MINIREVIEW

Moving Forward: Recent Developments for the Ferret Biomedical Research Model

Randy A. Albrecht,^a Wen-Chun Liu,^a Andrea J. Sant,^b ^bS. Mark Tompkins,^c Andrew Pekosz,^d Victoria Meliopoulos,^e Sean Cherry,^e Paul G. Thomas,^f Stacey Schultz-Cherry^e

^aDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA

^bDavid H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA

«Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA

dW. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public

Health, Johns Hopkins University, Baltimore, Maryland, USA

AMERICAN SOCIETY FOR MICROBIOLOGY

eDepartment of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA

^fDepartment of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA

ABSTRACT Since the initial report in 1911, the domestic ferret has become an invaluable biomedical research model. While widely recognized for its utility in influenza virus research, ferrets are used for a variety of infectious and noninfectious disease models due to the anatomical, metabolic, and physiological features they share with humans and their susceptibility to many human pathogens. However, there are limitations to the model that must be overcome for maximal utility for the scientific community. Here, we describe important recent advances that will accelerate biomedical research with this animal model.

KEYWORDS advances, animal model, ferret

In 1911, the first study using the domestic ferret, *Mustela putorius furo*, for biomedical research was published (1). Since then, the ferret has been an invaluable model for cardiac research (2), spinal cord injury (3), epilepsy (4), and several lung conditions, including smoke-induced chronic obstructive pulmonary disease (COPD) (5), cystic fibrosis (6), and tobacco-induced lung cancer (7). The recent development of a database of the anatomical connections and structural features of the ferret brain will likely also improve the relevance of this model for neurological research (8). Yet, the ferret model is most widely recognized for its utility in infectious disease research, especially respiratory infections (Table 1). A variety of human pathogens are known to naturally infect ferrets and often reproduce human disease better than mouse models. In this article, we discuss the recent advances and ongoing initiatives to increase the utility of the ferret model for biomedical research.

MODELS, GENOMES, AND OMICS

The first transgenic ferret was produced by somatic cell nuclear transfer (SCNT) to oocyte recipient cells in 2006 (9). This technique was then combined with adenoassociated virus-mediated gene targeting of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to generate a transgenic ferret model of cystic fibrosis and create the first reported ferret genomic bacterial artificial chromosome library (10). More recently, CRISPR/Cas9-mediated genome editing techniques were applied to ferrets to develop a model organism to study X-linked, double cortin-related lissencephaly spectrum (11). In addition to genetically modified ferrets, research groups have described the development of immunocompromised (12), pregnant (13), aged (14), and diet-induced obese (DIO [unpublished data]) models to understand disease in high-risk Published 17 July 2018

Citation Albrecht RA, Liu W-C, Sant AJ, Tompkins SM, Pekosz A, Meliopoulos V, Cherry S, Thomas PG, Schultz-Cherry S. 2018. Moving forward: recent developments for the ferret biomedical research model. mBio 9:e01113-18. https://doi.org/10.1128/mBio.01113-18.

Editor Thomas E. Morrison, University of Colorado School of Medicine

Copyright © 2018 Albrecht et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Randy A. Albrecht, randy.albrecht@mssm.edu, or Stacey Schultz-Cherry, stacey.schultz-cherry@stjude.org.

TABLE 1	Human	microbes	used in	the	ferret	model
---------	-------	----------	---------	-----	--------	-------

Pathogen group and species	Reference(s)		
Viruses			
Influenza virus	26		
Respiratory syncytial virus	27, 28		
Metapneumovirus	29		
Measles virus	30		
Mumps virus	31, 32		
Parainfluenza viruses	33, 34		
Severe acute respiratory syndrome coronavirus	35		
Nipah virus	36		
Ebola virus	37		
Rift Valley fever virus	38		
Bacteria			
Streptococcus spp.	39		
Staphylococcus aureus	40		
Helicobacter mustelae	41		
Mycobacterium spp.	42		
Fungi			
Pneumocystis jirovecii	43		

populations. It is likely that new models and transgenic animals will be developed in the near future.

