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Abstract: Soil enzymes, such as invertase, urease, acidic phosphatase and catalase, play critical
roles in soil biochemical reactions and are involved in soil fertility. However, it remains a great
challenge to efficiently concentrate soil enzymes and sensitively assess enzyme activity. In this study,
we synthesized phenylboronic acid-functionalized magnetic nanoparticles to rapidly capture soil
enzymes for sensitive soil enzyme assays. The iron oxide magnetic nanoparticles (MNPs) were firstly
prepared by the co-precipitation method and then functionalized by (3-aminopropyl)triethoxysilane,
polyethyleneimine and phenylboric acid in turn, obtaining the final nanoparticles (MNPPBA). Protein-
capturing assays showed that the functionalized MNPs had a much higher protein-capturing capacity
than the naked MNPs (56% versus 6%). Moreover, MNPPBA almost thoroughly captured the
tested enzymes, i.e., urease, invertase, and alkaline phosphatase, from enzyme solutions. Based on
MNPPBA, a soil enzyme assay method was developed by integration of enzyme capture, magnetic
separation and trace enzyme analysis. The method was successfully applied in determining trace
enzyme activity in rhizosphere soil. This study provides a strategy to sensitively determine soil
enzyme activity for mechanistic investigation of soil fertility and plant–microbiome interaction.

Keywords: magnetic nanoparticle; soil enzyme; protein capture; magnetic enrichment

1. Introduction

As a complex organic whole, soil, especially agricultural soil, is of great significance
to human social development. Soil enzymes, such as urease, acid phosphatase, invertase,
dehydrogenase and catalase, are important components in the soil ecosystem and are
widely involved in the material cycle and energy metabolism of soil. Soil enzyme activities
are affected by soil properties, tillage methods, environmental factors and other factors,
especially total nitrogen, organic matter and available phosphorus, etc. For example, long-
term fertilization can significantly increase the contents of soil total nitrogen and active
organic nitrogen, as well as the activities of soil urease, alkaline phosphatase and urease,
but fertilization may inhibit catalase activity [1–3].

The changes of these enzyme activities are of great importance to reflect the growth
status and interaction mechanism of soil microorganisms and plants and reveal their
response mechanism to environmental factors [4,5]. Most of the time, these interactions
occur around the roots of plants, along with the changes of soil enzymes. However, the
detection of trace substances is often difficult [6]. The same challenges also appear in the
preservation, pretreatment and detection of trace soil enzymes [7]. These limitations affect
the measurement of trace soil enzymes to different degrees. The detection methods of soil
enzyme activities are mature. However, when dealing with trace enzymes, the effectiveness
of the detection method encounters difficulties [8–10]. Improving the concentration of
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enzymes in the sample by optimizing the pretreatment method to meet the requirements of
the detection method has become an effective technical path.

Magnetic enrichment technology has shown promising application prospects in many
fields such as biochemistry, environmental chemistry, food chemistry and physical chem-
istry. First, materials synthesized using magnetic nanoparticles can be rapidly enriched
in an applied magnetic field but can be dispersed without settling in a non-magnetic en-
vironment [11,12]. Secondly, the surface of magnetic nanoparticles can be loaded with
functional groups through different synthesis methods, such as amino and carboxyl groups
and other epoxy groups [13,14], which can be used for protein capture, separation and other
processes [15,16]. For example, Alinezhad et al. [17] used magnetic nanoparticles combined
with MSPE technology to separate, enrich and detect three kinds of NSAIDs in environ-
mental water samples. The operation was simple, and the analysis time was short, with
a recovery rate of 93.6–98.9%. Liu et al. [18] prepared a novel N,N-dimethyldodecamine-
functionalized magnetic enrichment material (Fe3O4@MDHM) and used it for the en-
richment of flavonoids in grape juice. However, for different enrichment objects, the
structure, composition and properties of magnetic materials also have a great impact on
the enrichment and analysis results [19,20].

Therefore, this paper hopes to synthesize functional magnetic nanoparticles to effi-
ciently capture soil enzymes and construct a rapid recovery of nanoparticles and trace
soil enzyme activities detection method, as shown in Figure 1. Then, a set of efficient and
accurate soil enzyme activities is formed for a better study of the soil ecosystem.
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Figure 1. Schematic illustration of MNPPBA synthesis (a) and its application in trace enzyme
assay (b).

