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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has caused a global pandemic with over 1.28 
million deaths worldwide as of November 12, 2020 [1]. 
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Objective: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 
(COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management.
Materials and Methods: All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 
at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management 
groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple 
pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six 
laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory 
findings, and demographics between the patient management groups were assessed. The potential of these parameters to 
predict patients’ needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating 
characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans.
Results: While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT 
metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence 
interval [CI] = 0.79–0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, 
and albumin; AUC = 0.86; 95% CI = 0.77–0.94) were good classifiers. Excellent performance was achieved by a combination 
of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85–0.98). Application of a model 
that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its 
external validity (AUC = 0.77; 95% CI = 0.66–0.88).
Conclusion: Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image 
analysis. These metrics are useful for the prediction of patient management.
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The associated infectious disease, named coronavirus 
disease 2019 (COVID-19), progresses mildly in most cases 
[2]. However, severe and critical courses of the disease 
occur in approximately 20% of all patients [3], mostly 
demonstrating atypical pneumonia [4]. These patients 
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require hospitalization or even intensive care unit (ICU) 
treatment. There are regional differences in utilization of 
these scarce ressources during a pandemic with temporary 
shortages. Therefore, criteria for early prediction of patient 
management, especially whether ICU care is needed or not, 
are important.

While viral testing remains the only specific method of 
diagnosis [5], CT plays a role in the workup of suspected 
pulmonary manifestations of COVID-19 and associated 
complications. There is growing evidence that radiographic 
[6] and chest CT [7-15] features are associated with disease 
severity in COVID-19 based on (semi)-manual assessment and 
visual scoring of pulmonary parameters. This study intends to 
build on these approaches and expand them in three aspects: 
First, by introducing a fully automated and user-independent 
evaluation method, which is especially relevant in pandemic 
period with heavy workloads on healthcare providers. 
Second, this study explicitly focusses on the ultimate 
patient management status defined by a patient's clinical 
pathway established with sufficient temporal distance. Third, 
the inclusion of five cardiovascular metrics covered in all 
chest CTs has rarely been reported systematically. Notably, 
preexisting cardiovascular disease is a major risk factor for 
adverse outcomes in COVID-19 [16]. Laboratory findings were 
included to assess the value added by the CT metrics.

We hypothesized that CT metrics representing pulmonary 
and cardiovascular diseases were associated with ultimate 
patient management in patients with COVID-19 and could 
help in predicting patient management. It is the goal of this 
study to extract these CT metrics using a fully automated 
deep learning-based approach and assess their potential, 
alone and in combination with laboratory findings and 
demographic data, for the prediction of patient management.

MATERIALS AND METHODS

This study was approved by the local ethics committee 
(Ethikkommission Nordwest-und Zentralschweiz; IRB 
approval number: 2020-00566). It is part of a research 
project registered on ClinicalTrials.gov on, April 04/29/2020 
(Identifier: NCT04366765).

Study Population
All reverse-transcription polymerase chain reaction (RT-

PCR) results for SARS-CoV-2 performed at the emergency 
department (ED) of our institution between March 25 and 
April 25, 2020, were downloaded from our laboratory data 

system (n = 6080 RT-PCR results in 5120 patients). RT-
PCR for SARS-CoV-2 was performed using specimens from 
nasopharyngeal and oropharyngeal swabs. All patients 
with positive RT-PCR results for COVID-19 were identified 
(n = 438). In cases with multiple RT-PCRs, the patient was 
rated positively if a minimum of one of the specimens was 
positive. For the 438 patients, we searched our RIS/PACS 
system for the chest CTs performed during the study period, 
which resulted in 169 chest CTs. At our institution, chest CT 
is the imaging standard for verifying suspected pulmonary 
involvement in patients with SARS-CoV-2. For ensuring 
the independence of observations, all follow-up CTs from a 
given patient were excluded from the analysis (n = 49). This 
resulted in 120 CT scans in 120 patients. The time interval 
between the presentation at the ED and CT acquisition was 
determined. Figure 1 illustrates the search strategy.

