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ABSTRACT
Here, we describe the production of a probiotic biofilm through three intermediate

steps: (1) measurement of the adhesion capacity of 15 probiotic strains to evaluate

their tendency to form biofilm on different surfaces (stainless steel, glass, and

polycarbonate); (2) evaluation of the effects of pH, temperature, cellular growth

phase, agitation, and presence of surfactants on probiotic biofilm formation (BF)

through the Design of Experiments (DoE) approach; (3) study of the effects of pH,

temperature and surfactants concentration on probiotic BF using the Central

Composite Design. Finally, we show that biofilms pre-formed by selected probiotics

can delay the growth of pathogens, such as Listeria monocytogenes chosen as model

organism. Among the tested strains, Bifidobacterium infantis DSM20088 and

Lactobacillus reuteri DSM20016 were found to be as the probiotics able to ensure the

greatest adhesion (over 6 Log CFU cm2) to the surfaces tested in a very short time

(<24 h). Cellular growth phase and agitation of the medium were factors not

affecting BF, pH exerted a very bland effect and a greater tendency to adhesion was

observed when the temperature was about 30 �C. The results obtained in the last

experimental phase suggest that our probiotic biofilms can be used as an efficient

mean to delay the growth of L. monocytogenes: the l phase length, in fact, was longer

in samples containing probiotic biofilms (0.30–1.02 h) against 0.08 h observed in the

control samples. A reduction of the maximum cell load was also observed (6.99–7.06

Log CFU mL-1 against about 8 Log CFU mL-1 observed in the control samples).
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INTRODUCTION
The capability of bacteria to form biofilms on biotic and abiotic surfaces has certainly the

potential to generate critical problems; in fact, it is well documented that many

pathogenic and spoilage microorganisms easily form biofilms on food-contact surfaces

leading to serious hygienic risks (e.g. potential microbial contamination in food plants,

lower shelf life of food products, potential transmission of diseases) and causing serious

economic losses (failures in water systems, cooling towers, heat exchangers, etc.)

(Speranza & Corbo, 2017).
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However, not all biofilms cause problems and there are clear examples of their positive

use, even if this aspect is rather neglected. For example, the potential of biofilm

communities for bioremediation processes is actually used to treat toxic effluents and

clean-up environmental pollutants and slow-degrading compounds. Other positive

applications include the (a) treatment of industrial and municipal wastewaters,

(b) application for in situ soil fertilization via N2 fixation, (c) reduction of ammonia and

nitrate concentrations in aquaculture effluents, (d) treatment of sulphide-containing

waste streams; and (e) production of biochemicals, comprising medicines, food

additives or chemical additives for cleaning products, and antimicrobial compounds

(Corbo, Speranza & Sinigaglia, 2009). In the context of positive applications, another

potential use of biofilms to improve food safety was suggested: useful application of

biofilms formed by lactic acid bacteria (LAB) against foodborne pathogens. To control

growth of pathogens, food products have been packed with film activated by the addition

of bacteriocins and/or other LAB-produced antimicrobial compounds (Iseppi et al., 2007;

Mauriello et al., 2004); however, since these extracted substances could lose their

activity over time, the direct use of the producer microorganism entrapped in biofilms has

been proposed as a good solution to limit pathogens growth in/on foods (Guerrieri et al.,

2009; Guillier et al., 2008; Speranza, Sinigaglia & Corbo, 2009). Importantly, the

maintenance of a continuous metabolism could ensure an uninterrupted and stronger

activity of the active substances, those being in loco produced. These antimicrobial

agents such as organic acids, hydrogen peroxide, carbon dioxide, diacetyl, low molecular

weight antimicrobial substances, bacteriocins and biosurfactants are also produced by

probiotic bacteria which are known to exert a positive effect on the maintenance of human

health. In particular, probiotic lactobacilli have long been known for their antimicrobial

activity due to the release of biosurfactants; these compounds were generally produced,

extracted and pre-adsorbed to surfaces to inhibit microbial growth or adhesion by

pathogens (Listeria monocytogenes, Salmonella arizonae, Escherichia coli, and

Staphylococcus aureus) (Gudiña, Teixeira & Rodrigues, 2010; Jones & Versalovic, 2009;

Rodrigues et al., 2004, 2006a, 2006b, 2006c, 2006d, 2007) or yeasts (Fracchia et al., 2010).

Notably, all the studies on this topic so far have proposed the use of biosurfactants

and other compounds produced in greater quantities by lactobacilli when growing in

a sessile form, but no study has explored yet the direct use of producer strains grown

as biofilms.

In fact, very few studies have yet been conducted on the ability of probiotic

microorganisms to form biofilm (especially belonging to the genus Bifidobacterium) even

if it is recognized and documented their ability to colonize the gastrointestinal tract,

indeed as biofilm. Taking advantage of the in vivo metabolism of sessile probiotic strains,

a probiotic biofilm could be a useful mean to control the growth of pathogenic and

spoilage bacteria standing up as an innovative biotechnological solution for industrial

and medical applications. Recently, probiotics have shown a good effectiveness against

several gastrointestinal disorders (Alfaleh et al., 2011; Chapman, Plosker & Figgitt, 2006;

Guandalini et al., 2000; Johnston et al., 2011; Marseglia et al., 2007; Podolsky, 2012;
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Wall et al., 2011). Importantly, the potential application of probiotics was recently

widened to prevent and treat different disease conditions, including oral, genitourinary

and gynaecological problems (Alexandre et al., 2014; Bizzini et al., 2012; Mastromarino,

Vitali & Mosca, 2013; Shida & Nomoto, 2013; Serban, 2014; Saha et al., 2012).

Taking into account these consideration, a probiotic biofilm formed ad hoc on medical

devices (catheters, implants, braces, bite blocks or condoms) and on bathrooms’

surfaces (sink, bidet, toilet bowl, water closet or piece of furniture) could be a potential

new tool against colonizing strains, since these surfaces are often implicated in

nosocomial infections.

