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Abstract: The human visual system (HVS), affected by viewing distance when perceiving the stereo
image information, is of great significance to study of stereoscopic image quality assessment. Many
methods of stereoscopic image quality assessment do not have comprehensive consideration for
human visual perception characteristics. In accordance with this, we propose a Rich Structural Index
(RSI) for Stereoscopic Image objective Quality Assessment (SIQA) method based on multi-scale
perception characteristics. To begin with, we put the stereo pair into the image pyramid based on
Contrast Sensitivity Function (CSF) to obtain sensitive images of different resolution. Then, we
obtain local Luminance and Structural Index (LSI) in a locally adaptive manner on gradient maps
which consider the luminance masking and contrast masking. At the same time we use Singular
Value Decomposition (SVD) to obtain the Sharpness and Intrinsic Structural Index (SISI) to effectively
capture the changes introduced in the image (due to distortion). Meanwhile, considering the disparity
edge structures, we use gradient cross-mapping algorithm to obtain Depth Texture Structural Index
(DTSI). After that, we apply the standard deviation method for the above results to obtain contrast
index of reference and distortion components. Finally, for the loss caused by the randomness of
the parameters, we use Support Vector Machine Regression based on Genetic Algorithm (GA-SVR)
training to obtain the final quality score. We conducted a comprehensive evaluation with state-of-the-
art methods on four open databases. The experimental results show that the proposed method has
stable performance and strong competitive advantage.

Keywords: depth information; image pyramid; cyclopean map; structural index; visual sensitivity

1. Introduction

With the development of three dimensional (3D) technology, 3D visual quality assess-
ment has been an increasingly significant problem in multimedia information processing
and communication systems [1]. However, due to the limitation of equipment conditions,
stereo images produce various types of distortion in the process of acquisition, storage,
encoding, transmission and compression, etc., which cause the image quality to decrease.
Poor quality images cause poor subjective feelings [2–4]. Therefore, it is necessary to
establish an effective method to measure the quality of stereo images. Since human beings
are the ultimate receivers of sensory information in most real applications. In consequence,
it is considered as the most accurate way to evaluate the image quality that human beings
score images according to their subjective perception. This method is called subjective
quality assessment. However, subjective quality assessment suffers from cost and time
issues, and it is easily interfered by the subjective consciousness of evaluators and external
environment. These defects lead to a substantial decline in the usefulness of subjective
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evaluation. As a result, the objective quality evaluation algorithm is worth studying. Due
to the physiological structure of the eyeball is very complex, compared with the absolute
authenticity of subjective quality scores, the objective quality evaluation model can not
completely simulate the HVS. In order to strive to maintain consistency with human per-
ception, rich image structural features play particularly important in the area of image
assessment. HVS is very sensitive to image structure characteristics in perceiving distor-
tions. Rich structural indices can be used as important features to measure the stereo image
quality. The multi-scale structure similarity of image pair produces much better results
than its single-scale structure counterpart in [5]. The study [6] used the gradient similarity
to measure the change in contrast and structure in images. Moreover, the research [7] used
SVD combing with local structure to better measure the sharpness of the picture.

However, in the field of SIQA, simple structure index is not easy to design an accurate
SIQA metric owing to the disparity and depth. The study [8] found that the absolute
disparity map approximately reflects the disparity and depth.The research [9] proposed
that the stereoscopic images should classify into non-corresponding, binocular fusion,
and binocular suppression regions.

As aforementioned, combining the importance of rich image structure to HVS and the
theory of binocular, we propose a RSI-SIQA model based on multi-scale visual perception
characteristics. Based on the internal hierarchy, depth structure, luminance texture of stereo
images, our model calculates three contrast indices, and then uses the GA-SVR [10] model
to predict the objective quality scores of stereo pairs. The main contributions of our work
are summarized as follows:

1. Considering the image edge texture structure and internal hierarchical structure, we
propose local Luminance and Structural Index (LSI) and the Sharpness and Intrinsic
Structural Index (SISI) introducing image pyramid and cyclopean map to express the
binocular perception characteristics of image information at different viewing distances;

2. Binocular parallax is the most important physiological basis for human beings, which
can reflect depth perception information. Towards this end, we advance Depth Texture
Structural Index (DTSI) which combines the disparity map and the cross-mapping of
gradient with sensitive factors to build a model extracting depth information closer to
human visual subjective perception.

The rest of the paper is organized as follows. In Section 2, we introduce related works
about cyclopean map and SIQA. In Section 3, we introduce the proposed RSI-SIQA method.
In Section 4, we conducted experimental comparisons and analyzed performance on four
public stereo databases. Finally, conclusions are drawn in Section 5.

