79%) 77 (64%) 0.002 127 (75%) 39 (49%) <0.001

RV insertion point LGE 171 (68%) 59 (49%) 0.001 114 (67%) 27 (34%) <0.001

Scanner 3.0T <0.001 0.007

Siemens 106 (42%) 65 (54%) 70 (41%) 44 (55%)

Philips 91 (36%) 17 (14%) 55 (33%) 11 (14%)

GE 55 (22%) 38 (32%) 44 (26%) 25 (31%)

Quantitative data were expressed as median and interquartile range [IQR], categorical variables were present as frequencies (percentages). 
Siemens refers to MAGNETOM Siemens Verio 3.0T, Siemens Health Care, Erlangen, Germany; Philips refers to Ingenia 3.0T, Philips 
Healthcare, Best, Netherlands; GE refers to Discovery MR750 3.0T, GE Medical Systems, Milwaukee, WI, USA. MRI, magnetic resonance 
imaging; HCM, hypertrophic cardiomyopathy; HHD, hypertension heart disease; LV, left ventricle; LVEDWT, left ventricular end diastolic 
wall thickness; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; SAM, systolic anterior motion; RV, right ventricle; 
IQR, interquartile range. 
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Figure 3 ROC curves of cine radscore, LGE radscore, clinical model, combined model and combined radscore for differential diagnosis of 
HCM and HHD in the training and validation group. (A) The ROC curves of cine radscore, LGE radscore, clinical model, combined model 
and combined radscore for differential diagnosis of HCM and HHD in the training group. (B) The ROC curves of cine radscore, LGE radscore, 
clinical model, combined model and combined radscore for differential diagnosis of HCM and HHD in the validation group. LGE, late 
gadolinium enhancement; ROC, receiver operator characteristic curve; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease.

Table 3 Univariate and multivariate logistic analysis in the training group with or without radscore 

Variable
Univariate analysis Multivariate analysis without radscore Multivariate analysis with radscore

OR* (95% CI) P value OR* (95% CI) P value OR* (95% CI) P value

Maximal LVEDWT (mm) 1.508 (1.360–1.671) <0.001 1.380 (1.210–1.574) <0.001 1.276 (1.082–1.505) 0.004

LVEDVi (mL/m2) 0.966 (0.957–0.975) <0.001

LVESVi (mL/m2) 0.950 (0.938–0.962) <0.001

LVEF (%) 1.081 (1.064–1.099) <0.001 1.082 (1.012–1.157) 0.02 1.111 (1.063–1.161) <0.001

LVMi (g/m2) 0.994 (0.986–1.003) 0.20

LVH asymmetry 6.857 (4.146–11.341) <0.001 2.927 (1.451–5.908) 0.003

SAM 20.193 (4.851–84.053) <0.001

Quantification of LGE (%) 1.040 (1.011–1.070) 0.007 1.067 (1.012–1.125) 0.02

LGE 1.977 (1.179–3.315) 0.01 0.050 (0.006–0.409) 0.005

Mid-wall LGE 2.097 (1.297–3.391) 0.003

RV insertion point LGE 2.183 (1.399–3.406) 0.001

Cine radscore 2.450 (1.981–3.031) <0.001 3.118 (1.967–4.943) <0.001

LGE radscore 1.895 (1.633–2.201) <0.001 2.631 (1.745–3.964) <0.001

*, OR >1 means the higher the variable is, the higher the probability of HCM will be. OR, odds ratio; CI, confidence interval; LVEDWT, left 
ventricular end diastolic wall thickness; LVEDVi, left ventricular end diastolic volume index; LVESVi, left ventricular end systolic volume 
index; LVEF, left ventricular ejection fraction; LVMi, left ventricular mass index; LVH, left ventricular hypertrophy; SAM, systolic anterior 
motion; LGE, late gadolinium enhancement; RV, right ventricle. 

LVEF, LVH asymmetry and quantification of LGE were 
identified as significant characteristics and used to build 
clinical discrimination model (Table 3 & Eq. [1]), which 

achieved an AUC of 0.892 (0.855–0.929) and 0.919 (0.884–
0.954) in the training and validation group, respectively 
(Figure 3). In multivariate logistic regression including 
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the radscore, the maximal LVEDWT, LVEF, presence of 
LGE, cine radscore and LGE radscore were identified as 
significant characteristics and used to build a combined 
discrimination model (Table 3 & Eq. [2]), which achieved an 
AUC of 0.979 (0.968–0.990) and 0.981 (0.967–0.995) in the 
training and validation group, respectively (Figure 3). The 
differential diagnostic performance of the combined model 
was significantly higher than that of the clinical model in 
both the training group and validation group (P<0.001). 
The calibration curves of the different models are provided 
in Figure 4. The independent value of each discriminator 
in the discrimination models for distinguishing HHD from 
HCM was also analysed in Table S3. 

The optimal cut-off value of cine radscore, LGE 
radscore, combined radscore, clinical model and combined 
model were −0.40, 0.21, −0.44, 87.81 and 72.02, respectively. 
The score higher than the cut-off value indicate a higher 
likelihood of HCM. The sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV) 
and F1 score of different models when using the best cutoff 
values were shown in Table 4.