Thus, the present study aims at exploring the possibility to generate a specific probiotic

biofilm; this main topic was addressed through three intermediate steps:

a) Measurement of the adhesion capacity of 15 strains with probiotic potential in model

systems and optimal growth conditions to evaluate their tendency to form biofilm on

different surfaces (stainless steel, glass, and polycarbonate);

b) Evaluation of the effects of pH, temperature, cellular growth phase, agitation, and

presence of surfactants on probiotic biofilm formation (BF) to highlight the most

significant variables;

c) Study of the effects of pH, temperature and surfactants concentration on probiotic BF

testing both an anionic surfactant and a non-ionic surfactant.

Finally, to test whether biofilm pre-formed by probiotics could delay the growth of

pathogens, we conducted experiments evaluating their effect on L. monocytogenes growth

chosen as model organism, due to its wide distribution in nature and importance both in

food processing and medical environment.

MATERIALS AND METHODS
Phase I: measurement of the adhesion capacity of 15 strains with
probiotic potential

Bacterial strains and culture conditions
The probiotic strains used for this study are reported in Table 1. The bacterial strains were

stored at -20 �C in MRS broth (Oxoid, Milan, Italy), whereas the yeasts were stocked on

Sabouraud dextrose agar (SAB; Oxoid, Milan, Italy) slants at 4 �C. Before each assay, the

bacterial and yeast strains were grown in their optimal media (OM), at their optimal

conditions (see Table 1), until late exponential phase was attained. Cells cultures were

successively harvested by centrifugation for 10 min at 4,500 rpm (4 �C) and the

pellets were washed twice with sterile isotonic solution temperate at 4 �C and

finally resuspended in physiological solution (0.9% NaCl) at a cell concentration of

1 � 108 CFU mL-1. These cell suspensions were diluted in order to make a cell

concentration of 103 CFUmL-1 (working culture) for adhesion experiments. To guarantee

reproducibility in the inocula preparation, the cell counts were standardized through

the direct plate count method (Harrigan, 1998).
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Slides preparation
Stainless steel (AISI-316, finish#2B; ARVEL, Naples, Italy), glass and polycarbonate resin

(Lexan; Fedele s.r.l., Rome, Italy) were the surfaces chosen for the adhesion experiments. Before

each experiment, the chips (2.5 � 5.0 � 0.05 cm) were opportunely treated as described by

Speranza, Corbo & Sinigaglia (2011) and autoclaved at 121 �C for 15 min prior to use.

Biofilm formation assays
To promote BF, sterile chips were placed vertically into jars containing 45 mL of sterile

OM and aliquots of the working culture were inoculated at 102 CFUmL-1. All flasks were

incubated at optimal temperatures (30 �C for lactobacilli, 37 �C for bifidobacteria, 25 �C
for yeasts), under static conditions, for three days.

Biofilm cells were enumerated at 0.5, 1, 2, and 3 days after inoculum. At these times,

chips were aseptically removed, rinsed with sterile distilled water, transferred into test

tubes containing 45 mL of sterile saline and treated with a 20 Hz “Vibra Cell” sonicator

(SONICS, Newcastle, CT, USA) for 3 min to detach sessile cells. Viable and cultivable cells

were enumerated by serial dilutions in 0.9% NaCl solution and plating on OM. Results

were expressed as Log CFU cm-2.

Modelling
All experiments were performed twice on two different batches. The cell load data of

probiotic strains were modelled according to the Gompertz equation modified by

Zwietering et al. (1990):

Table 1 Probiotic strains used in the study with the indication of their optimal media and growth

conditions adopted.

Strains Optimal Media (OM) and growth conditions

Bifidobacteria

B. animalis DSM10140 MRS broth (Oxoid, Milan, Italy), added with cysteine

0.05% (w v-1) (Sigma-Aldrich, Milan, Italy) incubated

at 37 �C for 24–48 h under anaerobic conditions
B. subtilis DSM20096

B. infantis DSM20088

B. longum DSM20219

B. breve DSM20213

Lactobacilli

L. plantarum DSM2601 MRS broth (Oxoid, Milan, Italy) incubated at 30 �C for 24–48 h

under anaerobic conditionsL. casei DSM20011

L.delbrueckii DSM20081

L. paracasei DSM20207

L. reuteri DSM20016

Yeasts

Kluyveromyces lactis ATCC8585 Yeast extract peptone dextrose (YPD; Oxoid, Milan, Italy)

incubated at 25 �C for 48 hS. cerevisiae boulardii ATCCMYA-796

S. cerevisiae W21*

S. cerevisiae W40*

S. cerevisiae W45*

Note:
* Autochthonous yeasts isolated from wine (Petruzzi et al., 2014).
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y ¼ k þ A � exp �exp mmax � e=Að Þ � ABF � timeð Þ þ 1½ �f g (1)

where y is assumed as the biofilm cells population (Log (CFU cm-2)), k as the initial

biofilm count equivalent to zero, A is the bacterial load attained at the stationary phase

(Log (CFU cm-2)), mmax as the maximal adhesion rate (� Log (CFU cm-2 day-1), ABF

as the aptitude to BF, i.e., the time necessary to start adhesion on the surface (day) and t is

the time (day).

Phase II: evaluation of the effects of pH, temperature, cellular growth
phase, agitation, and presence of surfactants on probiotic biofilm
formation
Samples preparation
In order to evaluate the effects of pH, temperature, cellular growth phase, agitation

and presence of surfactants on BF by Bifidobacterium infantis DSM20088 and

Lactobacillus reuteri DSM20016, two 2k-p Fractional Factorial Designs were developed

(Box, Hunter & Hunter, 2005). The coded values and the combinations tested are

reported in Table 2.

As model surface, polycarbonate resin was chosen. As surfactant, sodium dodecyl

sulphate (SDS; Sigma-Aldrich, Milan, Italy) was used at a concentration of 2% (w V-1).

