
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00234-021-02865-x

REVIEW

MRI of focal cortical dysplasia

Horst Urbach1   · Elias Kellner2 · Nico Kremers1 · Ingmar Blümcke3 · Theo Demerath1

Received: 16 October 2021 / Accepted: 17 November 2021 
© The Author(s) 2021

Abstract
Focal cortical dysplasia (FCD) are histopathologically categorized in ILAE type I to III. Mild malformations of cortical 
development (mMCD) including those with oligodendroglial hyperplasia (MOGHE) are to be integrated into this classi-
fication yet. Only FCD type II have distinctive MRI and molecular genetics alterations so far. Subtle FCD including FCD 
type II located in the depth of a sulcus are often overlooked requiring the use of dedicated sequences (MP2RAGE, FLAWS, 
EDGE) and/or voxel (VBM)- or surface-based (SBM) postprocessing. The added value of 7 Tesla MRI has to be proven yet.
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Focal cortical dysplasia (FCD) are the most commonly 
resected epileptogenic lesions in children and the third most 
common lesions in adults [1]. They are defined as inborn 
(developmental), localized regions of malformed cerebral 
cortex, and encompass a broad spectrum of histopathologi-
cal (light-microscopical) abnormalities [2]:

In a three-tiered light-microscopical classification pro-
posed by the ILAE, FCD type I is a malformation with 
abnormal cortical layering, either compromising the radial 
(FCD type Ia) or the tangential composition of the 6-layered 
neocortex (FCD type Ib). The combination of both variants 
is classified as FCD type Ic [2]. Note, however, that very 
recently, the existence of FCD type Ib and Ic has been ques-
tioned [3].

FCD type II is a malformation with disrupted cortical 
lamination and specific cytological abnormalities, which dif-
ferentiates FCD type IIa (dysmorphic neurons without bal-
loon cells) from FCD type IIb (dysmorphic neurons and bal-
loon cells) [4]. In 2011, Blumcke et al. added a FCD type III 
as a FCD type I in combination with hippocampal sclerosis 

(FCD type IIIa), with epilepsy-associated tumors (FCD type 
IIIb), adjacent to vascular malformations (FCD type IIIc), or 
in association with epileptogenic lesions acquired in early 
life (i.e., traumatic injury, ischemic injury, or encephalitis) 
(FCD type IIId) [2].

Note that the rare association between FCD type II with 
hippocampal sclerosis, tumors, or vascular malformations 
should not be regarded as FCD type III variant [2]. In addi-
tion to FCD defined as localized regions of malformed 
cerebral cortex so-called mild malformations of cortical 
development (mMCD) may cause epilepsy. In mMCD, the 
cortical architecture is intact, the cortex is absent of aberrant 
cells, but an excessive number of neurons in the molecular 
layer (type1) or the white matter (type 2) is found [4]. Mild 
malformation of cortical development with oligodendro-
glial hyperplasia (MOGHE) is another mild malformation 
of cortical development characterized by gray white matter 
blurring due to heterotopic neurons in the white matter and 
an increased number of normal-appearing oligodendroglial 
cells in the deep cortical and the juxtacortical white matter 
[5, 6].

Distinct molecular genetics alterations are so far confined 
to FCD type II; no consistent findings have been reported for 
mMCD or FCD I [7–9]. In FCD type II, mammalian target 
of rapamycin (mTOR) pathway mutations of genes within 
this pathway, including AKT1, AKT3, DEPDC5, MTOR, 
NPRL2/3, PIK3CA, PIK3R2, and TSC1/2 mutations, can be 
found [10–12].

