
ConPlex: a server for the evolutionary conservation
analysis of protein complex structures
Yoon Sup Choi1, Seong Kyu Han2, Jinho Kim2, Jae-Seong Yang1, Jouhyun Jeon2,

Sung Ho Ryu1,2 and Sanguk Kim1,2,*

1School of Interdisciplinary Bioscience and Bioengineering and 2Division of Molecular and Life Science, Pohang
University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea

Received January 26, 2010; Revised April 6, 2010; Accepted April 17, 2010

ABSTRACT

Evolutionary conservation analyses are important
for the identification of protein–protein interactions.
For protein complex structures, sequence conser-
vation has been applied to determine protein
oligomerization states, to characterize native inter-
faces from non-specific crystal contacts, and to dis-
criminate near-native structures from docking
artifacts. However, a user-friendly web-based
service for evolutionary conservation analysis of
protein complexes has not been available.
Therefore, we developed ConPlex (http://sbi
.postech.ac.kr/ConPlex/) a web application that
enables evolutionary conservation analyses of
protein interactions within protein quaternary struc-
tures. Users provide protein complex structures;
ConPlex automatically identifies protein interfaces
and carries out evolutionary conservation analyses
for the interface regions. Moreover, ConPlex allows
the results of the residue-specific conservation
analysis to be displayed on the protein complex
structure and provides several options to customize
the display output to fit each user’s needs. We
believe that ConPlex offers a convenient platform
to analyze protein complex structures based on
evolutionary conservation of protein–protein inter-
face residues.

INTRODUCTION

Functionally important amino acids in a protein sequence
are conserved through selective evolutionary pressure,
such as constraints on protein folding, involvement in en-
zymatic activity, and the maintenance of ligand binding or
protein–protein interactions. Evolutionary conservation

analyses have been widely applied to characterize func-
tionally/structurally important residues, to identify
protein–protein interfaces, or to predict interactions
between a protein and its ligand (1–3). Various methods
to automatically calculate conservation scores from the
primary amino-acid sequences or protein structures have
been developed. Rate4Site was developed to identify func-
tionally important regions in proteins by estimating the
evolutionary rates of each amino acid among homolog
proteins (2). Based on Rate4Site, a web-based tool,
called ConSeq, was introduced to perform conservation
analysis of protein sequences (4). Furthermore, ConSurf
was developed to enable automation of the conservation
analysis of protein tertiary structures (a single chain of a
protein structure) (5,6).

When it comes to protein ‘quaternary’ structures, evo-
lutionary conservation analysis has been successfully
applied to predict interfaces of protein complex structures.
For example, McCammon’s and Thornton’s groups
showed that analyses of protein interface conservation is
effective for the identification of protein oligomerization
states and discrimination of true oligomeric contacts from
non-specific crystal contacts (7,8). Additionally, our
previous study proved that protein interfaces are more
conserved than the rest of the surface (ROS) and
revealed that docking artifacts could be effectively
eliminated by comparing conservation levels between the
interface and the ROS in a protein docking complex (9).
Furthermore, Guharoy and Chakrabarti demonstrated
that within a protein–protein interface measuring the
distinct conservation levels between fully buried residues
upon binding (core) and partially buried residues (rim) is
an effective means to discriminate biological interfaces
from crystal contacts, because core residues are signifi-
cantly more conserved than the rim residues (10).
Therefore, a web application that automatically identifies
interface, ROS, core and rim residues within protein
complex structures, and calculates evolutionary
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conservation scores for these residues would be very useful
for characterizing protein oligomerization states, identify-
ing native interfaces from crystal contacts, and
discriminating near-native structures from docking
decoys.

In this report, we present the ConPlex server for evolu-
tionary conservation analyses of protein complex struc-
tures. With ConPlex, the user inputs protein complex
structures and the server automatically calculates
position-specific conservation scores based upon evolu-
tionary relationships among the query protein and its
homologs. Then, ConPlex finds protein interfaces and
other biologically important regions of the protein quater-
nary structure. By mapping the calculated residue-specific
conservation scores onto the complex structure, ConPlex
enables users to comprehensively analyze the evolutionary
conservation of the protein interface, surface, rim and core
regions. The results of the evolutionary conservation
analyses are displayed on the 3D structures with a
user-friendly interface. The ConPlex server also provides
users with the results of each intermediate calculation,
including compilation of primary amino acid sequences
homologous to the query, a multiple sequence alignment,
and the residue-specific evolutionary score. Finally,
ConPlex has a flexible output display and an ability to
use two different visualization scripts for further
analyses on a user’s own computer. We believe ConPlex
will be an essential web tool for protein biochemists in a
wide range of fields, such as experimental biology and
bioinformatics, to assess protein complex structures
based on evolutionary conservation.