The sequencing of the ferret genome (15) was instrumental in advancing functional genomic analysis. Numerous groups developed reagents to monitor gene-specific mRNA expression levels via TaqMan-based or Sybr green-based real-time reverse transcription-PCR assays for a plethora of targets. Many of these primers are available free of charge through the National Institute of Allergy and Infectious Diseases (NIAID) established BEI Resources (https://www.beiresources.org/Home.aspx). Bruder et al. described the development of an expression microarray platform that included the identification of 41 genes with consistent baseline transcription profiles across tissues that could be used as housekeeping genes (16). Our group developed and is validating a FLUIDIGM panel with 144 distinct immune response and lung injury and repair genes. Beyond transcription, Tisoncik-Go et al. described an integrated omics analysis that profiles lipids, metabolites, and proteins in the respiratory compartments of influenza virus-infected ferrets (17). Combined, these tools provide powerful resources to the research community.

THE NEXT FRONTIER: THE IMMUNE RESPONSE

Despite its relevance for biomedical research, there are limitations of the ferret model for immunologic studies due to the dearth of reagents. Screening of commercially available antibodies for cross-reactivity with markers on innate and adaptive cell subsets and cytokines in ferrets has yielded limited success (Table 2). To resolve this, a group of researchers from around the world are working together to develop validated reagents and assays to improve our understanding of the innate and adaptive immune responses in the ferret.

To date, recombinant proteins representing a range of intrinsic, innate, and adaptive immune markers are under development, and some are already available from commercial sources (18, 19). These include type I and III interferons (IFNs), RIG-I and Toll-like receptors, cytokines, and chemokines, as well as cell surface markers for immune and nonimmune cells. In terms of adaptive immune responses, Kirchenbaum and Ross recently developed a monoclonal antibody against the ferret B cell receptor light chain that is useful in distinguishing kappa versus lambda B cell responses (20, 21). Enzyme-linked immunosorbent spot (ELISpot) and flow cytometric assays have been developed to quantify the isotypes of antibody-secreting cells (IgG or IgA) (22), pan-B cells (CD20⁺, CD79 α^+), and Ig⁺ B cells (18, 19). T cell phenotyping has been limited to quantification of overall CD3⁺ T cells, including CD4⁺ and CD8⁺ subsets, by flow cytometric assays

TABLE 2	Commercial	kits and	immunoloaic	reagents	tested in	the	ferret	model

Product type							
and name ^a	Specificity	Clone	lsotype	Host	Vendor	Application	Reference(s)
Commercial kits							
LIVE/ DEAD Fixable Aqua dead					Thermo/Fisher	Flow cyt	18
cell stain							
IFN- γ ELISpot basic (HRP) kit					MabTech	ELISpot	18
Primary antibodies							
CD44	Mouse	IM7	lgG2b, к	Rat	BD Pharmingen	Flow cyt	19
IL-4	Bovine	CC303	lgG2a	Mouse	Bio-Rad	Flow cyt	19
IFN-γ	Bovine	CC302	lgG1	Mouse	Bio-Rad	Flow cyt	19
IFN-γ	Mouse	XMG1.2	lgG1, к	Rat	BD Pharmingen	Flow cyt	19
TNF	Mouse	MP6-XT22	lgG1	Rat	BD Pharmingen	Flow cyt	19
Thy1.1	Rat	OX-7	lgG1, к	Mouse	BD Pharmingen	Flow cyt	19
CD11b	Mouse/human	M1/70	lgG2b, к	Rat	BD Pharmingen or BioLegend	Flow cyt	18, 19
CD8a	Human	OK-T8	lgG2a	Mouse	eBioscience/Tonbo	Flow cyt	18, 19
CD4	Ferret	02	lgG1	Mouse	Sino Biological	Flow cyt	18, 19
MHC-II	Human	L243	lgG2a, к	Mouse	BioLegend	Flow cyt	18
lgA, IgM, IgG	Ferret		Poly	Goat	LSBio	Flow cyt	18
CD59	Mouse	AL-21	lgM, к	Rat	BD Pharmingen	Flow cyt	18
CD79a	Human	HM47	lgG1, к	Mouse	eBioscience	Flow cyt	18
CD20	Ferret	71	lgG	Rabbit	Sino Biological	Flow cyt	18
CD3	Human	IS5033	Poly	Rabbit	Dako	IHC	44
Lysozyme	Human	A0099	Poly	Rabbit	Dako	IHC	44
CD20	Human	RB-9013-P	Poly	Rabbit	Thermo (Fisher)	IHC	44
CD79a	Human	HM57	lgG1, к	Mouse	Dako	IHC	44
MHC-II	Human	TAL 1B5	lgG1, к	Mouse	Dako	IHC	44
CD3	Human	PC3/188A	lgG1, к	Mouse	Santa Cruz Biotech	Flow cyt	45
IFN- γ (capture Ab)	Cow	CC302	lgG1	Mouse	Bio-Rad	ELISpot/flow cyt	45
IFN- γ biotinylated (detection Ab)	Dog		Poly	Goat	R&D Systems		45, 46