To allow BF, chips (2.5 � 5.0 � 0.05 cm) were placed vertically into sterile polypropylene

containers (50 mL) filled with 45 mL of MRS medium (Oxoid, Milan, Italy) (one chip

into one container). The chips were totally covered by the medium (no air presence)

and each container was closed with a lid to avoid any gas exchange from inside to outside.

Incubation temperature, pH, presence/absence of surfactant, presence/absence of

agitation were modulated according to Table 2. Samples were inoculated at 102 CFUmL-1

by using an 18 h preculture (exponential growth phase) or a 30 h preculture (stationary

growth phase) according to the design and then incubated for three days. Agitation

was performed placing the samples on an orbital shaker (0–150 rpm): the maximum value of

agitation was chosen after some preliminary experiments showing that higher values caused

the formation of vortices into the jars making this operation unstable. Biofilm cells were

enumerated at 1, 2, and 3 days after inoculum, as previously described.

Modelling
All experiments were performed twice on two different batches. The sessile cell loads after

1, 2, and 3 days were used as input values for a black-box model analysis; the statistical

analysis was performed through the option Design of Experiments (DoE) of the software

Statistica for Windows (StatSoft, Tulsa, OK, USA).

The polynomial equation was in the following form:

y ¼ b0 þ
Xn

j¼1

bj � Xj þ
Xn

j¼1

Xn

k¼jþ1

bjk � Xj � Xk þ
Xn

j¼1

bjj � Xj2 (2)

where:
Pn

j¼1 bj � Xj is the individual effect of each factor (independent variable);Pn
j¼1

Pn
k¼jþ1 bjk � Xj � Xk indicates the interactions among the variables; the term

Speranza et al. (2018), PeerJ, DOI 10.7717/peerj.4826 5/23

http://dx.doi.org/10.7717/peerj.4826
https://peerj.com/


Pn
j¼1 bjj � Xj2 takes into account a possible non-linear/quadratic effect of some factors;

y is the dependent variable (sessile cell count) (Van Boekel & Zwietering, 2007).

The significance of the polynomial equation was evaluated through the adjusted

regression coefficient, as well as with Fisher test and standard error of the model.

In addition, the statistical weight of each term was pointed out through the standardized

effects associated with each individual, quadratic and interactive factors of the equations.

These standardized effects were evaluated as the ratio of the mathematical coefficient of

each term of the equation vs. the respective standard error.

Phase III: study of the effects of pH, temperature and surfactants
concentration on probiotic biofilm formation testing both an anionic
surfactant and a non-ionic surfactant
Samples preparation
In order to study the effects of pH, temperature and surfactants concentration on BF

by B. infantis DSM20088 and L. reuteri DSM20016, two 5 levels-3 variables Central

Composite Designs (CCDs) were developed (Box, Hunter & Hunter, 2005; Bevilacqua,

Corbo & Sinigaglia, 2010). For each strain, two surfactants were tested: an anionic

surfactant (SDS; Sigma-Aldrich, Milan, Italy) and a non-ionic surfactant (Polysorbate 80;

Sigma-Aldrich, Milan, Italy). The combinations tested are reported in Table 3.

To allow BF, polycarbonate sterile chips were placed vertically into jars containing

45 mL of MRS medium (Oxoid, Milan, Italy). Incubation temperature, pH medium and

surfactant concentration were modulated according to the designs. Samples were

inoculated at 102 CFUmL-1 by using a 30 h preculture (stationary growth phase) and then

incubated for three days without agitation. Biofilm cells were enumerated at 3 days after

inoculum, as previously described. Modelling was performed as described above.

All experiments were performed twice on two different batches.

Table 2 Coded values and combinations tested in the 2k-p fractional factorial designs.

Coded values pH Agitation Surfactants Cellular growth phase Temperature (�C)

-1 4.5 Yes Yes Exponential 15

1 8.5 No No Stationary 45

Combinations

A 4.5 No Yes Exponential 45

B 8.5 No No Stationary 45

C 8.5 No No Exponential 15

D 8.5 Yes Yes Stationary 45

E 4.5 Yes No Exponential 45

F 4.5 No Yes Stationary 15

G 8.5 Yes Yes Exponential 15

H 4.5 Yes No Stationary 15

Note:
Coded values and combinations tested in the 2k-p fractional factorial designs about the effects of pH, temperature,
cellular growth phase, agitation and presence of surfactants on biofilm formation by B. infantisDSM20088 and L. reuteri
DSM20016.
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Phase IV: effect of probiotic biofilms on L. monocytogenes growth
Experiment
As pathogen target was chosen a strain of L. monocytogenes from the collection of

the Laboratory of Predictive Microbiology (Department of the Science of Agriculture,

Food and Environment, University of Foggia); the organism was transferred to fresh

Nutrient Agar (NA; Oxoid, Milan, Italy) periodically to maintain viability and, prior to use,

it was activated by two successive 24 h transfers of cells in Nutrient broth (NB; Oxoid,

Milan, Italy) at 37 �C. Inocula for experiments were prepared by centrifugation of the

24 h microbial cultures at 3,000 g for 15 min at 4 �C. Probiotic inocula were prepared
following the procedure described above: the pellets obtained after centrifugation were

resuspended in sterile isotonic solution temperate at 4 �C and serial dilutions were made with

physiological solution (0.9% NaCl) to obtain approximately 103 CFU mL-1 for each

microorganism.

The surface used to get the biofilm attached was polycarbonate resin. To promote BF,

polycarbonate sterile chips were placed vertically into jars containing 45 mL of MRS

Table 3 Levels and combinations tested in the 5 levels-3 variables central composite designs.