Definition of Patient Management
Information on the ultimate clinical pathway of a patient 

was retrieved from our hospital information system 12 
weeks after the completion of CT data collection (date of 
determination of ultimate patient management: July 20, 
2020). Based on this information, the following three 
groups were defined: group 1 (outpatient treatment), 
group 2 (inpatient treatment, general ward), and group 
3 (admission to ICU). Each patient was assigned to the 
highest category individually reached (for instance, a 
patient that had initially been treated in the general ward 
and eventually needed ICU care was assigned to group 3). 

CT Acquisition Parameters
Chest CT scans were acquired in the supine position using 

two 128-slice scanners: SOMATOM Definition AS+ (n = 119) 
and SOMATOM Force (n = 1) (both Siemens Healthineers). 
Mean tube voltage was 105.0 kVp (standard deviation 
[SD]: 10.1), mean tube current-time product 81.1 mAs (SD: 
19.2), and pitch factor 1.05 in all cases. Most of the scans 
were performed without a contrast agent (n = 99), whereas 
21 CTs were performed with a mean of 71.8 mL (SD: 17.2) 
of contrast agent (Iopromide, Bayer AG) at an injection 
rate of 4 mL/s for excluding pulmonary embolism. Images 
reconstructed in 1-mm slice thickness using soft-tissue 
reconstruction kernel served as input to the algorithms.

Laboratory Findings
For all patients, the results of six standard laboratory 

parameters of inflammation and tissue damage were 
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retrieved from our laboratory system (blood sample type 
in parentheses): C-reactive protein (CRP; heparin plasma), 
lactate dehydrogenase (heparin plasma), white blood cell 
count (EDTA), procalcitonin (heparin plasma), albumin 
(heparin plasma), and D-dimers (citrate plasma). Laboratory 
results were obtained on the day of chest CT acquisition.

Technical Details of the Algorithms
Multiple deep convolutional neural networks (DCNNs) were 

locally deployed on an imaging post-processing platform 
(Siemens Healthineers, Corporate Technology).

Pulmonary Metrics
The 1-mm series in soft kernel reconstruction served as 

input to an algorithm prototype based on a deep image-
to-image network for lung and lung lobe segmentation and 
a subsequent DenseUNet for immediate segmentation of 
opacities. They were trained on chest CTs of n = 9549 (Deep-

Image-to-Image Network) and 901 (DenseUNet) patients, 
completely independent of the testing dataset used in 
this study. DenseUNet defined all voxels with ground-glass 
opacity (GGO) or consolidation as positive/foreground 
and all other areas of the lung as negative/background. 
Subsequently, an Hounsfield unit (HU) threshold of -200 was 
applied to the prediction mask for differentiating GGO from 
consolidations. Table 1 provides details of all the metrics. 
Further technical details and high diagnostic performance of 
the algorithms have been reported previously [17].

Cardiovascular Metric
The non-electrocardiogram-gated 1-mm series served as 

the only input to a DCNN based on the U-Net architecture 
for segmentation of the thoracic aorta and the total 
pericardial volume (TPV). TPV segmentation, which 
includes the heart and pericardial structures, such as fat 
and (if present) pericardial effusion, was used to identify 

Patients with RT-PCRs
for SARS-CoV-2

(March 25, 2020–April 25, 2020)
(n = 5120)

Patients with RT-PCR confirmed COVID-19
(n = 438)

Exclusion of patients with negative 
RT-PCR result (n = 4682)

Exclusion of patients without
chest CT (n = 269)

Exclusion of follow-up chest
CTs (n = 49)

Chest CTs
(n = 120)

Outpatient
(n = 20)

General ward
(n = 78)

ICU
(n = 22)

Number of chest CTs of patients with RT-PCR
confirmed COVID-19

(n = 169)

Fig. 1. Search strategy for the main analysis dataset. COVID-19 = coronavirus disease 2019, ICU = intensive care unit, RT-PCR = reverse-
transcription polymerase chain reaction, SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2
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candidate coronary calcification voxels by applying a 
threshold of > 130 HU. The calcium detection model 
based on ResNet subsequently predicts the true coronary 
calcifications. The diameters of the aorta were computed 
at key anatomical landmarks. The cardiovascular algorithms 
were trained using 3550 CT scans. Detailed information 
has been provided elsewhere [18,19]. The quantification of 
coronary calcifications (QCCs) could only be calculated for 
series without contrast (n = 99/120). Table 1 lists all the 
cardiovascular metrics analyzed in this study.