METHODS

A brief description of the methodology is provided here.
More detailed information is available at http://sbi
.postech.ac.kr/ConPlex/, under the ‘Instructions’ and
‘Output Example’ menus.

ConPlex input

ConPlex takes input as protein complex structures in a
Protein Data Bank (PDB) format and chain identifiers
indicating interacting partners. Users can either upload
the PDB format file or input the four-letter PDB accession
number. For evaluation of protein docking models,
ConPlex also allows users to upload multiple docking
decoys in a compressed file.

ConPlex protocol

Using a protein complex structure as an input, ConPlex
automatically carries out the following processes itemized
below (Figure 1). To analyze the evolutionary conserva-
tion of the protein complex, ConPlex performs two
separate calculations; (i) residue-specific conservation
scores and (ii) interface residue identifications. Then, the
results from these two separate calculations are integrated
to perform more detailed analyses.

(i) To calculate the sequence conservation scores, the
amino-acid sequence of each chain is extracted
from the PDB file.

(ii) Based on the extracted sequence, homolog se-
quences are collected from the SWISS-PROT
database (11) using PSI-BLAST (12). For identifi-
cation of homologous sequences both E-values and
sequence identities are considered. The default E-
value cutoff is 0.001, and only proteins having
sequence identity over 20% with the query
sequence were selected. Cutoff values are adjustable
through the advanced options. If insufficient
numbers of homologs are identified, then addition-
al PSI-BLAST iterations can be carried out. The
default cutoff for the minimum number of
homologs is five and default PSI-BLAST iteration
number is one; however, both values are adjustable
through advanced options.

(iii) A multiple sequence alignment (MSA) of retrieved
homolog sequences is constructed by MUSCLE
(13), which is one of the most rapid and accurate
sequence alignment programs available (14).

(iv) Using the MSA, residue-specific conservation
scores are calculated by Rate4Site (2), a tool that
determines the evolutionary rate of each
amino-acid positions using the maximum likeli-
hood principle.

(v) ConPlex simultaneously identifies interface residues
from the query protein complex structure. Solvent

Figure 1. A flow chart of the ConPlex calculation processes.
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accessible surface area (SASA) of each residue is
calculated for both the monomer and complex
states (9). Based on differences in the SASA for
each residue upon binding (�SASA), surface
residues are classified into interface and ROS. If
the �SASA of a residue is >1 Å2, then the
residue is classified as an interface residue as used
in other studies (8,15).

(vi) Interface residues are sub-classified into core and
rim residues based upon following criteria: if a
SASA of a residue after complex formation is
<10 Å2, then it is defined as a core residue (fully
buried interface residues), otherwise it is classified
as a rim residue (partially buried interface
residues). The SASA thresholds for core and rim
residues are adjustable through advanced options.

(vii) Evolutionary conservation analyses of the protein
complex structure are carried out by combining
the identified interface residues and residue-specific
conservation scores. The conservation score of the
protein interface (CSVint), ROS (CSVros) and core
(CSVcore), rim residues (CSVrim) are calculated as
described in our previous study (9).

CSV ¼

P
CSVi ��SASAiP

�SASAi

ði : residues in defined regionÞ

where i indicates the residue in the region of
interest, �SASAi is the SASA of residue i that
becomes buried upon binding, and CSVi is the con-
servation score of residue i. In case of residues in
the ROS, where �SASAi=0, SASA of unbound
state would be calculated instead. The weighted
average of conservation score of all residues
participated in the defined region (i.e. interface,
ROS, rim and core) was considered. All the
defined regions are basically surface patches that
are composed of the residues whose �SASAi is
>1 upon complex formation. The size of the
patch is the sum of ��SASAi, where each
residue i contributes to the patch size by its
�SASAi– In this way, we could weigh the contri-
bution of each residue by its relative contribution
to the total solvent accessible area of each defined
region [see (7,9) for more details]. Note that a
smaller CSV means a more conserved region (9).

(viii) The ratios of the conservation level between inter-
face and ROS residues [CSVratio(int,ROS)] and
between core and rim residues [CSVratio(core,rim)]
are calculated as follows:

CSVratioðint,ROSÞ ¼
CSVint

CSVROS
,CSVratioðcore,rimÞ ¼

CSVcore

CSVrim

For example, if CSVratio(int, ROS) is <1, the protein
interface is considered evolutionary more conserved
than the ROS. Otherwise, the protein interface is
considered less conserved than the ROS.