On MRI, FCD features are an increased cortical thick-
ness (60–91% of FCD), a blurring of the gray/white matter 
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junction (74–96% of FCD), a transmantle sign (75% of FCD 
type IIa, 94% of FCD type IIb), and/or an abnormal gyral/
sulcal pattern [13–18]. mMCD (type 2) can be characterized 
by a signal increase of the white matter with blurring of the 
gray/white matter junction (Table 1). In young children (up 
to 3 years), MOGHE typically shows a T2- and FLAIR-
hyperintense juxtacortical band (subtype I) (Fig. 3), which 
may represent hypomyelination. In older children, the band 
is not longer visible; instead, there is a reduced corticome-
dullary differentiation (subtype II) [6].

MRI abnormalities of FCD are often subtle and—as 
they usually do not change during life—often overlooked. 
The most overlooked lesion is a FCD in the depth of a 
sulcus (bottom of sulcus dysplasia) [19]. The transmantle 
sign—a funnel-shaped hyperintensity tapering towards the 

lateral ventricle—is only found in FCD type II [13, 17]. 
It is suggestive of a FCD type IIb, but not present in all 
FCD type IIb [10, 17]. The subtle abnormalities may be 
highlighted with specific MR sequences and postprocess-
ing tools. In this review, we describe several strategies to 
enhance the visibility of FCD and correlate histopathologi-
cal classifications and MRI findings.

MRI protocols

MRI protocols to evaluate patients with drug-resistant 
focal epilepsies are largely standardized [20–22] (Table 2).

Table 1   ILAE classification of FCD, molecular genetics, and MRI findings

Histology Molecular genetics MRI

FCD Ia Radial microcolumns None Not directly visible, but may show blurring 
of the gray/ white matter junction due to 
heterotopic U-fiber neurons

FCD Ib Tangential microcolumns
FCD Ic Radial and tangential microcolumns
FCD IIa Dysmorphic neurons mTOR pathway mutations (AKT1, AKT3, 

DEPDC5, MTOR, NPRL2/3, PIK3CA, 
PIK3R2, RHEB, TSC1/2)

Increased cortical thickness, blurring of 
the gray/white matter junction, abnormal 
gyral/sulcal pattern

FCD IIb Dysmorphic neurons + balloon cells  + transmantle sign (94% of patients)
FCD IIIa FCD I + hippocampal sclerois None Not directly visible, but may show white 

matter hypoplasia + white matter blurring
FCD IIIb FCD I + epilepsy-associated tumors ?
FCD IIIc FCD I + vascular malformation ?
FCD IIId FCD I + early life event ?
mMCD 1 Ectopic neurons in molecular layer of 

neocortex
None ?

mMCD 2 Ectopic neurons in white matter May show white matter blurring
MoGHE Increased number of oligodendroglial 

cells + ectopic neurons in white matter
Mosaic SLC35A2 variants white matter blurring (in frontal lobe)

Table 2   Epilepsy-dedicated 
MRI protocol (3 T Magnetom 
Prisma, Siemens Healthcare, 
Erlangen, Germany)

MPRAGE magnetization prepared rapid gradient echo, FLAIR SPACE fluid-attenuated inversion recov-
ery—sampling perfection with application-optimized contrasts by using flip angle evolution, TSE turbo 
spin echo, STIR short tau inversion recovery, DWI diffusion-weighted imaging, SE spin echo, EPI echo 
planar imaging, TI inversion time, TR repetition time, TE echo time, α flip angle, var variable flip angle.

MRI sequence No. of slices/
thickness (mm)

Voxel size (mm3) TI/TR/TE/α
(ms/ms/ms/°)

Acquisition 
time (min:s)

sag 3D MPRAGE 160/ 1 1 × 1 × 1 900/2000/2.26/12 4:40
sag 3D FLAIR-SPACE 160/1 1 × 1 × 1 1800/5000/388/var 6:52
ax 2D T2-TSE 42/3 0.4 × 0.4 × 3 5040/102/150 4:34
ax 2D T2* 23/5 0.7 × 0.7 × 5 639/ 19.9/20 2:33
cor 2D T2-STIR 40/2 0.4 × 0.4 × 2 100/5390/25/140 8:07
cor 2D FLAIR 68/2 0.7 × 0.7 × 2 2500/9000/87/150 4:14
ax 2D DWI-SE EPI 23/5 0.6 × 0.6 × 5 3400/85 0:46
sag 3D MP2RAGE 192/1 1 × 1 × 1 700, 5000/2000/2.9/4 8:52
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Key sequences