^aAbbreviations: HRP, horseradish peroxidase conjugate; TNF, tumor necrosis factor; Ab, antibody; Flow cyt, flow cytometry; IHC, immunohistochemistry.

and identification of antigen-specific effector responses by detecting IFN- γ secretion in flow-based intracellular cytokine secretion assays or ELISpot assays (18). An in vivo depletion of CD8 T cells using a cross-reactive human monoclonal antibody has been shown to delay influenza virus clearance (23). To increase our toolbox, the Centers for Excellence in Influenza Research and Surveillance (CEIRS) network has undertaken a large project to rapidly produce monoclonal antibodies and develop assays to support the universal influenza vaccine initiative (24). Antibodies in production include B cell markers (CD83, CD86, CD95, CD19, CD20, CD25, CD27, CD38, CD138, CXCR5, and FcR), T cell markers (CD4, CCR7, CD3e, CD40, CD40L, CD44, CD62L, CD69, CD103, PD-1, CXCR3, interleukin-7 receptor [IL-7R], and IL-15Ra) and others (CXCR4, CD140, IL-2, IL-21, and IL-4). These much-needed reagents will facilitate efforts to establish immunologic assays to interrogate the innate and adaptive immune responses to infection and vaccination at the level of detail that is routinely applied to studies of mouse or human immunology. Importantly, the ferret model will allow correlates of protection to be established after vaccination and infection in conjunction with transmission studies, which are not available in the mouse models. Additionally, the longer life span of the ferret relative to the mouse will allow analysis of the evolution of the immune response to sequential infection and/or vaccination (25), permitting more accurate modeling of the immune response in humans.

WAYS FORWARD

While there has been exciting progress, much work remains to move the ferret model forward. Toward this goal, the CEIRS group has produced fibroblasts and primary nasal and tracheal epithelial cells and cell lines, established a repository of defined tissues and cell types (Table 3), and are working with the J. Craig Venter Institute to define the ferret major histocompatibility complex (MHC). An exciting achievement is the completion of the PacBio sequencing of the ferret MHC (Granger Sutton, personal communication). While these are important steps, the ultimate goal is to provide the

TABLE 3 Current tissue repository

Tissue	Sample ^a	Sample forms	Sex	Comment
Lung	Brochioalveolar fluid		М	Influenza virus infected
	Upper right, middle right, lower right, upper left, lower left	Single-cell suspension; homogenate; whole tissue; Trizol; paraffin-embedded tissue	M and F	Influenza virus infected and noninfected
Blood	РВМС	Fluid; isolated cells; RNAlater	M and F	Influenza virus infected and noninfected
	Plasma		М	Noninfected
	Sera		М	Influenza virus infected and noninfected
Nasal fluid (wash)	NA	Fluid	М	Influenza virus infected and noninfected
Spleen	NA	Whole tissue; single-cell suspension; homogenate;	M and F	Influenza virus infected and noninfected
Trachea	NA	Whole tissue; single-cell suspension; homogenate; RNAlater	M and F	Influenza virus infected and noninfected
Mediastinal lymph node	NA	Whole tissue	M and F	Influenza virus infected

^aPBMC, peripheral blood mononuclear cells; NA, not applicable.

biomedical research community with validated reagents and protocols they can trust to ensure the rigor and reproducibility in experiments utilizing the ferret model. In support of this goal, many of the reagents created through the CEIRS network will be made publicly available through the CEIRS Data Processing and Coordinating Center (DPCC) website (http://www.niaidceirs.org/resources/ceirs-reagents/).

ACKNOWLEDGMENTS

We thank everyone involved in Team Ferret, whose names we will not list for fear we might miss someone, as well as others producing reagents for the ferret model. We also thank Diane Post (NIAID) and the members of the CEIRS network for feedback, advice, and constructive criticism.

Finally, our funding sources included HHSN272201400006C (St. Jude's CEIRS), HHSN272201400008C (CRIP CEIRS), HHSN272201400007C (Johns Hopkins CEIRS), HHSN272201400004C (Emory-UGA CEIRS), and HHSN272201400005C (NYICE).