2. Related Work

After studying the physiological structures of HVS, some scholars put forward the
concept of cyclopean maps. An image combined by left and right views through weight
factors is called cyclopean map. Maalouf et al. [11] first proposed the cyclopean map
paradigm. They first build cyclopean map on original and distorted stereo pairs, then
calculated the sensitivity coefficients of cyclopean maps. Finally, they calculated the final
quality score by comparing the correlations between these coefficients. Chen et al. [12]
proposed a Full Reference Stereoscopic Image Quality Assessment (FRSIQA) method
based on binocular competition. They applied the MS-SSIM [5] index to original and
distorted cyclopean maps to obtain the objective scores. In addition, they used Gabor
filters to calculate the convex weighting factors for left and right eyes. Fezza et al. [13]
proposed a method similar to Chen, except that they used local entropy as a weight factor
to combine left and right views. Besides, they also applied the MS-SSIM index to the
disparity map of distorted images. The performance of this method model is significantly
improved compared to Chen. Lin et al. [14] proposed a FRSIQA algorithm based on
cyclopean amplitude map and cyclopean phase map. They applied visual saliency to the
correction of the amplitude and used a spatial-domain binocular modulation function
to predict the final quality score. Yang et al. [15] proposed a FRSIQA method based on
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the saliency of the cyclopean maps. They first build the cyclopean maps of reference and
distorted stereo pairs, then calculated corresponding saliency maps, and finally compared
the features of saliency maps to obtain a quality score. Cyclopean maps effectively improve
the prediction performance of a SIQA model, which is also explained in the above literature.
However, the cyclopean map model with image pyramid has not been studied. Besides,
the calculation method of binocular weight factors also significantly affect the performance
of cyclopean map. We will study binocular sensitivity in this paper.

In the research of Stereoscopic Image Quality Assessment (SIQA) method, depth
information is a very important difference feature. Khan et al. [16] proposed a FRSIQA
method based on sparse representation by combining depth information and sparse dic-
tionary. They firstly represented luminance images and depth images sparsely, and then
measured the sparsity changes of reference and distortion stereo pairs in luminance domain
and depth domain respectively under different constraints to calculate the quality score.
Jiang et al. [17] proposed a FRSIQA method based on the 3D visual attention model, which
took center deviation and depth information into account, and applied various combina-
tion models to calculate the final quality score. Liu et al. [18] proposed a FRSIQA method
based on a binocular fusion significance model. They applied the disparity model and the
Discrete Cosine Transform (DCT) coefficient model to stereo saliency map, then combined
binocular views on this basis. Finally, they extracted the features of saliency cyclopean
maps. Yao et al. [19] proposed a FRSIQA algorithm based on visual significance features
and gradient edges. They performed gradient processing on the gradient amplitude map
and depth map of reference and distorted stereo pairs to obtain the quadratic gradient
map and depth gradient map, and then compared visual significant features to obtain the
final objective quality. The method of Khan et al. [20] is similar to Yao, except that they
considered the saliency region of the depth edge and proposed a new model of Saliency
Edge based on Depth perception (SED). Finally, they incorporated monocular features
using a geometrically weighted algorithm. Although our operation on disparity maps is
similar to Khan method, we combine the image pyramid model with depth information.
In addition, we have improved the features extraction method and the combine method,
which will be described in detail below.

3. Materials and Methods

Many researchers show that the HVS detect image distortions by measuring image
structure information (such as edges, textures) [21,22]. Furthermore, it has been widely
accepted that viewing distance has great impact on image quality perception [23]. We
propose a RSI-SIQA model in this paper by combining LSI, SISI and DTSI. The framework of
the proposed method is shown in Figure 1. In the first place, we put the grayscale reference
pair and distortion pair which converted from RGB images into IPC. Then, by quantifying
the sensitivity of the stereo pair into weight factors and obtainting cyclopean map in
gradient domain, we obtain LSI. Similarly, in the SVD domain, the singular value based
on the previous method we obtain from stereo pair is SISI. At the same time, we combine
the gradient cross-mapping algorithm and hypotenuse gradient on the disparity maps to
obtain DTSI. Next we calculate contrast similarity deviation of the indices from original
pair and distorted pair. In the end, all the features we obtain are input into the GA-SVR
model for training to obtain the final quality score.

3.1. Image Pyramid Based on CSF (IPC)

Contrast is the carrier or medium of visual information [24]. Many works [25–27] not
only use contrast as an attribute to describe image quality but also apply in the field of
image enhancement. The contrast is sensitive to the spatiotemporal frequency and viewing
distance. The image pyramid composed by different resolutions images can reflect the
relationship between images and view distance. At the same time, CSF plays a vitally
important role in HVS which has diverse sensitivities to distortions depending on spatial
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frequency. Based upon above reasons, we used IPC before extract our features to have a
better perceptibility and increase the flexibility of SIQA.

Figure 1. Framework diagram of the proposed method.