Within a MRI protocol at 3 Tesla, the 3D fluid-attenuated 
inversion recovery (FLAIR) sequence named SPACE, 
CUBE, VISTA, or depending on the MR vendor is the 
most relevant MRI sequence for the visualization of 
epileptogenic lesions [21, 22]. Nulling of the CSF sig-
nal helps to improve the visibility of hyperintense corti-
cal lesions [22]. Although 2D FLAIR sequences have a 
higher in-plane resolution and signal to noise ratio (S/N), 
3D FLAIR sequences with isotropic 1 mm3 voxel are pre-
ferred as they allow for multiplanar reformations, which 
may include reformations along and perpendicular to the 
orientation of the FCD [20, 22, 23].

The magnetization‐prepared rapid gradient‐echo 
(MPRAGE) sequence and equivalent 3D spoiled gradi-
ent echo and 3D turbo field echo sequences with isotropic 
millimetric voxel resolution (e.g., 1 × 1 × 1 mm3) are other 
key sequences. These sequences allow not only for opti-
mal evaluation of brain anatomy and morphology but are 
also used for voxel-based analysis including volumetry and 
postprocessing [24–31].

The MP2RAGE sequence is a MPRAGE sequence with 
two inversion pulses at 700 ms and 2500 ms, respectively. 
From the two images, a so-called unified image is calcu-
lated using the formula MP2RAGE =

contrastTI1×contrastTI2

contrastT1
2
+contrastTI2

2
 

(Fig. 1).
The MP2RAGE sequence produces images with a 

higher B1 homogeneity than the MPRAGE sequence and 
is therefore particularly suited for postprocessing [31–35]. 
The higher B1 homogeneity is also the reason that 7 
Tesla scanners are routinely equipped with this sequence 
[36–40].

The fluid and white-matter suppression (FLAWS) 
sequence is similar to the FLAIR sequence; however, not 
only the CSF but also the white matter signal is nulled. 
Two 3D sets with isotropic 1 mm3 voxel are acquired in an 
interleaved acquisition scheme with two different inversion 
times (TI): TI1 suppresses the white matter signal and TI2 

suppresses the CSF signal. From both data sets, a set of 
synthetic minimum FLAWS contrast images is calculated 
which can be regarded as a gray matter specific image [41, 
42] (Fig. 1).

The 3D Edge-Enhancing Gradient Echo sequence is a 
MPRAGE sequence with an inversion time of 442 ms [43]. 
At this inversion time, gray and white matter have equal 
signals but opposite phases and voxels with a mixture of 
gray and white matter (e.g., at the gray-white boundary) will 
have cancelation of longitudinal magnetization producing 
a thin area of signal void at the normal boundary (Fig. 1). 
Contrast to noise ratio (C/N) is reported to be higher than 
on MPRAGE and FLAIR sequences [43].

Quantitative MRI sequences

Quantitative MRI sequences measure tissue parameters such 
as the T1-, T2-, T2* relaxation times, or the proton density 
(PD) free from hardware-effects. However, they require the 
acquisition of several sequences including gradient echo 
sequences to correct for inhomogeneities of B0 and B1, and 
for insufficient spoiling of the transverse magnetization 
[44]. For T1and PD mapping, the variable flip angle method 
acquiring two spoiled gradient echo data sets at different flip 
angles is used [45]. A strategy for voxel-wise measurement 
of the T2 relaxation time is to acquire four fast spin echo 
datasets with different echo times (TEs), e.g., TE = 13, 67, 
93, and 106 ms. Mapping of both T2* and B0 inhomoge-
neities (to correct T1 data) is based on the acquisition of 
eight multiple-echo gradient echo (GE) datasets, e.g., 10, 
16, 22, 28, 34, 40, 46, and 52 ms [46, 47]. Quantitative MRI 
sequences can be used to calculate synthetic magnetization-
prepared rapid gradient-echo (MPRAGE) sequences which 
are—due to their high B1 field homogeneity—particularly 
suited for postprocessing.