Statistical Analysis
Categorical variables were expressed as counts and 

percentages. For continuous variables, means with 
corresponding SDs are provided as measures of variance. 
For comparing the differences between groups, one-way 
analyses of variance for normally distributed continuous 
variables, the Kruskal-Wallis H tests for non-normally 
distributed continuous variables, and the chi-square tests 
for categorical variables were performed. The statistical 
analysis comprised the following three steps:

Step 1: A Series of Univariable Analyses with Appropriate 
post hoc Tests to assess the association of CT metrics, 
laboratory findings, and patient characteristics with patient 
management. Studies with contrast were excluded during 
the analysis of QCC, as this measure was only calculated on 

a non-contrast series.

Step 2: A Series of Multivariable Binary Logistic Regressions 
to assess the potential of CT metrics, laboratory findings, 
and patient demographics as well as their combinations, 
to classify patients who needed ICU care from those who 
did not. The ICU status of a patient (0 = no ICU; 1 = ICU) 
served as the dependent variable. CT metrics, laboratory 
findings, and patient demographics (age and sex) served as 
independent variables. Inclusion criteria for CT metrics and 
laboratory findings were p values ≤ 0.05, in the subgroup 
comparisons between groups 1 and 3 (outpatient vs. ICU) 
or group 2 vs. 3 (general ward vs. ICU) in Step 1 of the 
analysis. Furthermore, the parameters had to be available 
for all patients. This resulted in the following five models:

• D: Patients demographics only
• L: Laboratory findings only
• PC: CT metrics only
• PD: Pulmonary CT metrics and demographics*
• PCLD: All parameters (CT metrics, laboratory findings, 

demographics)
*This model was created for external validation (details 

below).

For all approaches, area under the curve (AUC) with 95% 
confidence intervals (CIs) were calculated using prediction 

Table 1. Features Analyzed by Algorithms with Units and Definitions
Metric Name Unit Definition

Pulmonary metrics
Lung volume mL Total volume of the lung
PO % Percentage of volume of the lung affected by opacities, equivalent to GGO and consolidation

PHO %
Percentage of volume of the lung affected by high HU opacities (equal to or above -200 HU), 
  equivalent to consolidations

%LowHU % Percentage of volume of the lung with low attenuation, defined as < -950 HU
LL# N Number of lung lesions detected (GGO or consolidations)
LSS N Sum of severity scores for each of the five lung lobes*
LHOS N Sum of severity scores for each of the five lung lobes, consolidation only*

Cardiovascular metrics

TPV mL
Total pericardial volume. This includes the heart as well as pericardial structures like fat 
  and/or effusion

QCC mm3 Total volume of coronary calcifications. Only available for CT without contrast
D_AAsc mm Diameter of ascending aorta at the level of the right pulmonary artery
D_Arch mm Diameter of aorta, midway through aortic arch region

D_ADsc mm
Diameter of descending aorta, midway between the branching of the subclavian artery and celiac 
  artery

*Severity scores calculated as follows. 0: lobe not affected by GGO/consolidation, 1: 1–25% of lobe volume affected, 2: 25–50%, 3: 
50–75%, 4: 75–100%. GGO = ground-glass opacity, HU = Hounsfield unit, QCC = quantification of coronary calcification
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probabilities obtained from the binary logistic regression 
analyses. Furthermore, we analyzed the differences in 
the AUCs between the models according to the method 
proposed by DeLong et al. [20].

Step 3: Internal and External Validation to assess 
generalizability. For internal validation, we processed 
all chest CTs of patients with positive RT-PCR for SARS-
CoV-2 acquired at our institution during a later period 
(April 26, 2020–May 20, 2020; information on ultimate 
patient management retrieved on August 12, 2020) with all 
algorithms. For testing external validity, we used data from 
another hospital (Supplementary Materials, Supplementary 
Table 1). ICU status was predicted using regression 
equations obtained from Step 2 of the analysis. 