(ix) Finally, the results from the conservation analyses
are displayed on the 3D structure. Normalized

residue-specific conservation scores are projected
onto each residue in the protein complex structure
using a 20-color gradient, from red (conserved) to
blue (variable). Interface residues of each chain are
represented as spheres.

Advanced input options

ConPlex provides a variety of advanced input options
such as customizing the PSI-BLAST E-value cutoff,
sequence identity cutoff, minimum/maximum number of
homologs required, the maximum PSI-BLAST iteration
number and core/rim SASA cutoff. Most advanced
input options are for homologous sequence search, since
retrieving proper homologous sequences is critical for the
proper calculation of conservation scores. These options
may need to be adjusted to obtain a sufficient number of
proper homologous sequences to obtain reliable results.

OUTPUT

ConPlex provides a variety of output formats for the evo-
lutionary conservation analyses of the protein complex
(Figure 2). The main results page is divided into four
sections: Output File, Intermediate File, Result Analysis
and Structural Visualization (Figure 2A).

Output file

In the ‘Output File’ section, users can download the con-
servation scores of the protein complexes (Figure 2B). The
file contains the conservation scores of the interface
(CSVint), the ROS (CSVROS) and CSV ratio of each
binding partner [CSVratio(int, ROS)]. It also includes conser-
vation scores of core (CSVcore), and rim residues (CSVrim),
as well as their ratio [CSVratio(core, rim)]. For example, if the
CSVratio(int, ROS) score is <1, it implies that the interface is
more conserved than ROS (9). If the user uploaded an
archived file containing multiple docking decoys, then
the output file would have multiple lines of results. In
that case, each line reveals the conservation analyses of
each docking models. The file is delimited with TABs, to
be easily analyzed using a spreadsheet programs.

Intermediate files

In the ‘Intermediate Files’ section, intermediate calcula-
tion results are provided (Figure 2C). Based on each
sequence extracted from the query protein complex,
ConPlex collects homologous sequences using
PSI-BLAST (12), carries out a multiple sequence align-
ment using MUSCLE (13), and calculates the
residue-specific evolutionary score using Rate4Site (2).
Users can download these three intermediate calculation
results and carry out more detailed analyses of each cal-
culation in order to adjust the default setting in the
advanced input options.
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Result analysis and visualization scripts

In the ‘Result Analysis’ section, ConPlex provides various
results for further analysis (Figure 2A). Both the
CSVratio(int, ROS) and CSVratio(core, rim) scores are provide
for the conservation analyses of interface/ROS and
core/rim residues. If the interface is more conserved than
the ROS, or the core residues are more conserved than
the rim residues, then the value is represented in red.
The analysis also provides the calculated results for the
protein interface sizes (SASA), since the protein interface
size is used as an important criterion to distinguish true

protein–protein interactions from non-specific crystal
contacts (16–18).
ConPlex also provides convenient visualization scripts

so that users can visualize the results of the analyses
on user’s local computers (Figure 2D). The default
setting displays the complex structure in the webpage
(‘structural visualization’ section). To provide added
flexibility, users can download visualization scripts,
enabling analysis of the results on their computer.
Visualization scripts are provided for two structure
viewer programs; Jmol (http://www.jmol.org/) and

Figure 2. ConPlex Server outputs formats. (A) The main output page of ConPlex. (B) Conservation scores of interface, ROS, core and rim residues
of the protein complex structure. (C) Intermediate calculation results, including homologous sequences, multiple sequence alignment and
residue-specific conservation scores. (D) Visualization script for structure viewer programs. (E) Color-coded sequence conservation analyses of the
primary amino-acid sequence. (F) List of the interface residues and their conservation scores.
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Pymol (http://pymol.sourceforge.net/). An example of
applying the Pymol script is shown in Figure 2D, in
which the residue-specific conservation scores and inter-
face residues of each chain are automatically displayed
(See http://sbi.postech.ac.kr/ConPlex/, under the ‘Output
Example’ menu for detailed instructions). In this display,
the degree of conservation is represented by a red-to-blue

color gradient. A deeper red color indicates a more
conserved residue and a deeper blue color represents a
more variable residue. Interface residues are represented
as spheres.

In the ‘Info’ menu, under the ‘Result Analysis’ section,
users can open a popup window that shows detailed in-
formation on the residue-specific conservation scores for

Figure 3. Display options for complex structure analysis. Rho–RhoGAP complex (PDB id: 1TX4) is used as example. (A) Default display format.
Users have the option to toggle conservation colors (B), interface residues (C), and each chain in structures with two binding partners (D). (E) Users
can rotate and enlarge/reduce the structure in the display. (F) Clicking a residue in sequence window will highlight the corresponding residue on the
structure with a yellow outline.
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each chain (Figure 2E). At the top of the popup window,
users can download the list of interface residues which
includes the residue number, chain identifier, conservation
score (CSV) and �SASA upon complex formation for
each interface residue (Figure 2F).