3D MR fingerprinting (MRF) is another quantitative 
MRI technique. Acquired signals from a single ≈ 12 min 
3D sequence with variable combinations of hundreds to 
thousands of TRs and flip angles are compared with those 

Table 3   Overview of the results of various VBM and SBM tools

Study Sequence Method Sensitivity, specificity

Hong et al. 2014 MPRAGE SBM + linear discriminant analysis 0.74, 1.00
Hong et al. 2017 MPRAGE, 3D FLAIR, DTI SBM + linear discriminant analysis n.a
Jin et al. 2018 MPRAGE SBM + CNN 0.74, 0.90 AUC 0.75
Wang et al. 2015 MPRAGE VBM: MAP 0.9, 0.67
David et al. 2021 MPRAGE VBM: MAP + CNN 0.81, 0.84
Sun et al. 2021 MPRAGE VBM: MAP 0.43, 0.87
Gill et al. 2021 MPRAGE + 3D FLAIR SBM + CNN 0.87, 0.89
Demerath et al. 2021 MP2RAGE VBM: MAP + CNN 0.82, 0.34
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in a dictionary that contains signal evolutions from a wide 
range of physiologically relevant combinations of T1 and T2 
[49). The acquired signal from each voxel is then assigned 
to the entry in the dictionary that best matches the signal 
evolution [47]. 3D MRF was reported to show additional 
information in 4 of 15 patients with FCD but is not in clini-
cal routine yet [48].

Postprocessing

MRI features such as the cortical thickness, the gyral/sulcal 
pattern, or blurring of the gray/white matter junction can 
be computed semiautomatically using voxel-based (VBM) 
or surface-based morphometry (SBM). Texture analysis 

computing cubic volume sampling around each voxel to 
calculate second- and third-order textural features has also 
been described [49].

In a standard setting, T1-weighted data sets with 1 × 1 × 1 
mm3 are converted from DICOM to NIfTI format, undergo 
intensity non-uniformity correction, and are warped to 
a common template such as the MNI152 template. Other 
sequences, e.g., FLAIR, can be linearly mapped to the 
T1-weighted data sets. Next, gray matter (GM), white mat-
ter (WM), and CSF compartments are segmented.

For VBM, several feature maps (e.g., thickness, exten-
sion, junction maps in the MAP tool) are computed voxel-
wise [24]. For SBM, the gray/white matter boundary is 
tessellated and the folded surface tessellation inflated 
[28]. It allows for measuring the cortical thickness from 

Fig. 1   FCD type IIb in the 
depth of the right superior 
frontal sulcus. A–C 3 Tesla 
axial, coronal, and sagittal 3D 
FLAIR SPACE images show 
a thickenend cortex and a 
hyperintense transmantle sign 
tapering towards the frontal 
horn of lateral ventricle (B, C: 
arrow). D–F 3 Tesla sagittal 
MP2RAGE images at inver-
sion times TI of 700 ms (D) 
and 2500 ms (E). Calculated 
so-called unified image (F). 
G–I 3 Tesla sagittal FLAWS 
images at inversion times TI 
of 409 ms (G) and 1160 ms 
(H). Calculated minimum 
intensity image (I). J 3 Tesla 
calculated sagittal EDGE image 
at an inversion time of 442 ms 
according to Bydder and Young 
(1995) and Hornak (2008). K–L 
MAP-postprocessed MP2RAGE 
images after inverse normaliza-
tion and co-registration of the 
CNN output map to the unified 
images
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its vertices and to calculate features such as intensity gra-
dients within the cortex itself, but also features such as the 
gyral curvature, sulcal depth, or local cortical deforma-
tion [29, 50]. Most VBM and SBM algorithms however 
focus on the gray/white matter transition zone as the most 
prevalent feature of FCD. They compute features such 
as a smooth transition from the gray to the white matter. 
Features are typically analyzed with respect to a nominal 
distribution (z scores) requiring the use of data bases of 
healthy controls [24, 28, 51]. Machine learning tools with 
convolutional neural networks (CNN) are increasingly 
incorporated in VBM and SBM tools and trained with 
manually labeled ground-truth data to find FCD approach-
ing accuracies of close to 90% so far [25, 28, 31, 35, 52] 
(Figs. 1–2) (Table 3).