3.1.1. Image Pyramid

Image pyramid is the sampling of signals of different granularity. In many cases,
multi-scale signals which make up the image pyramid actually contain different features.
The sampling method can be non-overlapping or overlapping. If the sampling scale factor
is 2, for each additional layer, the row and column resolution is 1/2 of the original. It has
been pointed out that the quality of experience is seriously influenced by image scales [23].
In other words, it is also greatly affected by viewing distance. Figure 2 is an example. This
example illustrates the relationship between image scales and human visual perception.
Image (a) shows the original image and the corresponding distortion components. Image
(b), (c), (d) are obtained by down-sampling the image (a) in both horizontal and vertical
directions by 2×, 4× and 5× times, respectively. In this work, in order to avoid generating
additional distortions, we use imresize function with bicubic interpolation algorithm to
conduct the down-sampling operation. Bicubic interpolation is an effective interpolation
algorithm that can produce high-fidelity images. We highlighted three border areas in each
images with red rectangles. Image (a) is a normal scale view, and we can easily observe
the difference between the two views, especially in the boundary region. However, as the
scale of image decreases (equivalent to increasing the viewing distance), the difference
between original and distorted images is gradually narrowing. In image (d), we can hardly
observe any difference. The main reason for this phenomenon is that as the viewing
distance increases, the viewing angle decreases and less structural features of image can
be noticed. This example shows that in the same natural environment, human visual
perception of image details mostly depends on the effective scale of the HVS. Therefore, it
can be concluded that humans beings have different visual perception quality for different
viewing distances. It is necessary to apply image pyramid to SIQA method.

(a) (b) (c) (d)

Figure 2. Image pairs with different scales. (a) Original image pair. (b) down-sampled image pair by
2× times. (c) down-sampled image pair by 4× times. (d) down-sampled image pair by 5× times.
Three representative regions are highlighted with red rectangles in each image.
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3.1.2. Contrast Sensitivity Function (CSF)

The experiment in [28] shows that spatial CSF is more sensitivity in low frequency.
At the same time, the study [29] also indicates that the sensitivity of HVS is different to
distortions which can be reflected by CSF, especially in the boundary region. Thus, in this
paper, based on the image pyramid, we apply the adjusted CSF filter to reference and
distorted stereo pairs to reflect the binocular sensitivity of visual stimuli. Here, in order to
smooth the image, we set the frequency response of the circular symmetric Gaussian filter,
h1( f , θ), is denoted by:

h1( f , θ) = exp(−2π2σ2 f 2), (1)

where f denotes the radial spatial frequency in cycles per degree of visual angle (c/deg),
θ ∈ [−π, π] denotes the orientation. The parameter σ is used to control the cutoff frequency
of the filter. In this experiment, in order to capture the edge components related to binocular
perception while filtering out the high frequency components irrelevant to perception, we
set a 3× 3 filter window size and σ = 2.

Referring to the frequency response of the CSF model initially introduced by Mannos
and Sakrison [30] with specifically modified by Daly [31], h2( f , θ) is denoted by:

h2( f , θ) = 2.6(0.0192 + γ fθ)exp[−γ fθ ], (2)

where γ = 0.114 [32,33]. fθ = f
0.15cos(4θ)+0.85 , which cause oblique effect. Combining

Equations (1) and (2), the final adjusted CSF model hcs f ( f , θ) is given by:

hcs f ( f , θ) = h1( f , θ)h2( f , θ). (3)

We input the reference and distorted stereo pair into the image pyramid, and then
input the stereo pair with different scales into the CSF filter. Finally we obtain the image
CFk

o,v, CFk
o,v is denoted by:

CFk
o,v = F−1[hcs f ( f , θ)F[Ik

o,v]] (4)

where F[· ]andF−1[· ] denote the Discrete Fourier Transform (DFT) and inverse DFT respec-
tively, o ∈ {r, d}, v ∈ {L, R}, r and d represent reference and distortion components, L
and R represent the left and right stereo image, respectively. k = 0, 1, . . . , n, k represents
the number of iterations of the image pyramid acting on luminance images. Note that the
original scale image also contains some non-negligible visual information. So, we must also
perform the same processing on the original scale stereo pair, k = 0 denotes the original
scale size.

3.2. Rich Structural Indexes (RSI)
3.2.1. Local Luminance and Structural Index (LSI)

Gradient is often used to describe structural feature of images. So as to measure
luminance and structure feature more effectively, we adopted weighted gradient to obtain
LSI. To clearly state the workflow of the LSI, we give its algorithm description in Figure 3.

Figure 3. Workflow diagram of LSI.
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Perceptually features at different image scales can be modeled by Gaussian derivative
functions in terms of retino-cortical information [34], and can be represented using gradient
magnitudes. Gradient have been shown to capture the structural features of images
effectively [6,35,36]. Here, we use Sobel operator [37] to process images CFk

o,v to obtain
gradient graph GMk

o,v. Considering the effect of luminance masking and contrast/texture
masking will influence edge visibility, thus weakening structural information. Therefore, we
perform a locally adaptive normalization process on gradient maps, which can enhance the
locally edge structure. The locally weighted gradient map WGMk

o,v is calculated as follows:

WGMk
o,v =

GMk
o,v(x, y)

γk
o,v(x, y) + ε

, (5)

a small normal number ε can avoid numerical instability when γk
o,v(x, y) has a small value.