2. Results
2.1. Synthesis of the Phenylboronic Acid-Grafted Magnetic Nanoparticles

The magnetic nanoparticles were first prepared by the co-precipitation method [21]
and characterized by TEM observation and XRD analysis. As shown in Figure 2a, the initial
MNPs had round-like morphology, with sizes of 10–15 nm. XRD analysis further revealed
that the MNPs had the standard XRD spectrum of the Fe3O4 crystal (Figure S1), indicating
pure Fe3O4 nanoparticles. After grafting PEI and PBA [22,23], the obtained nanoparticles,
i.e., MNPPEI and MNPPBA, exhibited round-like morphology and sizes similar to the initial
MNPs (Figure 2a). Zeta potential analysis further showed that the MNPPEI nanoparticles
had higher Zeta potential than the initial MNPs (45 mV versus 24 mV, Figure 2b), which
was attributed to the strong positive charges of PEI on the surface of MNPPEI. Moreover,
MNPPBA exhibited lower Zeta potential than MNPPEI (Figure 2b), indicating the grafting
of PBA partially reduced the positive charges of PEI [24]. FT-IR analysis confirmed that
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the presence of C-NH-C and CH groups in MNPPEI and the presence of the B-O group in
MNPPBA (Figure 2c).
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2.2. Efficient Protein Capture by the Synthesized Magnetic Nanoparticles

Owing to the presence of phenylboronic acid groups, the MNPPBA nanoparticles
may have a high protein-capturing capacity. To verify this, the model protein BSA was
used to evaluate the protein-capturing capacity of the nanoparticles [25–27]. As shown in
Figure 3a, while the initial MNPs and MNPPEI with 2.28 mg only had a protein-loading
capacity < 11%, MNPPBA with this dose had a capacity of 51% (Figure 3a). With the
increase in nanoparticle masses, the three kinds of nanoparticles captured increased levels
of BSA, and MNPPBA always captured the highest levels of the proteins at different masses
(Figure 3b). Fluorescence microscopy was further performed to observe protein capture
by the nanoparticles [28]. While both MNP and MNPPEI only adsorbed very low levels
of FITC-labeled BSA (FITC-BSA), MNPPBA adsorbed drastically high levels of the FTIC-
BSA, with the nanoparticles exhibiting strong green fluorescence (Figure 3c). These results
indicate that MNPPBA had a strong protein-capturing capacity, which may be attributed to
exposure to phenylboronic acid groups on the nanoparticle surface.

2.3. Efficient Enrichment of Enzymes in Rhizosphere Soil Supernatants by the Synthesized
Magnetic Nanoparticles

After the higher protein-capturing capacity of MNPPBA was verified, the urease activ-
ities of the pellet and the supernatant were detected when using synthesized nanoparticles
in the urease solution (100 U) [29,30]. As shown in Figure 4a, over 90% of the urease was
captured by MNPPBA, about 14% captured by MNPPEI, and most of the urease was left
in the supernatant of MNPs. The higher the nanoparticle dose added, the more urease
captured (Figure 4b). In addition, the highest urease activity of MNPPBA pellets reached
92% when 2.28 mg of the nanoparticles were added. Similar detection results of invertase
and alkaline phosphatase activities are shown in Figure 4c,d. About 93% invertase and
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91% alkaline phosphatase could be captured by MNPPBA [31,32]. These results indicate
that the synthesis strategy of MNPPBA was effective, and enriching trace soil enzymes by
MNPPBA was feasible.
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of the supernatant and the nanoparticle pellets. 2.28 mg of the nanoparticles were added into 1 mL
of the urease solution (100 U). After 5 min of co-incubation, the nanoparticles were separated by
an NdFeB magnet. The nanoparticle pellets and the supernatants were used for detection of urease
activity by a urease assay kit. (b) Urease activity of the nanoparticle pellets at different nanoparticle
doses. (c) Invertase activity of the nanoparticle pellets at different nanoparticle doses. (d) Alkaline
phosphatase activity of nanoparticle pellets at different nanoparticle doses. The asterisks (*) indicate
a significant difference between MNPPBA and the other two groups (p < 0.05).

2.4. Sensitive Rhizosphere Enzyme Assay Based on the Synthesized Magnetic Nanoparticles

The actual soil situation is complex, meaning that the capture process of enzymes by
magnetic nanoparticles may be affected [33,34]. When using Amaranthus hypochondriacus
rhizosphere soil as the detection object, MNPPBA still showed the highest enzyme capture
efficiency. Soil particles and other compositions did not inhibit the combination between
nanoparticles and enzymes [35]. As shown in Figure 5, the great differences of the detection
results between traditional and nanoparticle-based assay indicate that traditional assay
could not reflect the soil enzymes activities accurately, especially when detecting the small
amount of sample containing trace enzymes, such as plant root tissue.
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The results in Figure 5 also show that nanoparticle-based assay was more sensitive
and more accurate and could accurately reflect the slight changes in enzyme activities
in a tiny area of the soil. It is helpful to research the response mechanism of plants and
microorganisms to the changes in the soil ecological environment, as well as the role of the
rhizosphere microbial system in different growth stages of plants [36].