REFERENCES

- 1. Yeates T. 1911. Studies in the embryology of the ferret. J Anat Physiol 45:319–335.
- Truex RC, Belej R, Ginsberg LM, Hartman RL. 1974. Anatomy of the ferret heart: an animal model for cardiac research. Anat Rec 179:411–422. https://doi.org/10.1002/ar.1091790402.
- Eidelberg E, Staten E, Watkins JC, McGraw D, McFadden C. 1976. A model of spinal cord injury. Surg Neurol 6:35–38.
- 4. Majkowski J. 1983. Drug effects on after discharge and seizure threshold in lissencephalic ferrets: an epilepsy model for drug evaluation. Epilepsia 24:678–685. https://doi.org/10.1111/j.1528-1157.1983.tb04630.x.
- Raju SV, Kim H, Byzek SA, Tang LP, Trombley JE, Jackson P, Rasmussen L, Wells JM, Libby EF, Dohm E, Winter L, Samuel SL, Zinn KR, Blalock JE, Schoeb TR, Dransfield MT, Rowe SM. 2016. A ferret model of COPDrelated chronic bronchitis. JCI Insight 1:e87536. https://doi.org/10.1172/ jci.insight.87536.
- McCarron A, Donnelley M, Parsons D. 2018. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res 19:54. https://doi.org/10 .1186/s12931-018-0750-y.
- Aizawa K, Liu C, Veeramachaneni S, Hu KQ, Smith DE, Wang XD. 2013. Development of ferret as a human lung cancer model by injecting 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Lung Cancer 82:390–396. https://doi.org/10.1016/j.lungcan.2013.09.012.
- Sukhinin DI, Engel AK, Manger P, Hilgetag CC. 2016. Building the ferretome. Front Neuroinform 10:16. https://doi.org/10.3389/fninf.2016.00016.
- 9. Li Z, Sun X, Chen J, Liu X, Wisely SM, Zhou Q, Renard JP, Leno GH,

Engelhardt JF. 2006. Cloned ferrets produced by somatic cell nuclear transfer. Dev Biol 293:439-448. https://doi.org/10.1016/j.ydbio.2006.02 .016.

- Sun X, Yan Z, Yi Y, Li Z, Lei D, Rogers CS, Chen J, Zhang Y, Welsh MJ, Leno GH, Engelhardt JF. 2008. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J Clin Invest 118:1578–1583. https:// doi.org/10.1172/JCI34599.
- Kou Z, Wu Q, Kou X, Yin C, Wang H, Zuo Z, Zhuo Y, Chen A, Gao S, Wang X. 2015. CRISPR/Cas9-mediated genome engineering of the ferret. Cell Res 25:1372–1375. https://doi.org/10.1038/cr.2015.130.
- Huber VC, McCullers JA. 2006. Live attenuated influenza vaccine is safe and immunogenic in immunocompromised ferrets. J Infect Dis 193: 677–684. https://doi.org/10.1086/500247.
- Paquette SG, Banner D, Huang SS, Almansa R, Leon A, Xu L, Bartoszko J, Kelvin DJ, Kelvin AA. 2015. Influenza transmission in the mother-infant dyad leads to severe disease, mammary gland infection, and pathogenesis by regulating host responses. PLoS Pathog 11:e1005173. https://doi .org/10.1371/journal.ppat.1005173.
- Paquette SG, Huang SSH, Banner D, Xu L, León A, Kelvin AA, Kelvin DJ. 2014. Impaired heterologous immunity in aged ferrets during sequential influenza A H1N1 infection. Virology 464–465:177–183. https://doi.org/ 10.1016/j.virol.2014.07.013.
- Peng X, Alföldi J, Gori K, Eisfeld AJ, Tyler SR, Tisoncik-Go J, Brawand D, Law GL, Skunca N, Hatta M, Gasper DJ, Kelly SM, Chang J, Thomas MJ, Johnson J, Berlin AM, Lara M, Russell P, Swofford R, Turner-Maier

J, Young S, Hourlier T, Aken B, Searle S, Sun X, Yi Y, Suresh M, Tumpey TM, Siepel A, Wisely SM, Dessimoz C, Kawaoka Y, Birren BW, Lindblad-Toh K, Di Palma F, Engelhardt JF, Palermo RE, Katze MG. 2014. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease. Nat Biotechnol 32:1250–1255. https://doi.org/10.1038/nbt.3079.

