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Toxicity in mice expressing short hairpin RNAs gives new insight
into RNAi 
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Abstract

Short hairpin RNAs can provide stable gene silencing via RNA interference. Recent studies have
shown toxicity in vivo that appears to be related to saturation of the endogenous microRNA
pathway. Will these findings limit the therapeutic use of such hairpins?
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RNA interference (RNAi) has loomed large on the scientific

radar screen since its discovery nearly a decade ago. Scien-

tists have adopted RNAi as the standard tool for sequence-

specific silencing of genes and investors have poured money

into companies that aim to take advantage of its potential as a

surrogate genetic tool and as a therapeutic modality.

However, an article published by Mark Kay and colleagues [1]

in Nature recently reported fatal side effects in tests of thera-

peutic RNAi in mice. While some are discouraged by the

severity of the toxicity and argue that RNAi is not as promis-

ing as it used to be, we believe that these and other results

that pinpoint RNAi’s imperfections will instead improve our

understanding of RNAi and strengthen the field. 

The article by Grimm et al. [1] reported the results of experi-

ments in which short hairpin RNAs (shRNAs) were

expressed from vectors based on adeno-associated virus

that were delivered by low-pressure intravenous injections.

The first example of toxicity was seen when the researchers

co-injected viral vectors that expressed firefly luciferase

with five vectors that expressed different shRNAs against

luciferase. While two of the shRNA vectors produced stable

luciferase knockdown, several of the mice died less than one

month after the injection. The authors then designed new

shRNAs against a gene expressed by transgenic mice and

experienced the same toxicity problems: of 49 vectors

expressing 40 different shRNAs, 36 constructs were

severely toxic and 23 resulted in lethality in the mice within

two months.

Of course, this is not the only apparent setback that RNAi

has encountered. The first came when both short interfering

RNAs (siRNAs) [2] and shRNAs [3] were shown to trigger

immune responses under certain conditions, and many

asked whether the hype surrounding RNAi was finally over.

Research showed, however, that some of the perceived prob-

lems with RNAi-induced nonspecific immune responses

could be avoided with proper design - by refraining from

using sequences containing certain motifs, for instance

(reviewed in [4]). Another check came when several papers

showed that RNAi off-target effects are widespread and may

cause toxic phenotypes in vivo [5,6]. Unfortunately, it may

never be possible to design a sequence that avoids the poten-

tial for such effects altogether [7,8], as only limited sequence

complementarity to the target is enough to cause knockdown

[9]. One group has, however, already proposed that chemical

modifications may provide a remedy that significantly

reduces or avoids off-target effects [10]. Even though

immune reactions and off-target effects remain challenging

to RNAi researchers, continued research into the mecha-

nisms of RNAi produces potential solutions.

It appears, however, that neither immune responses nor off-

target effects can be blamed for the toxicity in the recent



paper by Grimm et al. [1] where mice died following injection

of shRNA-expressing viral vectors. On the one hand, inflam-

matory cytokines were not present above normal levels in

the mice, which rules out immune-stimulatory reactions. On

the other hand, the fact that many different shRNAs caused

lethality suggested that the phenotype was independent of

sequence, thereby rendering off-target effects an unlikely

cause. The adverse effects seem instead to be the conse-

quence of competition with the endogenous microRNA

pathway for post-transcriptional gene regulation.

Both siRNAs and shRNAs - the triggers of transient and

stable RNAi, respectively - are similar to processing interme-

diates in the microRNA pathway and harness its cellular

machinery. The availability of at least four distinct protein

complexes is critical for appropriate function of microRNAs

(reviewed in [11]). First, the Drosha-containing Microproces-

sor complex makes a cut at the non-closed end of primary

stem-loop transcripts, which results in short hairpins (usually

60-80 nucleotides in humans) with a two-nucleotide over-

hang at the 3� end [12-14]. Second, the enzymes Exportin-5

and the small GTPase Ran are responsible for export of these

precursors from the nucleus and their release into the cyto-

plasm [15-17]. Third, the RNAse III Dicer excises the hairpin

loop from the precursors and leaves a duplex with character-

istic two-nucleotide 3� overhangs on both sides [18-20].

Finally, the RNA-induced silencing complex (RISC) [21,22]

incorporates one of the RNA duplex strands and uses it as a

guide to target complementary messages for cleavage [23-

25], degradation [26-28] or translational suppression [29-

31]. The main microRNA processing intermediates are

illustrated in Figure 1 and the processing pathway in Figure 2. 