Levels pH Temperature (�C) Surfactants (%)

-a (-2) 4 10 0

-1 5 20 0.5

0 6 30 1

+1 7 40 1.5

+a (+2) 8 50 2

Combinations

1 7 40 1.5

2 7 40 0.5

3 7 20 1.5

4 7 20 0.5

5 5 40 1.5

6 5 40 0.5

7 5 20 1.5

8 5 20 0.5

9 6 30 1

10 6 30 0

11 6 30 2

12 6 10 1

13 6 50 1

14 4 30 1

15 8 30 1

16 6 30 0

17 6 30 0

Note:
Levels and combinations tested in the 5 levels-3 variables Central Composite Designs about the effects of pH,
temperature and surfactants concentration on biofilm formation by B. infantis DSM20088 and L. reuteri DSM20016.
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medium (Oxoid, Milan, Italy), inoculated with each probiotic strain (102 CFU mL-1)

and incubated at 30 �C. After three days, chips with biofilm were aseptically removed

from the medium, rinsed with sterile distilled water to remove the unattached cells

and transferred into test tubes containing fresh sterile NB (45 mL). Specifically,

two samples were prepared: ACTIVE (ACT) samples, with probiotic biofilm

(one formed by B. infantis and one formed by L. reuteri); CONTROL (CNT) samples,

without probiotic biofilm. All tubes were inoculated with L. monocytogenes

(102 CFU mL-1) and incubated at 37 �C for two days. The pathogen cell load was

determined after 0, 3, 6, 24, 30 and 48 h using Listeria selective agar base (Oxoid,

Milan, Italy) plus Listeria selective supplement-Oxoid formulation, incubated at

37 �C for 48 h.

All experiments were performed twice on two different batches. The cell load data were

modelled according to the Gompertz equation modified by Zwietering et al. (1990).

The results were analysed through one-way ANOVA and Tukey’s test as the post hoc

comparison test (P < 0.05).

RESULTS
During Phase I, the adhesion capacity of 15 strains with probiotic potential (see Table 1)

was measured in model systems and optimal growth conditions to evaluate their tendency

to form biofilm on stainless steel, glass and polycarbonate surfaces. As an example, Fig. 1

shows the sigmoidal curves of cell adhesion of bifidobacteria (a) and lactobacilli (b)

strains on stainless steel; they represent the best fitting Gompertz equation to the

experimental data obtained.

Figure 1 Sigmoidal curves of cell adhesion of bifidobacteria (A) and lactobacilli (B) strains on stainless steel. The curves represent the best

fitting Gompertz equation to the experimental data obtained. Full-size DOI: 10.7717/peerj.4826/fig-1
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As can be seen from Fig. 1A, for all bifidobacteria, a good adhesion on stainless steel was

recovered: all tested strains showed a similar behaviour, in terms of aptitude to BF

(ABF, i.e. time necessary to start adhesion), maximal adhesion rate and sessile cellular load

reached in the stationary phase, with the exception of B. infantis DSM20088. In fact,

B. animalis DSM10140, B. breve DSM20213, B. subtile DSM20096, and B. longum

DSM20219 started to adhere on stainless steel in a very short time (about 3 h after

inoculation), reaching a maximum sessile cellular load of 4.51–5.20 Log CFU cm-2

between the first and the second incubation day. On the contrary, B. infantis DSM20088

was characterized by a longer ABF (13 h) and a greater adhesion rate; thus, even if it

started to adhere later than the other bifidobacteria, this probiotic strain was able to reach

a higher sessile cellular load (over 6 Log CFU cm-2) in a shorter time (<24 h). For this

strain, high cellular loads in 24 h were also recovered for the adhesion experiments on

glass and polycarbonate (about 5.13 Log CFU cm-2 and 4.42–5.20 Log CFU cm-2,

respectively). About lactobacilli, each strain tested showed a good adhesion to the surfaces

tested; as an example, Fig. 1B shows how four strains showed similar values of ABF and

maximal adhesion rate, starting to form biofilm after few hours (2–3 h) and reaching high

cellular loads in 24 h (6.22–6.49 Log CFU cm-2 on stainless steel and 5.71–6.32 Log CFU cm-2

on glass and polycarbonate). The only exception to this trend was Lactobacillus casei

DSM20011; this strain adhered to the tested surfaces less than the other strains, observing

a maximum sessile cellular load about 3.65–5.00 Log CFU cm-2.

All the yeast strains showed a minor capability to form biofilm than the other targets

tested; particularly, no adhesion was observed for Kluyveromyces lactis ATCC8585.

To individuate the best probiotic strains able to adhere to the tested surfaces and form

biofilm, Table 4 resumes the maximum sessile cellular loads reached in the stationary phase

by each studied microorganism. These results allowed to identify in B. infantis DSM20088

the probiotic Bifidobacterium able to ensure the greatest adhesion to the surfaces tested;

regarding lactobacilli, since all the studied strains showed similar results, L. reuteri

DSM20016 was chosen, being considered an emergent probiotic (Abrahamsson et al., 2007;

Saunders et al., 2007; Savino et al., 2007). Thus, in Phase II, the attention was focused only

on these two strains; as model surface, only polycarbonate resin was chosen.

The effects of pH, temperature, cellular growth phase, agitation and presence of

surfactants on BF by the selected probiotics were evaluated through two fractional

factorial designs. This methodology assesses the most relevant variable acting on BF by

using the maximum sessile cellular loads recovered for each strain (after 1 day) as input

data the to run a black-box model through a DoE approach; sessile cell load was the

output of this model (dependent variable), whilst the factors of the design were used

as independent variables. The main result of this approach was a set of standardized

effects, evaluated as the ratio of the mathematical coefficient of each factor and its

standard error. These calculated standardized effects showed how each studied factor

affected the output (in a positive or in a negative way) and if it was significant or not

(Table 5); for both strains, the only factors playing a role were pH, temperature and

presence of surfactant. Namely, in both cases pH and presence of surfactant exerted a

negative effect on the adhesion capacity (when they increased, adhesion decreased),
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whereas the temperature had a positive effect (its increase caused greater adhesion). Not

having a statistically significant effect, the effect of cellular growth phase on BF was not

been further investigated; in the range tested (from 0 to 150 rpm), the effect of agitation

was also not significant and consequently no longer studied.