- Bruder CE, Yao S, Larson F, Camp JV, Tapp R, McBrayer A, Powers N, Granda WV, Jonsson CB. 2010. Transcriptome sequencing and development of an expression microarray platform for the domestic ferret. BMC Genomics 11:251. https://doi.org/10.1186/1471-2164-11-251.
- Tisoncik-Go J, Gasper DJ, Kyle JE, Eisfeld AJ, Selinger C, Hatta M, Morrison J, Korth MJ, Zink EM, Kim YM, Schepmoes AA, Nicora CD, Purvine SO, Weitz KK, Peng X, Green RR, Tilton SC, Webb-Robertson BJ, Waters KM, Metz TO, Smith RD, Kawaoka Y, Suresh M, Josset L, Katze MG. 2016. Integrated omics analysis of pathogenic host responses during pandemic H1N1 influenza virus infection: the crucial role of lipid metabolism. Cell Host Microbe 19:254–266. https://doi.org/10.1016/j.chom.2016.01.002.
- DiPiazza A, Richards K, Batarse F, Lockard L, Zeng H, García-Sastre A, Albrecht RA, Sant AJ. 2016. Flow Cytometric and cytokine ELISPOT approaches to characterize the cell-mediated immune response in ferrets following influenza virus Infection. J Virol 90:7991–8004. https://doi .org/10.1128/JVI.01001-16.
- Rutigliano JA, Doherty PC, Franks J, Morris MY, Reynolds C, Thomas PG. 2008. Screening monoclonal antibodies for cross-reactivity in the ferret model of influenza infection. J Immunol Methods 336:71–77. https://doi .org/10.1016/j.jim.2008.04.003.
- Kirchenbaum GA, Ross TM. 2017. Generation of monoclonal antibodies against immunoglobulin proteins of the domestic ferret (Mustela putorius furo). J Immunol Res 2017:5874572. https://doi.org/10.1155/2017/ 5874572.
- Kirchenbaum GA, Allen JD, Layman TS, Sautto GA, Ross TM. 2017. Infection of ferrets with influenza virus elicits a light chain-biased antibody response against hemagglutinin. J Immunol 199:3798–3807. https://doi.org/10.4049/jimmunol.1701174.
- Cherukuri A, Servat E, Woo J. 2012. Vaccine-specific antibody secreting cells are a robust early marker of LAIV-induced B-cell response in ferrets. Vaccine 30:237–246. https://doi.org/10.1016/j.vaccine.2011.11.001.
- Ellebedy AH, Fabrizio TP, Kayali G, Oguin TH III, Brown SA, Rehg J, Thomas PG, Webby RJ. 2010. Contemporary seasonal influenza A (H1N1) virus infection primes for a more robust response to split inactivated pandemic influenza A (H1N1) Virus vaccination in ferrets. Clin Vaccine Immunol 17:1998–2006. https://doi.org/10.1128/CVI.00247-10.
- Erbelding EJ, Post D, Stemmy E, Roberts PC, Augustine AD, Ferguson S, Paules CI, Graham BS, Fauci AS. 2018. A universal influenza vaccine: the strategic plan for the National Institute of Allergy and Infectious Diseases. J Infect Dis. https://doi.org/10.1093/infdis/jiy103.
- 25. Li Y, Myers JL, Bostick DL, Sullivan CB, Madara J, Linderman SL, Liu Q, Carter DM, Wrammert J, Esposito S, Principi N, Plotkin JB, Ross TM, Ahmed R, Wilson PC, Hensley SE. 2013. Immune history shapes specificity of pandemic H1N1 influenza antibody responses. J Exp Med 210: 1493–1500. https://doi.org/10.1084/jem.20130212.
- Smith W, Andrewes CH, Laidlaw PP. 1933. A virus obtained from influenza patients. Lancet 222:66–68. https://doi.org/10.1016/S0140-6736 (00)78541-2.
- 27. Prince GA, Porter DD. 1976. The pathogenesis of respiratory syncytial virus infection in infant ferrets. Am J Pathol 82:339–352.
- Stittelaar KJ, de Waal L, van Amerongen G, Veldhuis Kroeze EJ, Fraaij PL, van Baalen CA, van Kampen JJ, van der Vries E, Osterhaus AD, de Swart RL. 2016. Ferrets as a novel animal model for studying human respiratory syncytial virus infections in immunocompetent and immunocompromised hosts. Viruses 8:168. https://doi.org/10.3390/v8060168.
- MacPhail M, Schickli JH, Tang RS, Kaur J, Robinson C, Fouchier RA, Osterhaus AD, Spaete RR, Haller AA. 2004. Identification of small-animal and primate models for evaluation of vaccine candidates for human metapneumovirus (hMPV) and implications for hMPV vaccine design. J Gen Virol 85:1655–1663. https://doi.org/10.1099/vir.0.79805-0.