The weighted window γk
o,v(x, y) is calculated as follows:

γk
o,v(x, y) =

√
∑ ∑(x′ ,y′ )∈Ωx,y

MFk
o,v(x′ , y′)ω(x′ , y′) (6)

with

MFk
o,v(x, y) =

(GMk
o,v)

2
. + (CFk

o,v)
2

.

2
, (7)

where Ωx,y is the local window centered at (x, y), ω(x
′
, y
′
) are positive symmetric weights

satisfying ∑x′ ,y′ ω(x
′
, y
′
) = 1. “. 2” indicates element-wise square of the matrix. We use

the Gaussian kernel with window size 3× 3 and σ = 2. The locally weighted gradient
operation can more clearly reflect the local variation in edge structure characteristics of
stereo images caused by different types and levels of distortion. The above mentioned can
be shown in Figure 4, the first row is original image of left view. The second row is the
normal gradient image. In addition, the third row is the weighted gradient image obtained
by our method.

Figure 4. Comparison of two methods of gradient. From (top) to (bottom), original maps, normal
gradient maps and locally weighted gradient maps.

Because the binocular perception characteristics of stimuli are different, the binocular
visual perception characteristics need to be further integrated after the gradient processing
of monocular views. Here, we use the cyclopean map algorithm. The cyclopean map model
can be expressed as:

WGMk
o = Wo,L ·WGMk

o,L + Wo,R ·WGMk
o,R, (8)
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where o ∈ {r, d}, Wo,L and Wo,R represent the left and right weighting factors, which
indicate the binocular acceptance ratio of information when receiving the same stimulus.
The left and right eyes respond different to stimulus, which is the most manifestation of
binocular sensitive performance. From the side, it can also reflect the left and right eyes
have different perception characteristics of information. It is known that CSF filtering can
capture the relatively important structural frequency components of the HVS in a certain
spatial frequency range. In this work, we will quantify the frequency component of the
original scale image filtered by CSF as the binocular sensitivity. To be specific, Wo,L and
Wo,R can be denoted by:

Wo,L =
MCFo,L

MCFo,L + MCFo,R
(9)

Wo,R =
MCFo,R

MCFo,L + MCFo,R
, (10)

where MCFo,v represents the frequency energy in the low-frequency space of the original
scale images after CSF filtering, which also indicates that most of the information perceived
by the HVS is concentrated in the low-frequency space. MCFo,v is calculated as follows:

MCFo,v =
∑M

x=1 ∑N
y=1 CFo,v(x, y)

MN
, (11)

where M × N represents the size of the image, v ∈ {L, R}. In the end, we obtain the
cyclopean maps of reference and distorted stereo pairs at all scales.

3.2.2. The Sharpness and Intrinsic Structural Index (SISI)

In addition to the luminance and texture structure features, the intrinsic structure of
images is also a very important visual perception information. Singular value vector can
effectively reflect the internal hierarchical structure changes of images [38]. Furthermore,
the singular value not only reflects the strength of the gradients along the dominant
direction and its vertical direction but also is sensitive to blur, so it can be a sharpness
metric [39]. To clearly state the workflow of the SISI, we give its algorithm description in
Figure 5.

Figure 5. Workflow diagram of SISI.

Same as above, we first put the original pair and the distorted pair to IPC, Then we
use SVD on the sensitive pair. For an M× N image I, it can be decomposed by:

I = USVT , (12)

where U and V are unitary matrices of size M×M and N × N, respectively. S is a non-
negative singular matrix on the diagonal of magnitude M × N. The columns of U and
V represent the left and right singular vectors of image I, respectively. Therefore, S is a
multi-level matrix of image I, which is also called the SVD. S represent the energy in the
dominant orientation and its perpendicular direction, respectively.
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In this work, the SVD of images CFk
o,v are denoted by SVDk

o,v, k = 0, 1, . . . , n. Then, we
combine the monocular singular value matrix to obtain the singular value cyclopean map,
SVDk

o , is denoted by:

SVDk
o = Wo,L · SVDk

o,L + Wo,R · SVDk
o,R, (13)

3.2.3. Depth Texture Structural Index (DTSI)

The biggest difference between stereo image quality evaluation and 2D image quality
evaluation lies in the perception of 3D features. Depth feature is one of the most perceptual
features that can best reflect stereo information. To clearly state the workflow of the SISI,
we give its algorithm description in Figure 6.

Figure 6. Workflow diagram of DTSI.