In Phase III, in order to evaluate the effects of pH, temperature and surfactant

concentration on BF by B. infantis DSM20088 and L. reuteri DSM20016, two 5 levels-3

variables CCDs were developed (Bevilacqua, Corbo & Sinigaglia, 2010). For each strain,

Table 6 shows the linear and the quadratic terms for each factor of the designs performed

using both an anionic surfactant (SDS) and a non-ionic surfactant (Polysorbate 80, PS80).

About the use of SDS, the results were different for B. infantis DSM20088 and L. reuteri

DSM20016; concerning the Bifidobacterium, temperature played a positive role as linear

and quadratic term on BF. The term of surfactant concentration was negative as linear effect,

that is sessile cell load decreased when surfactant amount increased. pH was not significant.

Concerning L. reuteri DSM20016, pH acted as a positive term, that is an increase in pH

exerted a detrimental effect on BF. The effect of surfactant was similar to that reported for

B. infantisDSM20088 with a negative linear term. Finally, temperature was not significant.

Two other outputs of this approach were the polynomial equations for each time, useful

to predict BF (sessile cellular load reached after 3 days) in a wide range of pH (4–8),

surfactant concentrations (0–2%) and temperature (10–50 �C). As an example, the

Table 4 Maximum sessile cellular loads (Log CFU cm-2) reached in the stationary phase by each

studied microorganism.

Strains Maximum sessile cellular load (Log CFU cm-2)

Bifidobacteria Stainless steel Glass Polycarbonate

B. animalis DSM10140 4.69 ± 0.08A 4.66 ± 0.22A 3.92 ± 0.33A

B. subtilis DSM20096 5.20 ± 0.24A,B 4.62 ± 0.10A 5.09 ± 0.02B

B. infantis DSM20088 6.44 ± 0.20B 5.13 ± 0.04B 4.81 ± 0.39B

B. longum DSM20219 4.97 ± 0.16A 4.41 ± 0,17A 5.31 ± 0.15B

B. breve DSM20213 4.51 ± 0.07A 4.81 ± 0.08A 4.07 ± 0.05A

Lactobacilli

L. plantarum DSM2601 6.49 ± 0.07A 5.71 ± 0.13A 5.76 ± 0.23A

L. casei DSM20011 4.38 ± 0.15B 3.65 ± 0.11B 5.21 ± 0.16B

L.delbrueckii DSM20081 6.22 ± 0.311A 5.88 ± 0.35A 4.97 ± 0.21B

L. paracasei DSM20207 6.44 ± 0.06A 6.11 ± 0.29A 5.49 ± 0.17A

L. reuteri DSM20016 6.36 ± 0.23A 5.85 ± 0.23A 6.32 ± 0.20C

Yeasts

Kluyveromyces lactis ATCC8585 No adhesion No adhesion No adhesion

S.cerevisiae boulardii ATCCMYA-796 2.94 ± 0.15A 2.99 ± 0.12A 2.96 ± 0.16A

S.cerevisiae W21* 3.16 ± 0.12A 3.24 ± 0.12A 3.26 ± 0.41A

S.cerevisiae W40* 4.02 ± 0.46A,B 4.59 ± 0.53A,B 4.08 ± 0.12A,B

S.cerevisiae W45* 3.03 ± 0.21A 3.20 ± 0.36A 3.86 ± 0.21B

Notes:
A, B, values in the same columns with different letters are significantly different (one-way ANOVA and Tukey’s test) (P< 0.05).
* Autochthonous yeasts isolated from wine (Petruzzi et al., 2014).
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equations for B. infantisDSM20088 (BFB) and L. reuteri DSM20016 (BFL) are reported in

the following; in the brackets, there are the regression coefficient (R) and the standard

error (SE):

BFB ðLog CFU cm�2Þ ¼ 0:185 temperature½ � � 1:745 surfactant½ � � 0:008 temperature½ �2
½R; 0:902; SE; 1:008� (3)

BFL ðLog CFU cm�2Þ ¼ 0:560 pH½ � � 5:665 surfactant½ � R; 0:977; SE; 1:022½ � (4)

These equations can be used to build 3D plots, showing the effects of the interaction

of two variables on BF. As an example, Fig. 2 shows the effects of [pH]/[temperature]

(a) and [surfactant]/[temperature] (b) on BF by B. infantis DSM20088.

Regarding the use of the non-ionic surfactant, the results obtained for B. infantis

DSM20088 and L. reuteri DSM20016 were similar (Table 6); the terms of temperature

were positive as linear effects, that is BF increased when temperature increased; however,

the existence of a negative quadratic term pinpointed that the correlation was not

Table 5 Standardized effects (evaluated as the ratio of the mathematical coefficient of each factor

and its standard error).

Time (day)

1 2 3

B. infantis DSM20088

Intercept 1.115 1.119 1.355

pH -2.229 -2.219 -2.730
Agitation nsa ns ns

Presence of surfactants -2.229 -2.219 -2.730
Cellular growth phase ns ns ns

Temperature 2.229 2.219 2.730

MSb 0.089 0.096 0.011

R2
adj

c 0.970 0.968 0.998

L. reuteri DSM20016

Intercept 1.139 1.312 1.380

pH -2.289 -2.638 -2.788
Agitation ns ns ns

Presence of surfactants -2.289 -2.638 -2.788
Cellular growth phase ns ns ns

Temperature 2.289 2.638 2.788

MS 0.011 0.023 0.004

R2
adj 0.995 0.990 0.997

Notes:
Standardized effects (evaluated as the ratio of the mathematical coefficient of each factor and its standard error) of pH,
temperature, cellular growth phase, agitation and presence of surfactants on biofilm formation by the selected probiotics
(B. infantis DSM20088 and L. reuteri DSM20016).
a Not significant;
b Mean square residual;
c R2 adjusted regression coefficient.
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strictly linear. The terms of pH were negative as linear effect, that is sessile cell load

decreased when pH increased. The surfactant concentration, if maintained below 2%,

was not significant. The equations for B. infantis DSM20088 (BFB) and L. reuteri

DSM20016 (BFL) obtained during the use of the non-ionic surfactant are reported in

the following; in the brackets, there are the regression coefficient (R) and the standard

error (SE):