Statistical analyses were performed with IBM SPSS 
Statistics for Windows, Version 22.0 (IBM Corp.), using 
default settings. The p values ≤ 0.05 indicated statistical 
significance.

RESULTS

Patient Characteristics
The main analysis dataset of this study included 120 

patients with a mean age of 60.8 years (SD: 17.5; range: 
18–92 years; 47 [39.2%] females). Table 2 summarizes the 
patient characteristics of the three patient management 
groups.

Automated CT Metrics Analysis
All the datasets were successfully processed using the 

algorithm. The mean time interval between presentation at 
ED and CT acquisition was 0.98 days (SD: 2.32 days). 

Step 1: Association of Metrics with Patient Management
Table 3 summarizes the results of the univariable analyses 

of CT metrics and laboratory findings.

Pulmonary CT Metrics
PO, PHO, LSS, and LHOS steadily increased continuously 

from group 1 to group 3, while lung volume and %LowHU 
decreased from group 1 to group 3. All these differences 
were statistically significant. Post hoc testing revealed that 
differences in PO, PHO, LSS, and LHOS were statistically 
significant at p values < 0.01 between all three subgroups. 
Regarding lung volume and %LowHU, group comparisons 1 
vs. 3 and 2 vs. 3 differed statistically significantly. Figure 2 
displays an image example for each group.

Cardiovascular CT Metrics
TPV and D_AAsc differed significantly among the three 

groups. Post hoc analysis revealed that differences in 
both TPV and D_AAsc were statistically significant only 
for the comparison of groups 1 and 3 (TPV: p = 0.041; 
D_AAsc: p = 0.033). QCC, D_Arch, and D_ADsc did not 
differ significantly. Figure 3 illustrates the outputs of the 
cardiovascular algorithms.

Laboratory Findings
Laboratory analysis for D-dimers and procalcitonin 

was not performed in some cases (11/120 and 36/120, 
respectively). All laboratory parameters differed 
significantly among the three groups. CRP levels increased 
steadily from groups 1 to 3, while albumin decreased. 
Subgroup comparisons were statistically significant for all 
group comparisons (CRP, albumin), group comparisons 1 vs. 
3, and 2 vs. 3 (lactate dehydrogenase and procalcitonin), 
group comparison 2 vs. 3 only (white blood cell count), and 
group comparison 1 vs. 3 only (D-dimer). 

Step 2: Prediction of ICU Status
Table 4 specifies metrics and parameters included in 

the five multivariable models for classification of ICU 
status (yes/no) according to the criteria mentioned in the 
methods section. The best performing model was the PCLD 
model combining CT-derived, laboratory, and demographic 
parameters (AUC = 0.91). Demographic parameters alone 
could not distinguish ICU patients from non-ICU patients 
(AUC = 0.55). CT-derived metrics (including both pulmonary 
and cardiovascular metrics) alone, laboratory metrics alone, 

Table 2. Patient Characteristics in Patient Management Groups with Intergroup Comparison
Group 1 (Outpatient) Group 2 (General Ward) Group 3 (ICU) P (Intergroup Comparison)

Number of patients 20 78 22
Mean age ± SD, year 58.2 ± 19.3 62.1 ± 17.4 63.1 ± 14.6 0.100
Sex, % female 35.0 (7/20) 41.0 (32/78) 36.4 (8/22) 0.847

ICU = intensive care unit, SD = standard deviation
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and pulmonary CT metrics combined with demographic 
parameters were all good classifiers with AUCs ≥ 0.84. 
Table 5 provides detailed information. The AUC of the D 
model differed significantly from that of all other models 
(p < 0.001). The difference in the AUCs of models with 
CT-derived parameters alone vs. laboratory parameters 
alone was not statistically significant (p = 0.462). Figure 
4 displays the receiver operating characteristic curves of 
the PCLD, PC, and L models. As D-dimers and procalcitonin 
were not available in all cases, these two parameters were 
excluded from the analysis. 