3. Materials and Methods
3.1. Chemical Agents

Ammonium hydroxide, (3-aminopropyl)triethoxysilane, sodium hydroxide, ferrous
chloride, ferric chloride, glutaraldelyde, polyethyleneimine (PEI), and 4-formylphenylboronic
acid (4-FPBA) were purchased from Sigma (St. Louis, MO, USA). All reagents were used
without further purification.
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3.2. Synthesis of the Magnetic Nanoparticles

The initial magnetic nanoparticles (MNPs) were synthesized by using the co-precipitation
method. Briefly, 0.4 g of ferrous chloride and 1.1 g of ferric chloride were dissolved in
distilled water by magnetic stirring under 80 ◦C. 5 mL of ammonium hydroxide were then
added into the solution. After further stirring for 1 h, the MNPs were harvested by magnetic
separation by an NdFeB magnet, washed five times with distilled water, and dried with
a vacuum freezing drier. The obtained MNPs were then suspended in 20 mL of ethanol.
After addition of 5 mL APTES, the mixture was magnetically stirred at room temperature
for 24 h. The amino group-exposed MNPs were obtained by magnetic separation and
further suspended in 20 mL PEI solution (5%, w/v, prepared in distilled water). The
suspension was further magnetically stirred for 4 h at room temperature. The PEI-grafted
MNPs (MNPPEI) were separated by an NdFeB magnet and further suspended in 20 mL of
methanol. After addition of 0.1 g of 4-FPBA, the mixture was stirred at room temperature
for 12 h. The final PBA-grafted MNPs (MNPPBA) were separated by a magnet, washed
twice with ethanol, and dried with a vacuum freezing drier for further characterization.

3.3. Characterization of the Magnetic Nanoparticles

The morphology of the nanoparticles was characterized by TEM (Tecnai G2 F-20, FEI,
Hillsboro, OR, USA). Zeta potentials of the nanoparticles were detected by a dynamic light
scattering (Zetasizer Nano ZS0303081003, Malvern Panalytical, London, England). FT-IR
spectra of the samples were obtained by using an FT-IR analyzer (Bio-rad, Hercules, CA,
USA). The X-ray diffraction spectra of the nanoparticles were characterized by an XRD
analyzer (X’Pert PRO MPD, PANalytical, Almelo, The Netherlands).

3.4. Protein-Capturing Assays

To evaluate the capacity of the nanoparticles to capture the model protein BSA, 1 mL
of BSA solution (100 µg/mL) was mixed with the three kinds of nanoparticles (i.e., MNP,
MNPPEI, MNPPBA) with different doses (0.38, 0.76, 1.52, 2.28 mg/mL), respectively. After
co-incubation of the mixture with gentle shaking at room temperature for 1 h, the nanopar-
ticles were separated by a magnet. The contents of the remaining protein were detected
by the Coomassie brilliant blue agent. The protein-loading capacity of the nanoparticles
(%) was calculated by the adsorbed BSA divided by the mass of the nanoparticles × 100.
To observe the FITC-BSA-captured nanoparticles, the nanoparticles were added into the
FITC-labeled BSA (1 mg/mL). After co-incubation of 1 h, the nanoparticles were magnet-
ically separated, washed five times with distilled water, and observed by a fluorescence
microscope (BX43, Olympus, Tokyo, Japan).

3.5. Enzyme-Capturing Assays

To evaluate the capacity of the nanoparticles to capture the model enzymes, the
solutions of the three enzymes, including urease, invertase and alkaline phosphatase, were
prepared to a final concentration of 100 U/mL. The nanoparticles with different masses
were then added into 1 mL of each enzyme. After 10 min of co-incubation, the nanoparticles
were magnetically separated. The enzyme activity of the nanoparticles and the supernatants
was detected by using assay kits of urease, invertase and alkaline phosphatase, respectively
(Solarbio, Beijing, China).

3.6. Enrichment of Enzymes in Rhizosphere Soil Supernatants and Enzyme Assays

The Amaranthus hypochondriacus rhizosphere soil suspensions were prepared by wash-
ing Amaranthus hypochondriacus roots (1 g) with 10 mL of distilled water. 1 mL of the
rhizosphere soil suspensions was then mixed with 2.28 mg of the nanoparticles. After
co-incubation for 10 min, the nanoparticles were separated. The activity of the enzymes was
detected by using corresponding assay kits. The enzyme activity of the soil suspensions
was also detected by the traditional method, with 100 µL of the suspensions sampled
for assays.
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3.7. Statistical Analysis

Each experiment was performed with three replicates, and the values were shown with
means ± SD. Differences between groups were compared by a Student’s t-test (p < 0.05).
All statistical tests were performed using the SPSS software package (Version 20, IBM,
Armonk, NY, USA).

4. Conclusions

This study showed the synthetic method of magnetic nanoparticles with high soil
enzyme-capturing capacity and verified the effect of phenylboronic acid groups on the
nanoparticle surface. More than 90% of the main soil enzymes captured by MNPPBA
showed its strong effectiveness in the enrichment of trace enzymes. The nanoparticle-based
assay of soil enzyme holds significant advantages in sensitivity and accuracy and also im-
proves the enrichment efficiency of trace enzymes and reduces the pretreatment workload
and detection costs, showing a promising method for soil enzyme activity detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27206883/s1, Figure S1: Additional XRD pattern of the
initial MNPs is included.
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