We compared the AUC of the cine radscore, LGE 
radscore, combined radscore and combined model using 
different scanner types for both the training group and 
validation group, and no significant difference was found 
(Figure 5 & Table S4). 
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Reproducibility

All CMR parameters exhibited excellent reproducibility in 
both intraobserver and interobserver analyses (with ICC or 
kappa coefficients >0.8) (Table S5). Among the cine images, 
1,091 features exhibited excellent reproducibility (ICC 
>0.8 in both intraobserver and interobserver analyses); 269 
feature exhibited fair reproducibility (0.8≥ the lower ICC 
value in the intraobserver and interobserver analyses >0.5); 
49 features exhibited poor reproducibility (intraobserver 
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Figure 4 Calibration curves of different models in the training and validation group. Calibration curves of combined model (A), cine radscore (B), 
LGE radscore (C) and clinical model (D) in the training group and validation group (E-H). X-axis is model-predicted probability of HCM. Y-axis 
is actual HCM probability. Apparent line represents the performance of the model, Bias-corrected line was plotted via bootstrapping with 1,000 
resamples, Ideal line indicates the ideal prediction by a perfect model. The closer the bias-corrected calibration curve is to the ideal line, the higher 
the prediction accuracy of the model. HCM, hypertrophic cardiomyopathy; LGE, late gadolinium enhancement.
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Table 4 The classification performance of different models when using the best cutoff values

Model Sensitivity Specificity PPV NPV F1 score

Training group

Combined model 0.952 0.883 0.945 0.898 0.950

Clinical model 0.929 0.692 0.863 0.822 0.895

Cine radscore 0.917 0.800 0.906 0.821 0.911

LGE radscore 0.750 0.850 0.913 0.618 0.824

Combined radscore 0.885 0.925 0.961 0.793 0.921

Validation group

Combined model 0.970 0.863 0.937 0.932 0.953

Clinical model 0.923 0.750 0.886 0.822 0.904

Cine radscore 0.893 0.713 0.868 0.760 0.880

LGE radscore 0.740 0.800 0.887 0.593 0.806

Combined radscore 0.870 0.840 0.919 0.753 0.894

The best cut-off value of cine radscore, LGE radscore, combined radscore, clinical model and combined model were −0.40, 0.21, −0.44, 
87.81 and 72.02, respectively. The score higher than the cut-off value indicate a higher likelihood of HCM. PPV, positive predictive value; 
NPV, negative predictive value; LGE, late gadolinium enhancement; HCM, hypertrophic cardiomyopathy. 
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Figure 5 ROC curves of different models for discriminating patients with HCM and HHD using different MR scanners in the training and 
validation group. ROC curves of combined model (A), combined radscore (B), cine radscore (C) and LGE radscore (D) for discriminating 
patients with HCM and HHD using different MR scanners in the training group and validation group (E-H). Siemens refers to MAGNETOM 
Siemens Verio 3.0T, Siemens Health Care, Erlangen, Germany; Philips refers to Ingenia 3.0T, Philips Healthcare, Best, Netherlands; GE refers 
to Discovery MR750 3.0T, GE Medical Systems, Milwaukee, WI, USA. ROC, receiver operator characteristic curve; HCM, hypertrophic 
cardiomyopathy; HHD, hypertensive heart disease; MR, magnetic resonance; LGE, late gadolinium enhancement.
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analyses and interobserver analyses showed at least one ICC 
≤0.5). Among the LGE images, 1,155 features exhibited 
excellent reproducibility; 121 feature exhibited fair 
reproducibility; 133 features exhibited poor reproducibility.

Discussion

As the most common genetic heart disease, approximately 
20,000,000 people may be affected by HCM (15). HCM is 
characterized by LVH, but this may also be found in other 
disorders, such as HHD. Accurate diagnosis of HCM is 
necessary for timely management of these patients (1). 

In our study, we firstly summarized CMR discriminators 
between HHD and HCM patients. Then, we extracted 
radiomics features from cardiac cine and LGE images, 
which had great differential diagnostic value for HCM 
and HHD. Further discrimination models combined with 
multiparameter CMR findings and radiomics features were 
built in our study for the first time, which performed much 
better than the model including multiparameter CMR 
findings alone.

In HHD patients, increased LVEDWT is a result 
of LV remodeling, which results in a normalization of 
stroke volume (SV) (16,17). In HCM patients, increased 
LVEDWT is caused by sarcomere variants (1). Different 
patterns and degrees of wall thickening have been identified 
in HCM and HHD due to the different pathophysiologies 
(17,18). Patients with HHD often present with symmetrical 
and mild LVH, while patients with HCM often present 
with asymmetry and severe LVH (3). In our study, maximal 
LVEDWT and LVH asymmetry were useful to discriminate 
HHD from HCM in multivariable logistic regression. We 
further analyzed the maximal LVEDWT of these patients. 
We found that 186 (93%) HHD patients presented with 
maximal LVEDWT of 12–20 mm but that only 1 (0.5%) 
HHD patient presented with maximal LVEDWT ≥25 mm;  
212 (50%) HCM patients presented with maximal 
LVEDWT of 15–20 mm, and 72 (17%) HCM patient 
presented with maximal LVEDWT ≥25 mm. Thus, a larger 
LVEDWT suggests a higher probability of HCM, and 
patients with maximal LVEDWT ≥25 mm are highly likely 
to be diagnosed with HCM. Moreover, the incidence of 
LVH asymmetry was higher in HCM patients (83%) than 
in HHD patients (44%), and it thus may be used as an index 
to differentiate HCM from HHD and build discrimination 
models.

