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ABSTRACT Since the initial report in 1911, the domestic ferret has become an in-
valuable biomedical research model. While widely recognized for its utility in influ-
enza virus research, ferrets are used for a variety of infectious and noninfectious dis-
ease models due to the anatomical, metabolic, and physiological features they share
with humans and their susceptibility to many human pathogens. However, there are
limitations to the model that must be overcome for maximal utility for the scientific
community. Here, we describe important recent advances that will accelerate bio-
medical research with this animal model.
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In 1911, the first study using the domestic ferret, Mustela putorius furo, for biomedical
research was published (1). Since then, the ferret has been an invaluable model for

cardiac research (2), spinal cord injury (3), epilepsy (4), and several lung conditions,
including smoke-induced chronic obstructive pulmonary disease (COPD) (5), cystic
fibrosis (6), and tobacco-induced lung cancer (7). The recent development of a database
of the anatomical connections and structural features of the ferret brain will likely also
improve the relevance of this model for neurological research (8). Yet, the ferret model
is most widely recognized for its utility in infectious disease research, especially
respiratory infections (Table 1). A variety of human pathogens are known to naturally
infect ferrets and often reproduce human disease better than mouse models. In this
article, we discuss the recent advances and ongoing initiatives to increase the utility of
the ferret model for biomedical research.

MODELS, GENOMES, AND OMICS

The first transgenic ferret was produced by somatic cell nuclear transfer (SCNT) to
oocyte recipient cells in 2006 (9). This technique was then combined with adeno-
associated virus-mediated gene targeting of the cystic fibrosis transmembrane con-
ductance regulator (CFTR) gene to generate a transgenic ferret model of cystic fibrosis
and create the first reported ferret genomic bacterial artificial chromosome library (10).
More recently, CRISPR/Cas9-mediated genome editing techniques were applied to
ferrets to develop a model organism to study X-linked, double cortin-related lissen-
cephaly spectrum (11). In addition to genetically modified ferrets, research groups have
described the development of immunocompromised (12), pregnant (13), aged (14), and
diet-induced obese (DIO [unpublished data]) models to understand disease in high-risk
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populations. It is likely that new models and transgenic animals will be developed in
the near future.

The sequencing of the ferret genome (15) was instrumental in advancing functional
genomic analysis. Numerous groups developed reagents to monitor gene-specific
mRNA expression levels via TaqMan-based or Sybr green-based real-time reverse
transcription-PCR assays for a plethora of targets. Many of these primers are available
free of charge through the National Institute of Allergy and Infectious Diseases (NIAID)
established BEI Resources (https://www.beiresources.org/Home.aspx). Bruder et al. de-
scribed the development of an expression microarray platform that included the
identification of 41 genes with consistent baseline transcription profiles across tissues
that could be used as housekeeping genes (16). Our group developed and is validating
a FLUIDIGM panel with 144 distinct immune response and lung injury and repair genes.
Beyond transcription, Tisoncik-Go et al. described an integrated omics analysis that
profiles lipids, metabolites, and proteins in the respiratory compartments of influenza
virus-infected ferrets (17). Combined, these tools provide powerful resources to the
research community.

THE NEXT FRONTIER: THE IMMUNE RESPONSE

Despite its relevance for biomedical research, there are limitations of the ferret
model for immunologic studies due to the dearth of reagents. Screening of commer-
cially available antibodies for cross-reactivity with markers on innate and adaptive cell
subsets and cytokines in ferrets has yielded limited success (Table 2). To resolve this, a
group of researchers from around the world are working together to develop validated
reagents and assays to improve our understanding of the innate and adaptive immune
responses in the ferret.

To date, recombinant proteins representing a range of intrinsic, innate, and adaptive
immune markers are under development, and some are already available from com-
mercial sources (18, 19). These include type I and III interferons (IFNs), RIG-I and Toll-like
receptors, cytokines, and chemokines, as well as cell surface markers for immune and
nonimmune cells. In terms of adaptive immune responses, Kirchenbaum and Ross
recently developed a monoclonal antibody against the ferret B cell receptor light chain
that is useful in distinguishing kappa versus lambda B cell responses (20, 21). Enzyme-
linked immunosorbent spot (ELISpot) and flow cytometric assays have been developed
to quantify the isotypes of antibody-secreting cells (IgG or IgA) (22), pan-B cells (CD20�,
CD79��), and Ig� B cells (18, 19). T cell phenotyping has been limited to quantification
of overall CD3� T cells, including CD4� and CD8� subsets, by flow cytometric assays

TABLE 1 Human microbes used in the ferret model

Pathogen group and species Reference(s)

Viruses
Influenza virus 26
Respiratory syncytial virus 27, 28
Metapneumovirus 29
Measles virus 30
Mumps virus 31, 32
Parainfluenza viruses 33, 34
Severe acute respiratory syndrome coronavirus 35
Nipah virus 36
Ebola virus 37
Rift Valley fever virus 38

Bacteria
Streptococcus spp. 39
Staphylococcus aureus 40
Helicobacter mustelae 41
Mycobacterium spp. 42