Discussion

Fifteen to 30% of patients with drug-resistant epilepsy are 
considered to be MRI negative; that is, no structural lesion is 
identified [53, 54]. However, MRI-negative is a misnomer. It 
comprises patients without a MRI lesion and those, in which 
a subtle MRI lesion, which however has a histopathological 
substrate, overlooked. Most overlooked lesion are FCD type 
2; the rate is higher for FCD type IIa than type IIb [55]. The 
rate of overlooked lesions is likely around 30% [28, 55–57], 
but may be as high as 41% or even 78% [25, 26, 58].

There is strong agreement that the visibility on MRI 
depends on the FCD type: FCD type II are visible on MRI 
provided adequate image quality on 3 Tesla machines 
and postprocessing is achieved. It has been reported that 
7 Tesla is superior to 3 Tesla; however, post-processed 7 

Fig. 2   A 24-year-old man with 
two FCD in the right cingulate 
gyrus. The anterior one with a 
transmantle sign was visually 
detected on a 3 Tesla 3D FLAIR 
sequence with isotropic 1 mm3 
voxels (A, C–D: arrow). The 
posterior one was detected with 
the aid of the morphometric 
analysis program only (B, C, 
E hollow arrow, F crosshair on 
so-called junction image before 
first surgery, G–H crosshair on 
co-registered MP2RAGE and 
probability maps after second 
surgery). While the anterior 
lesion was classified as FCD 
IIb, no FCD was diagnosed 
for the posterior lesion. As the 
patient did not get seizure-free 
the posterior lesionectony was 
extended and histology now 
revealed a FCD IIa
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Tesla MP2RAGE images have been compared with 3 Tesla 
MPRAGE images [37, 38]. This comparison is biased as 
postprocessing using MP2RAGE images already displays 
FCD with larger volumes and higher z scores [34].

There is limited agreement with respect to the visibility 
of FCD type I and III [22]. The abnormal arrangement of 
cortical neurons in FCD I and FCD III should not be visible 
on MRI as the cellular density is not changed [3]. However, 
the U-fiber layer beneath contains an excessive number of 
heterotopic neurons leading to a blurring of the gray/white 
matter junction. These displaced neurons form complex syn-
aptic plexus within the U-fiber layer; some axons of which 
ascend into the cortex to be integrated into synaptic net-
works [59]. Mild malformation of cortical development with 
excessive white matter neurons (mMCD type 2) and with 
oligodendrogial hyperplasia (MOGHE) (Fig. 3) also produce 
a blurring of the gray/white matter junction on T2-weighted/ 
FLAIR sequences.

The difficult diagnosis of mMCD and FCD type I is 
also indicated by the low intra-rater agreement docu-
mented in a blinded classification of 26 specimens by eight 

neuropathologists. A significant agreement was reached 
for FCD type II only [60]. Furthermore, the microcolum-
nar organization of FCD type Ia resembles neuronal radial 
migration streams during corticogenesis [61, 62] and may 
result, therefore, from delayed or arrested maturation at mid-
gestation [10]. This also holds true for the temporal pole 
abnormalities associated with hippocampal sclerosis which 
may be FCD type IIIa but also may show a reduced number 
of axons on diffusion-mesocopic imaging [63]. The reduced 
number of axons rather indicates a maturation disorder and 
not a FCD.