HCM is characterized by a hypertrophied but nondilated 

LV, while dilated cardiac remodeling is the pathophysiology 
of HHD (1,19). Thus, a lower LVEDVi or LVESVi 
suggests a higher probability of HCM. Although increased 
wall thickness is compensatory in pressure overload and 
allows for preservation of LVEF in the early stage of LVH, 
progression to heart failure due to LV decompensation may 
occur (16,17). In our study, LVEF was significantly lower 
in HHD patients than in HCM patients; LVEF <45% was 
found in 32 (8%) HCM patients and 119 (60%) HHD 
patients. This may illustrate that heart failure is more 
common in HHD than HCM patients.

LGE can accurately reflect myocardial fibrosis, which 
is more frequently found in HCM patients than in HHD 
patients, and mid-wall LGE can be used as a discriminator 
between HCM and HHD (3,20,21). In this study, LGE 
was detected in 350 (83%) HCM and 130 (65%) HHD 
patients; quantification of LGE in HHD patients was also 
significantly lower than that in HCM patients. Despite 
the presence of LGE, quantification of LGE, mid-wall 
LGE and RV insertion point LGE was able to significantly 
discriminate HCM and HHD in univariate analysis, yet 
only quantification of LGE was significant in multivariate 
analysis. Thus, quantification of LGE rather than mid-
wall LGE or RV insertion point LGE is recommended as a 
discriminator of HCM and HHD.

Radiomics is a rapidly evolving field in medical imaging 
and nuclear medicine, focusing on extracting quantitative 
and reproducible information from diagnostic images and 
including complex texture features that are difficult to 
quantify or recognize by the human eye (22,23). Although 
research on radiomics is mainly focused on cancer, recent 
studies have suggested that radiomics may also be used to 
predict LGE using cine images and improve the diagnostic 
accuracy of myocarditis (24,25).

This study used cine and LGE images to extract 
radiomics features, and built a discrimination model 
combined with radiomics features and multiparametric 
CMR findings. The final selected radiomics features 
quantified the differences in the morphology, texture, and 
voxel distribution of images between the two diseases with 
or without various filter. Radscores were calculated by the 
quantitative combination of these differences, which enables 
the differentiation of the two diseases. The discrimination 
model combined with the radscore performed much better 
than that using multiparameter CMR findings only, showed 
that the diagnostic accuracy of HCM increases significantly 
with the addition of radiomics techniques.
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In this study, both the clinical model and the combined 
model showed excellent performance in discriminating 
HHD from HCM (with AUC >0.9), we further analyzed 
these models to understand how such excellent performances 
were obtained. The AUC of the discriminators in the 
clinical model and the combined model were calculated 
independently. Both maximal LVEDWT and LVEF showed 
good performance in distinguishing HHD from HCM (with 
AUC >0.8 in both the training group and the validation 
group), which contribute to the excellent performance 
of the clinical model. And in the combined model, the 
AUC of four discriminators (LVEF, maximal LVEDWT, 
cine radscore and LGE radscore) were higher than 0.8 
in both the training group and the validation group, the 
combination of these discriminators resulted in an excellent 
distinguishing performance. 

This study has several limitations. First, this was a single-
center study, and the models built were not validated using 
external data. Although different scanners were used in this 
study to extract radiomics features and build discrimination 
models, the performance of these models showed no 
significant difference when different equipment was used. 
Additionally, T1 mapping was not included in our study, 
which may be useful to differentiate the two diseases, and 
this will be addressed in future research. Then, genetic 
test results were not included in this study because they 
were unavailable for most patients, which will be explored 
in future studies. Next, due to the high requirements 
of sample size for radiomics research, this study did not 
consider the discrimination of other diseases which may 
lead to LVH. This will be considered in future multicenter 
studies. Finally, due to our center’s status as a national hub 
for cardiovascular diseases in China, patients usually come 
to our center for treatment only when their condition is 
severe, the distribution of cases may be uneven.

Conclusions

In conclusion, the maximal LVEDWT, LVEF, LVH 
asymmetry and quantification of LGE, cine radscore and 
LGE radscore are effective CMR discriminators for HCM 
and HHD. Discrimination models combined with radiomics 
features were built in our study, and they performed 
much better than the model using multiparameter CMR 
findings only. The radscore calculated by radiomics features 
derived from cardiac cine and LGE images may be used for 
discriminating between HCM and HHD.
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