There is also an inseparable correlation between depth information and image scale.
According to [40,41], the depth information of stereo images is often reflected by disparity
maps. In this work, we combined the IPC and used the binocular matching algorithm
based on SSIM [42] to obtain the disparity map at each image scale. Then, we calculate the
gradient maps of disparity maps in horizontal and vertical directions, DGi,l

o,v and DGi,p
o,v, l

and p represent the horizontal and vertical directions, respectively. In order to measure
the contrast of the intrinsic disparity edge structures between reference and distortion
components, we calculate the internal disparity gradient maps as

IDGi
v = |DGi,l

r,vDGi,l
d,v|+ |DGi,p

r,vDGi,p
d,v|, (14)

where i = 1, . . . , m, v ∈ {L, R}. i represents the number of iterations of the image pyramid
model acting on disparity maps. It should be noted that, we do not use the original scale
image for depth information features extraction. According to the hypotenuse theorem,
the gradient magnitude at different image scales can be denoted as:

DGi
o,v =

√
(DGi,l

o,v) 2
. + (DGi,p

o,v) 2
. . (15)

In terms of inter-gradient map and gradient magnitude, we obtain the gradient contrast
similarity between reference and the distorted stereo pairs, Di

v, is given by:

Di
v =

2 · IDGi
v + α3

(DGi
r,v)

2
. + (DGi

d,v)
2

. + α3
, (16)

where α3 is the normal number to ensure numerical stability.
To reflect the contrast changes of image depth information, we perform standard

deviation operation on disparity gradient contrast similarity to obtain the depth edge
structure features of monocular views, f i

L and f i
R. Synthesizing the monocular features to

obtain the final depth features, f i
D, is denoted by:

f i
D = Wd,L · f i

L + Wd,R · f i
R, (17)
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where Wd,L and Wd,R represent the left and right weight factors of distorted stereo pairs,
respectively.

3.3. Contrast Similarity Deviation

Numerous research works show that there are many types of contrast [43,44]. For ex-
ample, Weber contrast, Michelson contrast, RMS (root mean square) contrast, etc. Weber
contrast is mainly used to describe character features; Michelson contrast is mainly used to
describe the gratings, RMS contrast is mainly used for natural scene stimulation. In this
work, we adopted the RMS contrast. Specifically, with the gradient cyclopean maps and
singular value cyclopean maps, we calculate the similarity between reference and distortion
components at each image scale:

SGk =
2 ·WGMk

r WGMk
d + α1

(WGMk
r )

2
. + (WGMk

d)
2

. + α1
(18)

Sk =
2 · SVDk

r SVDk
d + α2

(SVDk
r )

2
. + (SVDk

d)
2

. + α2
, (19)

where α1 and α2 are normal numbers to ensure numerical stability. Finally, in order to
accurately reflect the image contrast changes, we use standard deviation to generate edge
structure features, f k

G, is denoted by:

f k
G =

√
∑M

x=1 ∑N
y=1(SGk(x, y)−MSGk)2

MN
, (20)

where k = 0, 1, . . . , n, MSGk can be calculated by averaging the similarity map:

MSGk =
∑M

x=1 ∑N
y=1 SGk(x, y)

MN
. (21)

Figure 7 shows the curves of gradient similarity deviation between reference and
distortion components at each image scale when n = 4. Here, we use 4-level and 2-level
gaussian blur images. The higher the level, the more distorted the image. Noted that,
in order to visually observe the difference between the two, we enlarged the gradient
similarity deviation by 100 times before plotting the curves. It is observed that the gradient
similarity deviation values of low distortion image are lower than those of high distortion
image. Therefore, the gradient similarity deviation can measure the distortion degree
of images.

Figure 7. Curves of gradient similarity deviation values in multi-scale model.
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Similarly, the hierarchical structure features f k
S can be obtained by performing the

same operation on singular value similarity Sk.
Figure 8 shows the curves of singular value similarity deviation between reference

and distortion components at each image scale when n = 4. We also magnify the similarity
features of singular values by 100 times. It is observed that the singular value similarity
deviation values of low distortion image are mostly lower than those of high distortion
image. In particular, the difference is most pronounced in the down-sampled 4× and
8× images. As a result, the singular value similarity deviation value can also effectively
measure the distortion degree of images.

Figure 8. Curves of singular value similarity deviation values in multi-scale model.

3.4. Final Quality Assessment

In this work, we set n = 4, a total of 10 + m perceptual features are extracted for
each stereo pair, including 5 multi-scale gradient similarity deviation values, 5 multi-scale
singular value similarity deviation values, and m multi-scale depth texture structure similar
deviation values. We do feature normalization on LSI, SISI and DTSI respectively and then
concatenate them as feature fusion. We will explain the value of m in the experimental
analysis section. To apply the extracted perceptual features to the RSI-SIQA model, we
adopt GA-SVR to learn in multiple public databases. SVR has been widely used in image
quality evaluation [45–50]. However, the two parameters of penalty parameter c and the
g2 in SVR are usually selected subjectively based on personal experience, they are very
random, and improper selection will affect performance. So in order to make SVR obtain
better prediction ability and generalization ability, we introduce genetic algorithm (GA) to
optimize SVR [10]. The main steps of GA-SVR are as follows:

1. The penalty factor c which reflects the degree of penalty of the algorithm on the
sample data beyond the pipeline and g2 representing the radial basis function in the
SVR are coded to generate the initial population.

2. The new population is obtained by random cross selection, single point crossover,
and mutation with probability 0.7. Then, we calculate the fitness of new population
and select the highest fitness.