Step 3: Internal and External Validation
The internal validation comprising 16 new cases of 

patients with positive RT-PCR results for SARS-CoV-2 
resulted in a sensitivity of 80.0% (4 of 5 patients admitted 
to ICU correctly classified) and a specificity of 81.8% (9 of 
11 patients not admitted to ICU correctly classified) for the 
PCLD model. Table 5 presents the results. In general, the 
performance measures on the internal validation dataset 
were slightly worse than those on the main analysis dataset 
but still acceptable. The mean age of the internal validation 
dataset was 63.0 years (SD: 16.0) and not statistically 

significantly different from the dataset used for the main 
analysis (p = 0.635). We also found evidence for external 
validity using the PD model (Supplementary Materials 
for detailed information). Table 6 demonstrates that 
demographic information did not differ significantly among 
the three datasets.

DISCUSSION

This study demonstrated that it is feasible to 
automatically extract pulmonary and cardiovascular 
metrics from chest CT scans of patients with RT-PCR-
confirmed COVID-19 that are useful for the prediction of 
patient management. Multiple CT metrics continuously 
and significantly increased or decreased with intensified 
patient management. The same was true for laboratory 
parameters reflecting inflammation and cell damage. The 
best prediction regarding ICU status was achieved by 
combining CT metrics, laboratory findings, and demographic 
information, while the latter alone could not differentiate 
the two classes. The CT metrics and laboratory findings 
were good classifiers on their own. Although internal 
and external validation demonstrated marginally inferior 

Table 3. Results of Univariable Analyses of CT Metrics and Laboratory Findings
Parameter Unit Group 1 Group 2 Group 3 Statistic P

Pulmonary metrics
Lung volume mL 4917.4 (1286.2) 4336.5 (1205.5) 3611.3 (1059.5) ANOVA 0.002*
PO % 3.7 (6.1) 15.6 (15.9)  39.4 (24.1)  Kruskal-Wallis < 0.001*
PHO % 0.6 (1.2) 3.3 (4.5) 10.1 (8.6) Kruskal-Wallis < 0.001*
%LowHU % 7.8 (6.8) 5.4 (4.3) 2.7 (2.4) Kruskal-Wallis < 0.001*
LL# N 17.3 (10.9) 28.7 (17.3) 21.6 (10.7) ANOVA 0.061
LSS N 2.3 (2.2) 5.7 (3.5) 10.8 (4.8) Kruskal-Wallis < 0.001*
LHOS N 0.9 (1.3) 2.8 (2.0) 5.1 (2.2) Kruskal-Wallis < 0.001*

Cardiovascular metrics  
TPV mL 762.1 (194.5) 881.3 (236.6) 908.8 (166.1) Kruskal-Wallis 0.043*
QCC mm2 321.4 (700.3) 335.8 (633.6) 461.9 (915.6) ANOVA 0.552
D_AAsc mm 32.9 (3.9) 35.5 (4.4) 36.6 (4.1) Kruskal-Wallis 0.038*
D_Arch mm 28.8 (3.5) 29.6 (2.9) 30.4 (2.7) Kruskal-Wallis 0.184
D_ADsc mm 25.0 (4.3) 27.2 (2.6) 26.0 (4.3) Kruskal-Wallis 0.215

Laboratory findings
CRP mg/L 32.5 (59.9) 62.0 (73.5) 104.5 (81.9) Kruskal-Wallis < 0.001*
Lactate de-hydrogenase U/L 232.7 (84.6) 283.0 (159.7) 406.8 (144.0) Kruskal-Wallis < 0.001*
White blood cell count 109/L 6.9 (2.9) 6.9 (3.4) 9.4 (4.3) Kruskal-Wallis 0.035*
Procalcitonin µ/L 0.099 (0.141) 0.205 (0.531) 0.399 (0.427) Kruskal-Wallis < 0.001*
Albumin g/L 35.8 (4.5) 30.8 (6.3) 25.32 (6.4) Kruskal-Wallis < 0.001*
D-Dimer µ/mL 0.472 (0.302) 1.113 (1.438) 1.397 (1.401) Kruskal-Wallis 0.016*

Data are mean values and standard deviations (in brackets). *p ≤ 0.05. CRP = C-reactive protein, QCC = quantification of coronary 
calcification, TPV = total pericardial volume
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Fig. 2. Exemplary axial chest CT images for groups 1 (A), 2 (B), and 3 (C) with PO in percent in the lower right corner. (D) shows 
the output of pulmonary opacity segmentation algorithm for case (C), with fine delineation of areas with pulmonary opacities in 
red color.