Fungi
Pneumocystis jirovecii 43
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and identification of antigen-specific effector responses by detecting IFN-� secretion in
flow-based intracellular cytokine secretion assays or ELISpot assays (18). An in vivo
depletion of CD8 T cells using a cross-reactive human monoclonal antibody has been
shown to delay influenza virus clearance (23). To increase our toolbox, the Centers for
Excellence in Influenza Research and Surveillance (CEIRS) network has undertaken a
large project to rapidly produce monoclonal antibodies and develop assays to support
the universal influenza vaccine initiative (24). Antibodies in production include B cell
markers (CD83, CD86, CD95, CD19, CD20, CD25, CD27, CD38, CD138, CXCR5, and FcR),
T cell markers (CD4, CCR7, CD3e, CD40, CD40L, CD44, CD62L, CD69, CD103, PD-1,
CXCR3, interleukin-7 receptor [IL-7R], and IL-15Ra) and others (CXCR4, CD140, IL-2,
IL-21, and IL-4). These much-needed reagents will facilitate efforts to establish immu-
nologic assays to interrogate the innate and adaptive immune responses to infection
and vaccination at the level of detail that is routinely applied to studies of mouse or
human immunology. Importantly, the ferret model will allow correlates of protection to
be established after vaccination and infection in conjunction with transmission studies,
which are not available in the mouse models. Additionally, the longer life span of the
ferret relative to the mouse will allow analysis of the evolution of the immune response
to sequential infection and/or vaccination (25), permitting more accurate modeling of
the immune response in humans.

WAYS FORWARD

While there has been exciting progress, much work remains to move the ferret
model forward. Toward this goal, the CEIRS group has produced fibroblasts and primary
nasal and tracheal epithelial cells and cell lines, established a repository of defined
tissues and cell types (Table 3), and are working with the J. Craig Venter Institute to
define the ferret major histocompatibility complex (MHC). An exciting achievement is
the completion of the PacBio sequencing of the ferret MHC (Granger Sutton, personal
communication). While these are important steps, the ultimate goal is to provide the

TABLE 2 Commercial kits and immunologic reagents tested in the ferret model

Product type
and namea Specificity Clone Isotype Host Vendor Application Reference(s)

Commercial kits
LIVE/ DEAD Fixable Aqua dead

cell stain
Thermo/Fisher Flow cyt 18

IFN-� ELISpot basic (HRP) kit MabTech ELISpot 18

Primary antibodies
CD44 Mouse IM7 IgG2b, � Rat BD Pharmingen Flow cyt 19
IL-4 Bovine CC303 IgG2a Mouse Bio-Rad Flow cyt 19
IFN-� Bovine CC302 IgG1 Mouse Bio-Rad Flow cyt 19
IFN-� Mouse XMG1.2 IgG1, � Rat BD Pharmingen Flow cyt 19
TNF Mouse MP6-XT22 IgG1 Rat BD Pharmingen Flow cyt 19
Thy1.1 Rat OX-7 IgG1, � Mouse BD Pharmingen Flow cyt 19
CD11b Mouse/human M1/70 IgG2b, � Rat BD Pharmingen or BioLegend Flow cyt 18, 19
CD8a Human OK-T8 IgG2a Mouse eBioscience/Tonbo Flow cyt 18, 19
CD4 Ferret 02 IgG1 Mouse Sino Biological Flow cyt 18, 19
MHC-II Human L243 IgG2a, � Mouse BioLegend Flow cyt 18
IgA, IgM, IgG Ferret Poly Goat LSBio Flow cyt 18
CD59 Mouse AL-21 IgM, � Rat BD Pharmingen Flow cyt 18
CD79a Human HM47 IgG1, � Mouse eBioscience Flow cyt 18
CD20 Ferret 71 IgG Rabbit Sino Biological Flow cyt 18
CD3 Human IS5033 Poly Rabbit Dako IHC 44
Lysozyme Human A0099 Poly Rabbit Dako IHC 44
CD20 Human RB-9013-P Poly Rabbit Thermo (Fisher) IHC 44
CD79a Human HM57 IgG1, � Mouse Dako IHC 44
MHC-II Human TAL 1B5 IgG1, � Mouse Dako IHC 44
CD3 Human PC3/188A IgG1, � Mouse Santa Cruz Biotech Flow cyt 45
IFN-� (capture Ab) Cow CC302 IgG1 Mouse Bio-Rad ELISpot/flow cyt 45
IFN-� biotinylated (detection Ab) Dog Poly Goat R&D Systems 45, 46

aAbbreviations: HRP, horseradish peroxidase conjugate; TNF, tumor necrosis factor; Ab, antibody; Flow cyt, flow cytometry; IHC, immunohistochemistry.
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biomedical research community with validated reagents and protocols they can trust to
ensure the rigor and reproducibility in experiments utilizing the ferret model. In
support of this goal, many of the reagents created through the CEIRS network will be
made publicly available through the CEIRS Data Processing and Coordinating Center
(DPCC) website (http://www.niaidceirs.org/resources/ceirs-reagents/).
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