3. Judge whether the highest fitness satisfies the stopping condition. If so, determine it
as the optimal parameter combination and apply it to SVR. If not, return to step 2 and
start the calculation again.

We optimized SVR parameter combination through GA, which can prevent perfor-
mance loss due to the randomness of parameters, and at the same time avoid the local
optimization of SVR model.

In specific experiments, we input the subjective evaluation values and the combined
perceptual features into the GA-SVR model for training and testing, which 80% of training
set is used to train the model, and 20% of testing set is used to predict performance.
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To eliminate prejudice, the training set and testing set are randomly assigned and do not
overlap in each iteration. We set 1000 iterations and use the median of all results as the
final quality score for this dataset.

4. Experimental Results and Analysis
4.1. Experimental Databases

In this work, we evaluate our RSI-SIQA algorithm on four public databases.
The LIVE Phase-I 3D database [51] contains 20 original stereo pairs and 365 symmetri-

cally distorted stereo pairs. It has five different types of distortion, namely White Noise
(WN), JPEG2000 (JP2K), JPEG, Gaussian Blur (Gblur) and Fast Fading (FF). Except for the
WN distortion image only 45 outside, the other four types of distortion image have 80 pairs.
The subjective quality score is represented by Differential Mean Opinion Score (DMOS).
The image scale of the LIVE Phase-I 3D database is 360× 640.

The LIVE Phase-II 3D database [12] contains 8 original stereo pairs and 360 distorted
stereo pairs. The LIVE Phase-II is composed of 120 symmetric and 240 asymmetric distorted
stereo pairs. Like the LIVE Phase-1 3D database, the LIVE Phase-2 3D database has five
types of distortion, except that each distortion type has 72 pairs of images. DMOS and
image scale are also the same.

The WaterlooIVC Phase-I 3D database [52] includes 6 original stereo pairs and 324 dis-
torted stereo pairs. The types of distortion are Gaussian White Noise (WN), Gaussian
Blur (Gblur), and JPEG compression (JPEG) and each distortion type has four distortion
levels. The WaterlooIVC Phase-I consists of 252 asymmetric distortion stereo pairs and
72 symmetric stereo pairs. The image scale of the WaterlooIVC Phase-I 3D database is
1920× 1080. Mean Opinion Score (MOS) is the subjective score used by the database.

The MCL 3D database [53] includes 9 original stereo pairs and 648 symmetrically
distorted stereo pairs. The types of distortion are additive Gaussian White Noise (WN),
Gaussian Blur (Gblur), JPEG, JP2K, Sampling Blur (Sblur) and Transmission Loss (Tloss).
The MCL 3D database has 108 pairs of images per distortion type. In this database, 30% of
the images have a scale of 1024× 728 and the remaining 70% have a scale of 1920× 1080.
MOS is the subjective score used by the database.

4.2. Overall Performance Comparison

We select three commonly used evaluation indicators to evaluate the performance of
the SIQA model: Pearson Linear Correlation Coefficient (PLCC) can judge the accuracy of
the model; Spearman Rank Order Correlation Coefficient (SROCC), which can judge the
monotonicity of the model; Rooted Mean Square Error (RMSE) can reflect the consistency
of the model. The PLCC and SROCC are closer to 1, and the RMSE is closer to 0, indicating
the prediction performance of the model is better.

In our model, both the cyclopean map model and the depth texture feature are applied.
Therefore, in order to verify their impact on the SIQA model, we compared the performance
of the method with and without the cyclopean map model on four databases, as well as
the performance of the model after adding depth features. On two LIVE databases, we set
m = 3, and on WaterIooIVC Phase-I and MCL databases, we set m = 4. The comparison
results are shown in Table 1. Q1 represents the performance of measuring LSI and SISI,
and Q2 represents the performance of measuring only DTSI, respectively, and Q denotes
the performance combining LSI, SISI and DTSI. Noted that, in the case of not using the
cyclopean map, we directly calculate the contrast similarity deviation feature values of
monocular views, and then use the binocular sensitivity factors of distorted stereo pairs to
synthesize the left and right features. As we can see, most of them show performance degra-
dation compared to Q. It indicates that the cyclopean map and depth texture information
can improve the predictive performance of the SIQA model.
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Table 1. Performance of SIQA on four public databases, measuring the effect of cyclopean map and
depth perception features on SIQA, respectively.