BFB ðLog CFU cm�2Þ ¼ � 0:403 pH½ � þ 0:599 temperature½ � � 0:015 temperature½ �2
½R; 0:998; SE; 0:885� (5)

BFL ðLog CFU cm�2Þ ¼ � 0:660 pH½ � þ 0:722 temperature½ � � 0:024 temperature½ �2
½R; 0:979; SE; 1:039� (6)

Also in this case, these equations can be used to build 3D plots, showing the effects

of the interaction of two variables on BF. As an example, Figs. 3A and 3B shows the

effects of [pH]/[temperature] (a) and [surfactant concentration]/[pH] (b) on BF by

L. reuteri DSM20016.

To point out whether biofilm pre-formed by probiotics on polycarbonate surfaces

could delay the growth of L. monocytogenes, this pathogen was inoculated (about

2 Log CFU mL-1) in the presence of chips with 3 days biofilms (sessile cellular load

Table 6 Linear, interactive and quadratic terms for the effects of pH, temperature and surfactants

concentration on biofilm formation by B. infantis DSM20088 and L. reuteri DSM20016.

Sodium dodecyl sulphate (SDS) Polysorbate 80 (PS80)

B. infantis L. reuteri B. infantis L. reuteri

Linear terms

[pH] nsa 3.090 -2.289 -3.339
[temperature] 3.259 ns 7.622 8.321

[surfactant] -2.880 -2.420 ns ns

Interactive terms

[pH]*[temperature] ns ns ns ns

[pH]*[surfactant] ns ns ns ns

[surfactant]*[temperature] ns ns ns ns

Quadratic terms

[pH]2 ns ns ns ns

[temperature]2 -2.435 ns -7.228 -8.499
[surfactant]2 ns ns ns ns

Rb 0.902 0.977 0.998 0.885

SEc 1.008 1.022 0.977 1.039

Note:
Both an anionic surfactant (SDS) and a non-ionic surfactant (PS80) were used.
a Not significant;
b R, regression coefficient;
c SE, standard error.
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of 6.25–6.50 Log CFU cm-2). L. monocytogenes was able to proliferate in all

samples (Table 7); however, the maximum cell load attained at the stationary

phase (A) was always lower in ACT samples, recording values of 7.04 (± 0.06) and

7.28 (± 0.11) Log CFUmL-1 in presence of B. infantis and L. reuteri biofilms, respectively,

Figure 2 Effects of [pH]/[temperature] (A) and [surfactant]/[temperature] (B) on biofilm formation by B. infantis DSM20088.

Full-size DOI: 10.7717/peerj.4826/fig-2

Figure 3 Effects of [pH]/[temperature] (A) and [surfactant concentration]/[pH] (B) on biofilm formation by L. reuteri DSM20016.

Full-size DOI: 10.7717/peerj.4826/fig-3
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against about 8 Log CFU mL-1 observed in the CNT samples. An increase in the l phase

was also recorded, 1.07 and 0.16 h in ACT samples against 0.09 h in CNT.

DISCUSSION
The potential application of probiotics is continuously widening, with new evidences

supporting their effect on the prevention of growth of several pathogenic and spoilage

bacteria. Considering the increasingly widespread ability of pathogens and/or spoilage

bacteria to generate persistent biofilm-related infections or contaminations, an even more

attractive proposal is to use probiotics to prevent or counteract biofilm development.

Some recent in vitro investigations have suggested a potential role of probiotic Lactobacilli

and Bifidobacteria in controlling BF by replacing resident biofilm-growing pathogens

with a non-pathogenic bacteriocin-producing variant (Aoudiaa et al., 2016; Jones &

Versalovic, 2009; Zakaria, 2013). Despite this, biofilms developed by probiotic bacteria

have so far been poorly investigated (Lebeer et al., 2007; Muscariello et al., 2013) as

compared with the extensive studies performed on the BF of several microbial pathogens.

Consequently, a study on the formation of probiotic biofilms and on the factors

affecting this process may be useful for innovative biomedical, industrial, and food

applications. During a first step, our research focused on the measurement of the adhesion

capacity of 15 strains with probiotic potential to evaluate their tendency to form biofilm

on different surfaces (stainless steel, glass and polycarbonate) and to individuate the

probiotic strains more inclined to form biofilms. Among the tested strains, B. infantis

DSM20088 and L. reuteri DSM20016 were individuated as the probiotics able to ensure

the greatest adhesion (over 6 Log CFU cm-2) to the surfaces tested in a very short time

(<24 h). Intriguingly, despite their ability to adhere to mucus and epithelial cells, biofilm

development of bifidobacteria remains poorly investigated. To investigate the cariogenic

potential of bifidobacteria, some authors (Valdez et al., 2016) tested B. lactis, B. longum, B.

animalis, B. dentium, Lactobacillus acidophilus, Lactobacillus casei, Actinomyces israelii,

Streptococcus sobrinus, and Streptococcus mutans for acidogenicity, aciduricity, and

capacity to form biofilm; this tendency was determined for each species either alone or

associated streptococci. In their study (Valdez et al., 2016), bifidobacteria and lactobacilli

had lower ability to form biofilm as single-species compared with dual- and multi-species

biofilms. On the other hand, multi-species growth of B. longum, B. animalis, Lactobacillus

Table 7 Kinetic parameters calculated by fitting Gompertz equation to the experimental data by

L. monocytogenes during its growth with (ACT) or without (CNT) probiotic biofilms.

A mmax l
[LogCFU mL-1] [�Log(CFU mL-1) h-1] [h]