A

C

B

D

Fig. 3. Exemplary axial chest CT images visualizing the output of cardiovascular algorithms: original input image (A), 
segmentation of the total pericardial volume as a red overlay (B), and segmentation of the descending aorta as a yellow overlay (C) 
as the basis for diameter calculations.

A B C

Table 4. Metrics Included in Five Multivariable Models for Prediction of Patient Management Regarding Need of ICU-Care (Yes/No)
Model Metrics and Parameters Included

D Age, sex
L CRP, lactate dehydrogenase, white blood cell count, albumin
PC Lung volume, PO, PHO, %LowHU, LSS, LHOS, TPV, D_AAsc
PD Lung volume, PO, PHO, age, sex
PCLD Lung volume, PO, PHO, %LowHU, LSS, LHOS, TPV, D_AAsc, CRP, lactate dehydrogenase, white blood cell count, albumin, age, sex

Name of models indicates which metric/parameter groups were included as independent variables. C = cardiovascular metrics, CRP = 
C-reactive protein, D = demographic paramters, ICU = intensive care unit, L = laboratory findings, P = pulmonary CT metrics
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performance, it was still good.
Our results regarding the relevance of pulmonary CT 

metrics in COVID-19 and their association with patient 
management are in line with previous studies and expected, 
as they reflect pathologic changes, concretely inflammatory 
GGO, and consolidations. Li et al. [8] reported an increasing 
extent of inflammatory pulmonary lesions from light to 
common to severe/critical clinical manifestations. Sun et 

al. [7] and Tan et al. [21] confirmed that quantitative CT 
parameters strongly correlate with laboratory inflammation 
markers. Lyu et al. [22] showed that the number of lung 
segments and lobes affected by consolidations increased 
with case severity, which is in line with the increase in 
LSS and LHOS with higher admission status [22]. Similarly, 
Liu et al. [10] reported an association between a higher 
lung severity score and extended hospitalization time. A 

Table 5. Performance Measures of Five Multivariable Models for Prediction of Patient Management Regarding Need of ICU-Care (Yes/
No)

Model Statistic Main Analysis Dataset Internal Validation Dataset External Validation Dataset
D Sensitivity (%) 63.6 (14/22) 40 (2/5) NA

Specificity (%) 50.0 (49/98) 36.4 (4/11) NA
AUC (95% CI) 0.55 (0.42-0.67) 0.42 (0.15–0.79) NA

L Sensitivity (%) 90.9 (20/22) 80.0 (4/5) NA
Specificity (%) 73.5 (72/98) 45.5 (5/11) NA
AUC (95% CI) 0.86 (0.77–0.94) 0.47 (0.15–0.79) NA

PC Sensitivity (%) 90.9 (20/22) 80.0 (4/5) NA
Specificity (%) 78.6 (77/98) 72.7 (8/11) NA
AUC (95% CI) 0.88 (0.79–0.97) 0.75 (0.47–1.00) NA

PD Sensitivity (%) 81.8 (18/22) 60.0 (3/5) 74.2 (23/31)
Specificity (%) 70.4 (69/98) 72.7 (8/11) 75.8 (47/62)
AUC (95% CI) 0.84 (0.75–0.94) 0.71 (0.39–1.00) 0.77 (0.66–0.88)

PCLD Sensitivity (%) 95.5 (21/22) 80.0 (4/5) NA
Specificity (%) 75.5 (74/98) 81.8 (9/11) NA
AUC (95% CI) 0.91 (0.85–0.98) 0.75 (0.48–1.00) NA