Q1 (withcyclopeanmap) Q1 (withoutcyclopeanmap) Q2 Q

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

LIVE Phase-I 0.9412 0.9278 5.2598 0.9389 0.9201 5.7892 0.8545 0.8458 8.5975 0.9512 0.9429 5.0028
LIVE Phase-II 3D 0.9325 0.9317 5.8256 0.9263 0.9136 5.2715 0.7789 0.7369 10.2548 0.9431 0.9452 4.2859

WaterlooIVC Phase-I 0.9458 0.9389 5.0214 0.9404 0.9321 5.5825 0.7782 0.7654 9.8975 0.9546 0.9478 4.2859
MCL 0.9124 0.9147 1.2925 0.9077 0.9101 1.2356 0.7625 0.7855 1.5478 0.9219 0.9259 1.0026

Table 2 shows the overall performance comparison between the proposed method
and six state-of-the-art FR algorithms on two LIVE 3D databases. The best performance
results shown in bold, ‘-’ indicates that the value is not available (this partial result is not
provided in the original article). Here, we select the methods of Khan [20], Ma [54], Yue [45],
Geng [55], Jiang [56], and Shao [57]. It is observed that the overall performance of the
proposed method is generally better than that of the comparative methods, especially on
the LIVE Phase-II database. Since the Phase-II database contains 66% asymmetric distortion
stereo pairs, which conforms to the binocular asymmetric receiving information mechanism.
As a result, the experimental measurement on the Phase-II database is more practical.

Table 2. Overall performance comparison of the proposed SIQA method and six methods on LIVE
Phase-I and LIVE Phase-II 3D databases.

LIVE Phase-I LIVE Phase-II

PLCC SROCC RMSE PLCC SROCC RMSE

Jiang [56] 0.9460 0.9378 5.3160 0.9261 0.9257 4.2627
Yue [45] 0.9370 0.9140 5.6521 0.9140 0.9060 4.4490

Khan [20] 0.9272 0.9163 - 0.9323 0.9272 -
Shao [57] 0.9389 0.9308 5.6459 0.9263 0.9282 4.1996
Geng [55] 0.9430 0.9320 5.5140 0.9210 0.9190 5.4001
Ma [54] 0.9409 0.9340 5.2110 0.9300 0.9218 4.1232

proposed 0.9512 0.9429 5.0028 0.9431 0.9452 4.2859

In order to further prove that the proposed method has a better prediction perfor-
mance in asymmetric distortion, we select the WaterlooIVC Phase-I 3D database with an
asymmetric distortion ratio of 76% for comparative experiments. In this database, we
choose five comparison methods including Khan [20], Ma [54], Yue [45], Geng [55] and
Yang [49]. The results are shown in Table 3. We can find that the performance of the
proposed method is the best in PLCC and SROCC indicators, while the performance in
RMSE indicators is a little worse, but is not far from the best. Therefore, it can be concluded
that the method has better performance in the prediction of asymmetric distortion.

Table 3. Overall performance comparison of the proposed SIQA method and six methods on
WaterlooIVC Phase-I 3D.

PLCC SROCC RMSE

Khan [20] 0.9344 0.9253 -
Ma [54] 0.9252 0.9117 5.8766
Yue [45] 0.9261 0.9192 4.6101

Yang [49] 0.9439 0.9246 -
Geng [55] 0.8460 0.8101 9.4691
Proposed 0.9546 0.9478 4.6836

To illustrate the performance of the proposed SIQA method on different scale images,
we selected MCL 3D database containing two image scales for comparison experiments.
Here, we choose five comparison methods: Zhou [53], Chen [42], Khan [20], Shao [58]
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and Liu [59]. The results are shown in Table 4. We can find that the proposed method
has obvious competitive advantages by analyzing the data in table. In the MCL database,
the number of images is large and the image sizes are inconsistent. Therefore, the prediction
performance of the SIQA model on this database is somewhat worse than the previous
two databases. Nevertheless, the proposed method still has better performance than the
comparative experiments, which indicates that the perceived features extracted by the
SIQA model can better reflect the objective quality of stereo pairs.

Table 4. Overall performance comparison of the proposed SIQA method and six methods on MCL 3D.

PLCC SROCC RMSE

Zhou [53] 0.8850 0.8520 1.1770
Shao [58] 0.9138 0.9040 1.0233
Khan [20] 0.9113 0.9058 -
Liu [59] 0.9044 0.9087 1.1137

Chen [42] 0.8278 0.8300 1.4596
Proposed 0.9219 0.9259 1.0026

Furthermore, in order to demonstrate the prediction performance of the proposed
method more intuitively, we draw scatter plots between the subjective scores and the
predicted objective scores on the four databases, as shown in Figure 9. Because the MCL
and WaterIooIVC phase-I databases have MOS fractions, the slope of the scatter plots are
opposite to the LIVE databases. The distribution of scatter plots represents the predictive
performance of the proposed SIQA method. From this, we can draw a conclusion that
the objective value predicted by the proposed SIQA method is highly consistent with the
subjective value.

(a) (b) (c) (d)

Figure 9. Scatter plots of overall predicted quality scores against the subjective scores of the proposed
method on four Database. (a) LIVE Phase–I. (b) LIVE Phase–II. (c) WaterlooIVC Phase–I. (d) MCL.