So why did shRNAs kill the treated mice when in vivo siRNA

studies have shown no adverse effects [32-34]? After all,

previous results have suggested that both shRNAs and
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Figure 1
Characteristic intermediates in microRNA processing. (a) A typical example of primary microRNA transcript before the Microprocessor cut distal to the
stem loop. The 5' and 3' ends of the primary transcripts are not generally known; this example was obtained by folding hsa-mir-23a with 50 nucleotides
flanking the Microprocessor site, as defined by the ends of the mature microRNA [41]. (b) The precursor microRNA as transported from the nucleus to
the cytoplasm. (c) A mature duplex microRNA after Dicer processing, but before incorporation into RISC. Note that shRNAs can be similar to primary
microRNA transcripts or precursors, whereas siRNAs are made similar to the mature duplex.
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longer siRNAs may achieve increased potency at lower

concentrations because they undergo some microRNA bio-

genesis [35,36]. That is, shRNAs may, depending on the

length of the transcript, enter the microRNA pathway either

before or after the Microprocessor step, whereas longer

(approximately 27 basepairs) siRNAs are thought to enter

the pathway before the Dicer step. Given the similar process-

ing pathways that are used by microRNAs and shRNAs, the

toxicity can probably be explained by saturation of one or

more components of the endogenous RNAi machinery as a

result of high doses of the shRNAs, leading to loss of

microRNA function. 

The downside of the potentially higher efficacy that comes

from exploiting more of the microRNA pathway is the poten-

tial for expressed hairpins and longer duplexes to interfere

with the endogenous function of microRNAs. Any of the mole-

cular factors important for microRNA biogenesis and function

could be saturated by overexpression of shRNAs, whereas

siRNAs are less likely to do so as they are incorporated

directly into RISC, although they could also compete with

microRNAs at this step under certain conditions of siRNA

excess. It has previously been reported that highly expressed

shRNAs can compete with endogenous microRNAs to satu-

rate the carrier protein, Exportin-5, that is necessary for

nuclear export [37]. Indeed, Exportin-5 emerged as the

prime suspect for the deaths of mice in the study by Grimm

et al. [1], as overexpression of this protein improved silenc-

ing of the target gene, suggesting that Exportin-5 is a rate-

limiting component of the miRNA pathway. As the authors

remark, saturation of other cellular components cannot be

disregarded on the basis of these experiments, but will have

to be confirmed by inhibition studies for each of the critical

factors. The results may even explain previous accounts of

toxicity in the literature. For example, in an article [38] that

studied shRNA-expressing transgenic mice, the authors sug-

gested that immune stimulatory responses were to blame for

a higher fetal and neonatal death rate among offspring that

had inherited the shRNA gene compared with those that had

not. Since microRNAs are involved in early development,
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Figure 2
MicroRNA biogenesis. The protein Drosha, a member of the RNase III family, processes primary transcripts as part of the Microprocessor complex. The
hairpins are exported to the cytoplasm via a complex of Exportin-5 and GTP-bound Ran (RanGTP). Once in the cytoplasm, the microRNA precursor is
further processed by the RNase III Dicer in a complex with TAR RNA binding protein (TRBP) to give a mature double-stranded microRNA. A single-
stranded microRNA is then handed over to the RISC. Ectopically expressed shRNAs can compete for various components of this pathway, and can
thereby affect the levels of endogenous microRNAs that enter RISC. 
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however, it may be that saturation at this point is the worst

possible time for the organism, and that perturbation of

normal microRNA function induced the fatal phenotypes.

As expressed hairpins are being considered as therapeutic

drugs, it is important to remember that the mice were treated

with very high doses, and it should be noted that high doses

of any drug are likely to cause severe toxicity. For example,

overdoses of acetaminophen - the active chemical entity in

many of the most common over-the-counter pain relievers -

is the leading cause of drug-related acute liver failure in the

US [39]. It is therefore not surprising that high doses of

shRNAs will perturb cells, nor that this may in some cases

have disastrous consequences for the organism. It should be

noted that when mice transgenic for hepatitis B virus were

treated with shRNA-expressing viral vectors at lower doses,

no lethal phenotype was observed among these animals, sug-

gesting that shRNAs transcribed using RNA polymerase III

can be safe and effective when the dosing and target-site

selection processes are carefully controlled. 

There is no doubt that our understanding of RNAi mecha-

nisms is still in its infancy and that additional surprises will

be encountered as siRNAs and shRNAs are tested preclini-

cally. It is important to note that the most serious types of

problems reported for RNAi so far - that is, immune reac-

tions, off-target effects and saturation - are all dependent on

siRNA or shRNA concentration. In turn, this emphasizes the

need to find the most potent target site and to work at the

lowest concentrations possible [40]. Problems with satura-

tion also strongly suggest that researchers should check for

appropriate and efficient processing, and that the mature

species resulting from expression in vivo are those that are

expected. We believe that these recent reports on toxicity in

vivo - most prominently the article by Grimm et al. [1] - will

stimulate research that will ultimately contribute to an

increased understanding of the microRNA pathway. Careful

design may then be able to circumvent some of the problems

we have seen recently. While it is still early days for RNAi,

and more challenges are likely to emerge, the achievement of

clinical therapeutic silencing will arguably still depend

mainly on the development of safe and practical methods for

in vivo delivery of the silencing constructs. 
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