Sensitivity and specificity at optimal cutoff according to Youden with corresponding number of patients in brackets. AUC = area under 
the curve, CI = confidence interval, ICU = intensive care unit, NA = not available

Fig. 4. Receiver operating characteristic curves for the PCLD model (A), PC model (B), and L model (C) to assess discriminatory 
power regarding ICU-care on main analysis dataset (whether a patient finally required ICU care or not). A combination CT metrics, 
laboratory findings, and patient demographics was the best classifier (A; area under the curve = 0.91; 95% confidence interval = 0.85–0.98).  
ICU = intensive care unit
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Table 6. Comparison of Patient Characteristics in Main Analysis Dataset vs. Internal Validation Dataset vs. External Validation 
Dataset

Main Analysis Dataset Internal Validation External Validation P (Intergroup Comparison) 
Number of patients 120 16 93
Mean age ± SD, year 60.8 ± 17.5 63.0 ± 16.5 64.8 ± 16.1 0.678
Sex, % female 39.2 (47/120) 41.0 (4/16) 37.6 (35/93) 0.546

Differences in age and sex were not statistically significantly different between groups, as indicated by the p values.
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significant number of additional studies have successfully 
applied lung volume assessment with or without a 
combination of clinical and laboratory tests for predicting 
disease severity, treatment intensity, outcome, and 
mortality [7,10,15,23-26]. Notably, the analyses in these 
studies required substantial manual interaction and visual 
assessment. 

However, in a pandemic with limited human resources, 
fully automated approaches are preferred. In this respect, 
Huang et al. [27] applied CT-derived opacification 
measures using deep learning to stratify four clinical 
subtypes according to their baseline clinical, laboratory, 
and CT findings. They provided further evidence of CT as 
an important tool for risk stratification in patients with 
COVID-19 and reported percentages of lung areas with 
opacities ranging from 0% (mild disease) to 49.6% (critical 
disease), which is in line with the results of the analysis 
at hand. However, radiological findings used to predict 
the outcomes were at the same time part of the outcome 
definition criteria of this study [28]. 

As previously shown, preexisting cardiovascular disease 
is a risk factor for adverse outcomes in COVID-19 [24] and, 
COVID-19 simultaneously affects the cardiovascular system 
[29]. However, the aforementioned approaches did not 
include quantitative measurements of cardiovascular CT 
metrics. This study included cardiovascular metrics, such 
as TPV, as an estimate of heart size. Indeed, a higher TPV 
was associated with a higher risk of intensified patient 
management. As age and sex did not differ significantly 
between groups, differences were caused probably by 
increased heart size or increased amount of pericardial fat. 

The AUCs of the models considering CT-derived metrics 
only vs. laboratory paramters only were both high and did 
not differ statistically significantly. This is probably due to 
the fact that both reflect inflammation of the lungs and 
are highly correlated. Internal validation indicated good 
internal generalizability, as did the external data for the PD 
model.

This study had several limitations. First, the internal 
validation dataset was small, resulting in wide CIs; 
therefore, the results should be interpreted cautiously. 
However, high standardization of chest CT and the fact 
that other studies on the topic reported similar effect 
sizes provide confidence that the results are generalizable. 
Second, while the main investigator site had access to the 
algorithms with all pulmonary and cardiovascular metrics, 
the remote site had access to pulmonary metrics only. 

Third, this study included only patients with COVID-19 who 
underwent a CT scan, the diagnostic standard for patients 
with suspected pulmonary manifestations of COVID-19 at 
our center. Therefore, the presented approach might be 
less relevant in medical centers that rarely perform chest 
CT. Fourth, other features, such as the initial severity of 
symptoms, might be useful to classify patient management. 
Besides the focus on automatically retrieved CT metrics, 
this study also considered demographic parameters and 
laboratory findings.

To conclude, this study provides evidence that chest CT 
of patients with COVID-19 contains valuable information 
for the prediction of ultimate patient management. 
Furthermore, this information is accessible using a deep 
learning-based fully automated image analysis workflow, 
which is especially helpful during the COVID-19 pandemic.

Supplementary Materials

The Data Supplement is available with this article at 
https://doi.org/10.3348/kjr.2020.0994.
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