- Thormar H, Mehta PD, Brown HR. 1978. Comparison of wild-type and subacute sclerosing panencephalitis strains of measles virus. Neurovirulence in ferrets and biological properties in cell cultures. J Exp Med 148:674–691. https://doi.org/10.1084/jem.148.3.674.
- Parker L, Gilliland SM, Minor P, Schepelmann S. 2013. Assessment of the ferret as an in vivo model for mumps virus infection. J Gen Virol 94:1200–1205. https://doi.org/10.1099/vir.0.052449-0.
- Xu P, Huang Z, Gao X, Michel FJ, Hirsch G, Hogan RJ, Sakamoto K, Ho W, Wu J, He B. 2013. Infection of mice, ferrets, and rhesus macaques with a clinical mumps virus isolate. J Virol 87:8158–8168. https://doi.org/10 .1128/JVI.01028-13.
- Mascoli CC, Gower TA, Capilupo FA, Metzgar DP. 1976. Further studies on the neonatal ferret model of infection and immunity to and attenuation of human parainfluenza viruses. Dev Biol Stand 33:384–390.
- Rarey KE, DeLacure MA, Sandridge SA, Small PA, Jr. 1987. Effect of upper respiratory infection on hearing in the ferret model. Am J Otolaryngol 8:161–170. https://doi.org/10.1016/S0196-0709(87)80040-6.
- Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, Van Amerongen G, Peiris JS, Lim W, Osterhaus AD. 2003. Virology: SARS virus infection of cats and ferrets. Nature 425:915. https://doi.org/10.1038/ 425915a.
- Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern JA, Green D, Hancock TJ, Chan YP, Hickey AC, Dimitrov DS, Wang LF, Broder CC. 2009. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathog 5:e1000642. https://doi.org/10.1371/journal.ppat .1000642.
- Cross RW, Mire CE, Borisevich V, Geisbert JB, Fenton KA, Geisbert TW. 2016. The domestic ferret (Mustela putorius furo) as a lethal infection model for 3 species of Ebolavirus. J Infect Dis 214:565–569. https://doi .org/10.1093/infdis/jiw209.
- Francis T, Magill TP. 1935. Rift Valley fever: a report of three cases of laboratory infection and the experimental transmission of the disease to ferrets. J Exp Med 62:433–448. https://doi.org/10.1084/jem.62.3.433.
- McCullers JA, McAuley JL, Browall S, Iverson AR, Boyd KL, Henriques Normark B. 2010. Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J Infect Dis 202:1287–1295. https://doi.org/10.1086/656333.
- Sanford BA, Ramsay MA. 1989. In vivo localization of Staphylococcus aureus in nasal tissues of healthy and influenza A virus-infected ferrets. Proc Soc Exp Biol Med 191:163–169. https://doi.org/10.3181/00379727 -191-42903.
- Lee A. 1995. Helicobacter infections in laboratory animals: a model for gastric neoplasias? Ann Med 27:575–582. https://doi.org/10.3109/0785 3899509002472.
- McCallan L, Corbett D, Andersen PL, Aagaard C, McMurray D, Barry C, Thompson S, Strain S, McNair J. 2011. A new experimental infection model in ferrets based on aerosolised Mycobacterium bovis. Vet Med Int 2011;981410. https://doi.org/10.4061/2011/981410.
- Dei-Cas E, Brun-Pascaud M, Bille-Hansen V, Allaert A, Aliouat EM. 1998. Animal models of pneumocystosis. FEMS Immunol Med Microbiol 22: 163–168. https://doi.org/10.1111/j.1574-695X.1998.tb01201.x.
- Vidaña B, Majó N, Pérez M, Montoya M, Martorell J, Martínez J. 2014. Immune system cells in healthy ferrets: an immunohistochemical study. Vet Pathol 51:775–786. https://doi.org/10.1177/0300985813502815.
- Pillet S, Kobasa D, Meunier I, Gray M, Laddy D, Weiner DB, von Messling V, Kobinger GP. 2011. Cellular immune response in the presence of protective antibody levels correlates with protection against 1918 influenza in ferrets. Vaccine 29:6793–6801. https://doi.org/10.1016/j.vaccine .2010.12.059.
- 46. Cheng X, Zengel JR, Suguitan AL, Jr., Xu Q, Wang W, Lin J, Jin H. 2013. Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets. J Infect Dis 208:594–602. https://doi .org/10.1093/infdis/jit207.