ACT B. infantis 7.04 ± 0.06A 0.79 ± 0.03A 1.07 ± 0.15A

ACT L. reuteri 7.28 ± 0.11A 0.70 ± 0.02A 0.16 ± 0.02B

CNT 7.98 ± 0.10B 0.84 ± 0.04A 0.09 ± 0.03C

Notes:
A is the maximum bacterial load attained at the stationary phase, mmax is the maximal specific growth rate, l is the lag
time. A, B, C, values in the same columns with different letters are significantly different (one-way ANOVA and Tukey’s
test) (P < 0.05).
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casei, and Lactobacillus acidophilus presented higher BF ability compared with their

growth as dual-species. Similar studies had demonstrated that some bifidobacteria

(B. breve, B. longum, B. lactis, B. adolescentis, B. infantis) exhibited low adhesion to

hydroxyapatite discs (Haukioja et al., 2006; Nagaoka et al., 2008), but this ability was

improved when the species had co-adhered with primary colonizers, such as Actinomyces

naeslundii, Veillonella parvula, and Fusobacterium nucleatum. In this study, for all

bifidobacteria, a good adhesion was recovered with B. infantis DSM20088 able to reach a

high sessile cellular load in a very short time.

With respect to lactobacilli, each strain tested showed a good adhesion to the surfaces

used reaching high cellular loads (6.22–6.49 Log CFU cm-2) after few hours (2–3 h);

only for Lactobacillus casei DSM20011 a minor sessile cellular load was observed

(about 3.65–5.00 Log CFU cm-2). In 2016 Aoudia et al. evaluated the ability of three

Lactobacillus strains (one strain of L. plantarum and two strains of L. fermentum isolated

from human feces or saliva) to form biofilms on polystyrene; BF was observed for all

the Lactobacillus strains, but L. fermentumNA6 was able to form the most robust binding.

Jones & Versalovic (2009) also observed a different adhesion on polystyrene by

various isolates of L. reuteri, depending on the strain; this strain-dependence was

confirmed for numerous strains of Lactobacillus genus (Lebeer et al., 2007; Martı́n et al.,

2008).

All the yeast strains tested in this study showed a low capability to form biofilm. It is

well recognized that yeast cells possess a remarkable capacity to adhere to abiotic surfaces,

cells and tissues, but the major emphasis on yeasts adhesion properties remains about

pathogenic ones such as Candida albicans and Candida glabrata and their ability to adhere

to medical devices and form drug-resistant biofilms (Verstrepen & Klis, 2006). Despite BF

is a desirable property of industrial Saccharomyces cerevisiae strains, this aspect remains

poorly studied making difficult to compare the obtained results with others present in

the literature.

Once individuated in B. infantis DSM20088 and L. reuteri DSM20016 the probiotic

strains able to ensure the greatest adhesion to the surfaces tested, in Phase II, we focused

on these two strains. Moreover, since both the probiotic strains adhered similarly to the

tested surfaces and formed biofilm, in the following phases we choose to use only

polycarbonate resin for its specific characteristics. Polycarbonate, in fact, is a strong,

transparent, inert, tough material, easy to work with and it can undergo large plastic

deformations without cracking or breaking making it valuable in prototyping

applications (Kausar, 2017).

Several conditions are able to influence biofilm development including environmental

variables (pH, nutrient availability, temperature, fluid dynamics), microbiological factors

(Gram negative/positive, microbial shape, structure, species, growth phase, age, presence

of flagella, pili, capsules or exopolymeric substances) and surface morphologies

(chemistry, topography, physicochemistry) (Guðbjornsdottir, Einarsson & Thorkelsson,

2005). Among these factors, pH, temperature, medium composition and population

characteristics of bacteria play an important role in the phenotypic change from

planktonic cells to the sessile form, but their effects are not unique and may differ from
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species to species; for instance, it was demonstrated that maximum adhesion occurred

at different pHs or temperatures depending on the tested strain. Also the physiological

status of cells influences the hydrophobicity and the degree of bacterial adhesion; for

example, it is recognized that spores possess higher hydrophobicity of their cell surfaces,

thus adhering more quickly than vegetative cells to food-contact surfaces (Speranza &

Corbo, 2017). Since adherence depends both on the strain and on environmental factors

(Speranza & Corbo, 2017), we focused on the study of the effects of pH, temperature,

cellular growth phase, agitation and presence of surfactants on BF by the selected

probiotics. For both strains, the effects of cellular growth phase and agitation (until

150 rpm) on BF were not statistically significant, thus only the effects of pH, temperature

and surfactant concentration were further investigated, using both an anionic surfactant

(SDS) and a non-ionic surfactant (Polysorbate 80, PS80). Surfactants are generally

employed to lower the surface tension of a surface as they are amphiphilic molecules,

i.e., they have both hydrophilic and hydrophobic moieties. They are able to adhere easily

on surface, thus inhibiting the adhesion by microorganisms (Toutain-Kidd et al., 2009).

In general, surfactants can be cationic, anionic and non-ionic: the first (i.e. quaternary

imidazolium compounds) are the most toxic, the second ones (i.e., SDS) are the most

effective, whereas non-ionic surfactants generally have no antibacterial activities

(Van Hamme, Singh & Ward, 2006). PS80 is a water soluble non-ionic surfactant which is

very well tolerated (National Toxicology Program, 1992) and thus it is commonly used

in foods, cosmetics, and pharmaceutical preparations. In this study, in tests using SDS,

BF by both probiotics was influenced negatively by surfactant concentration, that is sessile

cell load decreased when surfactant amount increased. On the other hand, when the

surfactant used was PS80, its effect was not significant and both probiotics were able to

reach high sessile cellular loads (over 6 Log CFU cm-2). Some studies have addressed

the ability of surfactants to affect BF by other strains (namely pathogens) and have

obtained different results. For example, it has been demonstrated that PS80 can inhibit

the biofilms by Pseudomonas aeruginosa PA14 (Toutain-Kidd et al., 2009) and by E. coli