Correlation of histology and MRI is further impeded by 
a significant number of patients with MRI-visible FCD who 
get seizure-free following surgery but show unremarkable 
histopathology (so-called MRI-positive, histology-negative 
FCD) (Fig. 2). In these patients, a neuropathological sam-
pling error is the most likely explanation for missing the 
diagnosis.

Postprocessing has dramatically improved the detection 
rate of FCD. Thus, it is recommended to use a postprocess-
ing tool for every patient with a drug-resistant focal epilepsy. 

Fig. 3   Mild malformation of 
cortical development with 
oligodendroglial hyperplasia 
(MOGHE) in the left frontal 
lobe in a 3-year-old girl. A–C 
3 Tesla coronal 3D T2 SPACE 
(A), axial T2 TSE (B), coronal 
T1 MPRAGE (C), and axial T2 
TSE (D) images. T2-weighted 
images show a juxtacortical 
hyperintense signal band (A–B, 
arrows), extending into the left 
precentral gyrus (B, arrow-
head). On the MPRAGE image, 
the T2-hyperintense band looks 
like a subtle blurring of the 
gray-white matter junction (C 
arrows). D Axial T2w image 
after subtotal left frontal lobe 
resection. Despite residual 
lesion in the left precentral 
gyrus, the patient was seizure-
free (Engel IA) after 3 months
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Among the different tools, the VBM tool morphometric 
analysis program (MAP) is the most widely used tool; it has 
been integrated in standard presurgical workflows of over 60 
epilepsy centers in 22 different countries [35, 55, 64]. The 
MAP tool has independently been validated for its clini-
cal benefits against expert neuroradiological assessments 
[26, 34, 54,] with potential impact on further, also invasive 
presurgical patient management [34, 57]. Surface-based 
(SBM) tools at least theoretically allow for a better analysis 
of the cortical layers itself; however, the superiority to VBM 
has not been shown yet [20–30, 51, 65]. Multiple stand-
alone tools also processing multiple including quantitative 
sequences are currently being developed [25, 27, 28, 30, 31, 
47, 52, 64, 66]. Which postprocessing tool will prevail is at 
the end also a matter of availability and ease of use [64].

Due to their higher S/N, which is theoretically propor-
tional to the magnetic field strength B0, more FCD should be 
detectable on 7 Tesla compared to 3 Tesla scanners. In prac-
tice, however, stronger B1 field inhomogeneities at 7 Tesla 
impede the detection of subtle signal differences especially 
at the gray/white matter junction. The higher susceptibility 
(χ ≈ B0) improves the visibility of lesions with paramag-
netic substances but also comes with more artifacts at brain 
interfaces to air-filled bony structures. Wang et al. published 
the largest comparative study so far, a prospective cohort of 
previously MRI-negative classified 67 patients [37]. They 
investigated the additional value of 7 T MAP using the 
MP2RAGE sequence and detected 25% (6 of 24 patients) 
more lesions compared to 3 T MAP based on the MPRAGE 
sequence. As MP2RAGE images show a higher contrast and 
a higher contrast-to-noise ratio than MPRAGE images even 
at the same field strength, the meaningfulness is limited [34].

Current recommendations stress the technical challenges 
(use of dielectric pads to limit B1 field inhomogeneities, 
patient’s discomfort including dizziness, longer scanning 
times, larger flip angle variations in 3D SPACE sequences, 
etc.) and suggest the use of 7 Tesla MRI to be confined to 3 
Tesla negative cases [36, 39, 40, 67].

Conclusion

Albeit, there are standardized MRI protocols; FCD detec-
tion likely benefits from “newer” dedicated sequences 
(MP2RAGE, FLAWS, EDGE) and voxel- or surface-based 
postprocessing including the comparison with a data base 
of healthy controls. Only FCD type II have clear histopatho-
logical and MRI characteristics.
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