Structural visualization

Under the ‘Structural Visualization’ section, the 3D
complex structure displayed is color-graded according to
the residue-specific conservation scores and visualized
using Jmol (Figure 3). As indicated by the scale-bar, the
degree of conservation is represented by a red-to-blue
color gradient.

In Figure 3, various display options for the structural
analysis are shown with an example of Rho–RhoGAP
complex (PDB id: 1TX4). Rho is a small G protein
and a molecular switch to regulate phosphorylation
pathways of cytoskeleton formation and cell proliferation.
Through the interaction with RhoGAP, an active
GTP-bound form of Rho is hydrolyzed to an inactive
GDP-bound form (19). This Rho–RhoGAP interaction
plays a crucial role in regulating Rho-mediated signaling
pathways, which is evolutionary conserved across many
species. ConPlex successfully visualize the highly
conserved Rho–RhoGAP interface and should be useful
to guide further analysis of the interface.

In the structural visualization, users can toggle the
red-to-blue conservation color representation with the
‘Conservation Color’ option (Figure 3B). When conserva-
tion color is disabled, each chain of the complex is pre-
sented as a distinct color to easily differentiate each
complex component. As a result, RhoGAP (chain A)
and Rho (chain B) are shown in light blue and in light
green, respectively. The ‘Interface Residues’ option toggles
the display of the interface residues as sphere or in the
ribbon representation (Figure 3C). Finally, ‘Chain’
option allow each chain to be shown or hidden
(Figure 3D). Users can rotate and change the size of the
protein structure to analyze the protein interface patch in
detail (Figure 3E).

The protein sequences in the pop-up window, shown in
Figure 2E, interfaces with the structure display, and if
users click on a residue of interest in the primary
sequence, the position of a corresponding residue will
be highlighted in the structure with yellow outline
(Figure 3F). Using the display options available in
ConPlex, users can perform a detailed analysis of the
complex structure and gain broader insights into the
interactions.

PROGRAMMATIC INTERFACE

ConPlex provides programmatic interface using
soaplib-based library using Web Service Description
Language (WSDL). Users can automatically analyze
large numbers of complexes either by using the script we
provide or by modifying the script for their specific
purpose. For advanced users who want to build their
own ConPlex web-service client in other developmental
environments, such as C++, Java or Ruby, supporting

SOAP library, we provide a standard WSDL interface
file in XML-Cascade. See ‘Programmatic Interface’
section in main webpage for more detailed information.

PRE-CALCULATED LIBRARY

ConPlex offers the library of the pre-calculated results for
PDB binary complexes. Currently ConPlex stores
pre-calculated results of 3376 PDB complexes (20) and
provides the results under ‘Pre-calculated Library’ menu.
The current results were calculated with default options.
Moreover, the server stores the results from users’ PDB
input so that it gives out result faster when it is found from
the job history. When users submit a job with a PDB
identifier, ConPlex searches for the same PDB complex
from the pre-calculated library and job history without
conducting redundant calculations. ConPlex start whole
calculation processes when the submitted job is found to
be new. Pre-calculated library will be expanded as the cal-
culation results from users’ inputs are accumulated.

CONCLUSIONS

Evolutionary conservation has been widely applied to
analyze protein sequences, as well as protein tertiary and
quaternary structures. Currently, conservation analyses
are shown to successfully identify functionally and struc-
turally important residues (2,21), and several tools and
web servers, such as Rate4Site (2), ConSeq (4), ConSurf
(5,6) have been introduced to perform these calculations.
However, a user-friendly web server for evolutionary con-
servation analyses of protein quaternary structures has
not been available.
ConPlex is the first web application for evolutionary

conservation analyses of protein–protein complex struc-
tures. It offers a one-stop calculation of residue-specific
conservation scores within the quaternary structure by
automatically collecting homologous sequences of the
query protein chains and identifying biologically import-
ant regions of the complex structures. Additionally
ConPlex provides a variety of display options that
enable users to easily and thoroughly analyze their
protein complex of interest. Furthermore, users are
provided with the results of each intermediate calculation
steps and visualization scripts for further analysis. Thus,
ConPlex offers a convenient platform for biologists to
perform evolutionary conservation analyses of protein
complex structures.
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