O104:H4 (Sloup et al., 2016). Mireles, Toguchi & Harshey (2001) reported that SDS

and PS80 (used at 0.25 g L-1) were effective at inhibiting BF by E. coli, Salmonella

enterica, and Proteus mirabilis on catheters, but not BF by P. aeruginosa, reflecting

the diversity in the nature and recalcitrance of biofilms produced. Other authors

(Dı́az De Rienzo et al., 2016) compared the effects of SDS with the ability of the

rhamnolipids (biosurfactants from P. aeruginosa), in the presence and absence of caprylic

acid and ascorbic acid, to disrupt bacterial biofilms: the SDS had a clear effect on

P. aeruginosa ATCC 15442 biofilm disruption at 0.8 g L-1. SDS has also been shown to

kill planktonic Aggregatibacter actinomycetemcomitans cells at a minimum inhibitory

concentration (MIC) of 0.1 g/l (Dı́az De Rienzo et al., 2016). Otzen (2002) suggested

that SDS mediated biofilm detachment was a consequence of the denaturation of

proteinaceous matrix adhesions.

Regarding the effects of pH and temperature, pH exerted a very bland effect, whereas

it was possible to recover a greater tendency to adhesion when the temperature was

about 30 �C. This more rapid transition from planktonic to sessile mode of life observed
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at 30–32 �C rather than at more suitable conditions (the optimal temperature for

Lactobacilli and Bifidobacteria is 37 �C) is not a surprising result, even if the mechanisms

behind increased BF at suboptimal temperatures are not known. Also in this case, such

evidences were exclusively obtained in studies performed on pathogens; for example,

in 2011 Speranza, Corbo & Sinigaglia observed a greater tendency to form biofilm by

Salmonella sp. at 30–32 �C and neutral pH. Similar results were reported by

Stepanovic et al. (2003) who proposed that the production of fimbriae explained an

increased biofilm production of Salmonella enterica serovar Typhimurium at 30 �C.
Research on L. monocytogenes has shown that temperature affects the bacterial hydrophilic

surface properties (Chavant et al., 2002), with low temperatures increasing the cells

hydrophilic properties and altering the bacteria’s ability to adhere to hydrophobic

materials. It is widely accepted that each biofilm is different, due to the wide range of

contributing factors (surface type, availability of nutrients and oxygen, microbial species,

etc.) (Srey, Jahid & Ha, 2013); thus, every situation should be analyzed individually

and specifically.

Finally, to test whether biofilm pre-formed by probiotics could delay the growth of

pathogens, in the last phase of this research we conducted experiments evaluating their

effect on L. monocytogenes growth chosen as target organism, due to its wide distribution

in nature and importance both in food processing and medical environment. In fact,

listeriosis is a severe infection associated with foods contaminated by L. monocytogenes,

but also often implicated in nosocomial outbreaks. Some studies of listeriosis have also

identified hospitalization as a risk factor; in hospitals, in fact, the target populations of this

infection (pregnant women, newborn infants, immuno-compromised individuals on

corticosteroids, patients with cancer and other chronic diseases and the elderly) are more

present and the transmission can occur not only through contaminated foods, but also

through person to person spread and direct contact with infectious material (Dalton et al.,

2011).

In 2009 Guerrieri et al. observed that LAB biofilms were able to influence the survival

and the growth of L. monocytogenes with differences among the strains: L. plantarum 35d

was able to reduce the pathogen by 5.4 Log in the planktonic population and by 3.9 Log in

the sessile population during 10 days of experimentation. Similar results were obtained by

Speranza, Sinigaglia & Corbo (2009) who evaluated the possibility to consider non-starter

LAB biofilms as a means to control the growth of L. monocytogenes in soft cheeses; their

results demonstrated that biofilms were able to delay the growth of the pathogen by

reducing the maximum cell load attained at the stationary phase (6 Log CFU g-1 in

presence of biofilms against about 7 Log CFU g-1 observed in the control samples) and

increasing the l phase (2.87 against 0.78 days). These results confirm those obtained in the

last phase of this research where the proposed probiotic biofilms were able to delay the

growth of L. monocytogenes. Such effect was probably due to the release of different

antimicrobial substances produced by the probiotic bacteria under the regulation of a

quorum sensing mechanism when a threshold cell density was reached; this phenomenon

occurs widely in LAB (especially for the bacteriocin production) in the presence of
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competitive microorganisms sensitive to their metabolites (Eijsink et al., 2002;Maldonado,

Jiménez-Dı́az & Ruiz-Barba, 2004).

Further investigations are warranted in order to explore whether our results can be

reproduced and exploited in situ.

CONCLUSION
This study is a valuable contribution to the study of probiotics’ ability to adhere to

surfaces and form biofilms which allows to fix some key points:

1. Among the tested strains, B. infantis DSM20088 and L. reuteri DSM20016 were

individuated as the probiotics able to ensure the greatest adhesion (over 6 Log CFU cm-2)

to the surfaces tested in a very short time (<24 h);

2. All the yeasts with probiotic potential tested in this study showed less capability to form

biofilm than bacteria;

3. For B. infantis DSM20088 and L. reuteri DSM20016, cellular growth phase and

agitation of the medium (until 150 rpm) were factors not affecting BF;

4. Within the concentrations tested (0–2%), the non-ionic surfactant (PS80) was more

delicate than anionic one (SDS). In fact, BF by both probiotics was negatively

influenced by SDS concentration (sessile cell load decreased when surfactant amount

increased), whereas PS80 had not significant effect and both probiotics were able to

reach high sessile cellular loads (over 6 Log CFU cm-2);

5. pH variation exerted a very bland effect;

6. A greater tendency to adhesion was observed when the temperature was about 30 �C.

7. The results obtained in the last experimental phase suggest that these probiotic biofilms

could be used as an efficient means to delay the growth of L. monocytogenes, even if this

aspect requires further investigations.

Other studies are necessary to explore whether these bacteria are able to adhere on

other surfaces (i.e. packaging materials, ceramic, plastic, paper, polymers, etc.) in order to

develop new biotechnological solutions for industrial and medical applications.
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