4.3. Single Distortion Performance Comparison

In order to measure the performance of the proposed SIQA method more comprehen-
sively, we perform a comparative experiment on a single distortion type stereo pair on
LIVE 3D databases and MCL 3D database. Tables 5 and 6 show the comparison results of
the five distortion types on LIVE 3D databases. After analyzing the data in tables, we find
that most of the results of the proposed method are better than the comparison methods in
PLCC and SROCC indices. Although the performance of the proposed method is slightly
worse on WN and FF, it achieves the best performance on JPEG. Tables 7 and 8 show the
comparison results of the six distortion types in MCL 3D database. We clearly observe that
our method has obvious advantages in PLCC and SROCC. It can be concluded that the
objective values predicted by the proposed method fit well with the subjective values.
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Table 5. In LIVE Phase-I and LIVE Phase-II 3D databases, performance comparison of the proposed
SIQA method and six methods on different types of distortion, and the evaluation index is PLCC.

LIVE Phase-I LIVE Phase-II

JP2K JPEG Gblur WN FF JP2K JPEG Gblur WN FF

Jiang [56] 0.9408 0.6975 0.9578 0.9516 0.8554 0.8463 0.8771 0.9845 0.9593 0.9601
Yue [45] 0.9350 0.7440 0.9710 0.9620 0.8540 0.9860 0.8430 0.9730 0.9860 0.9230

Khan [20] 0.9508 0.7110 0.9593 0.9470 0.8583 0.9270 0.8925 0.9778 0.9699 0.8987
Shao [57] 0.9366 0.6540 0.9542 0.9441 0.8304 0.8768 0.8506 0.9445 0.9339 0.9330
Geng [55] 0.9420 0.7190 0.9620 0.9630 0.8670 0.8510 0.8350 0.9790 0.9490 0.9480
Ma [54] 0.9610 0.7746 0.9711 0.9412 0.8941 0.9670 0.9350 0.9384 0.9341 0.9489

Proposed 0.9679 0.7847 0.9787 0.9558 0.8856 0.9327 0.9452 0.9870 0.9707 0.9627

Table 6. In LIVE Phase-I and LIVE Phase-II 3D databases, performance comparison of the proposed
SIQA method and six methods on different types of distortion, and the evaluation index is SROCC.

LIVE Phase-I LIVE Phase-II

JP2K JPEG Gblur WN FF JP2K JPEG Gblur WN FF

Jiang [56] 0.9027 0.6628 0.9361 0.9529 0.8079 0.8497 0.8547 0.9383 0.9563 0.9555
Yue [45] 0.8320 0.5950 0.8570 0.9320 0.7790 0.9590 0.7690 0.8680 0.9590 0.9130

Khan [20] 0.9074 0.6062 0.9295 0.9386 0.8092 0.9133 0.8670 0.8854 0.9584 0.8646
Shao [57] 0.9000 0.6339 0.9242 0.9430 0.7807 0.8747 0.8340 0.9241 0.9325 0.9409
Geng [55] 0.9050 0.6530 0.9310 0.9560 0.8160 0.8360 0.8410 0.9210 0.9390 0.9160
Ma [54] 0.9140 0.6659 0.9030 0.9037 0.8312 0.9328 0.8968 0.8992 0.8893 0.9167

Proposed 0.9271 0.6758 0.9252 0.9335 0.8156 0.9636 0.9087 0.9398 0.9319 0.9174

Table 7. In MCL 3D database, performance comparison of the proposed SIQA method and three
methods on different types of distortion, and the evaluation index is PLCC.

Zhou [53] Shao [58] Khan [20] Liu [59] Proposed

JPEG 0.8260 0.7016 0.9574 0.9404 0.9432
JP2K 0.8760 0.8571 0.9640 0.9219 0.9725
WN 0.9140 0.6748 0.9561 0.9135 0.9345

Gblur 0.9340 0.9013 0.9270 0.9479 0.9603
Sblur 0.9410 0.8640 0.9409 0.9530 0.9600
Tloss 0.8910 0.5814 0.8722 0.7618 0.8571

Table 8. In MCL 3D database, performance comparison of the proposed SIQA method and three
methods on different types of distortion, and the evaluation index is SROCC.

Zhou [53] Shao [58] Khan [20] Liu [59] Proposed

JPEG 0.7760 0.7992 0.8877 0.8506 0.9045
JP2K 0.8520 0.8415 0.9317 0.9011 0.9320
WN 0.9040 0.6404 0.9517 0.9256 0.9273

Gblur 0.9160 0.8993 0.9131 0.9519 0.9504
Sblur 0.9330 0.8532 0.9348 0.9577 0.9617
Tloss 0.8450 0.5674 0.8744 0.7909 0.8818

5. Conclusions

In this paper, we propose a RSI-SIQA model combining image pyramid and visual per-
ception characteristics. Our method considers not only the edge structures and hierarchical
structures of the multi-scale cyclopean maps, but also considers multi-scale depth edge
structures. According to the experimental results, it can be found that the performance
of the proposed model can be improved after adding cyclopean map and depth informa-
tion. We conducted comparative experiments on four public databases and proved that
the proposed method has good stability and high prediction performance. The proposed
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method in this paper is mainly based on the idea of machine learning. In the next step, we
will study the visual characteristics based on the idea of deep learning and design a more
effective objective quality evaluation model.
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