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Abstract.—The Ornstein–Uhlenbeck (OU) model is widely used in comparative phylogenetic analyses to study the evolution
of quantitative traits. It has been applied to various purposes, including the estimation of the strength of selection or
ancestral traits, inferring the existence of several selective regimes, or accounting for phylogenetic correlation in regression
analyses. Most programs implementing statistical inference under the OU model have resorted to maximum-likelihood
(ML) inference until the recent advent of Bayesian methods. A series of issues have been noted for ML inference using
the OU model, including parameter nonidentifiability. How these problems translate to a Bayesian framework has not
been studied much to date and is the focus of the present article. In particular, I aim to assess the impact of the choice
of priors on parameter estimates. I show that complex interactions between parameters may cause the priors for virtually
all parameters to impact inference in sometimes unexpected ways, whatever the purpose of inference. I specifically draw
attention to the difficulty of setting the prior for the selection strength parameter, a task to be undertaken with much caution.
I particularly address investigators who do not have precise prior information, by highlighting the fact that the effect of the
prior for one parameter is often only visible through its impact on the estimate of another parameter. Finally, I propose a new
parameterization of the OU model that can be helpful when prior information about the parameters is not available. [Bayesian
inference; Brownian motion; Ornstein–Uhlenbeck model; phenotypic evolution; phylogenetic comparative methods; prior
distribution; quantitative trait evolution.]

Phylogenetic comparative methods (PCMs) aim to ana-
lyze data sets of species traits in a phylogenetic frame-
work. They are used for various purposes, including
detecting selection (e.g., Martins 1994; Butler and King
2004; Ingram and Mahler 2013), measuring the rate of
trait evolution (e.g., O’Meara et al. 2006; Revell and
Harmon 2008; Revell and Collar 2009; Eastman et al. 2011;
Jones et al. 2015; Martin 2016), estimating ancestral traits
(e.g., Martins and Hansen 1997; Bokma 2002; Paradis
et al. 2004; Harmon et al. 2008; Lemey et al. 2010; Revell
2012; Landis et al. 2013; Elliot and Mooers 2014; Kratsch
and McHardy 2014; Meseguer et al. 2018), control for the
phylogenetic codependency of multispecies data (e.g.,
Felsenstein 1985; Grafen 1989), or estimate the impact of
a covariate on a trait (e.g., Davis et al. 2012; Gohli and
Voje 2016; Solbakken et al. 2017; Lattenkamp et al. 2021).

The first model to be considered in PCMs was
Brownian motion (BM) (Cavalli-Sforza and Edwards
1967; Felsenstein 1973), a model assuming that traits
evolve in an undirected manner, at a speed governed
by a rate parameter. Then, the Ornstein–Uhlenbeck
(OU) model has been used as a model of stabilizing
selection and drift (Lande 1976; Hansen and Martins
1996; Felsenstein 1988). Under the OU model, traits are
deterministically attracted towards a selective optimum,
at a speed determined by a selection strength parameter.
Stochastic variation around this selection-driven traject-
ory follows a Brownian model (Hansen and Martins
1996). BM is therefore a limiting case of the OU
model when there is no selection. A notable difference

between the OU and Brownian models is that under the
OU model, the imprint of shared evolutionary history
on species traits is progressively erased due to the
convergent effect of selection (Hansen and Martins 1996).

The Brownian and OU models have burgeoned
into a number of extensions, including models with
heterogeneous evolutionary rates (e.g., O’Meara et al.
2006; Lemey et al. 2010; Eastman et al. 2011), early-
burst models of adapative radiation (Harmon et al. 2010)
(see also Blomberg et al. 2003; Freckleton and Harvey
2006), models of punctuated evolution (e.g., Bokma 2002;
Uyeda et al. 2011; Landis et al. 2013; Elliot and Mooers
2014), or multivariate models (e.g., Hansen and Martins
1996; Revell and Harmon 2008; Revell and Collar 2009).
Also, recognizing that selection is a dynamic process,
the OU model has been extended to accommodate
multiple selective optima. This model, known as the
Hansen model (Hansen 1997), assumes various selective
regimes across the phylogeny. The Hansen model has
been used for testing a priori evolutionary hypotheses
characterized by specific “paintings” of selective regimes
on the tree (e.g., Hansen 1997; Butler and King 2004), or
for estimating the location of selective regimes on the
tree (e.g., Ingram and Mahler 2013; Uyeda and Harmon
2014).

A number of issues have been reported in maximum-
likelihood (ML) inference with the OU model (see
notably Ané 2008; Boettiger et al. 2012; Ho and Ané
2013, 2014; Cooper et al. 2016). In particular, Ho and
Ané (2014) reported that the selective optimum and the
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ancestral trait at the root of the tree are not separately
identifiable (i.e., infinitely many pairs of values for
these parameters have the same likelihood, impeding
their joint estimation). This situation generalizes, under
some conditions, to the Hansen model with multiple
selective optima. Also, when the estimated value of
selection strength is close to 0, the location of the selective
optimum or the number of selective regimes cannot be
estimated (Ho and Ané 2014). Ho and Ané (2014) stress
that these issues should not be restricted to ML inference
and also concern Bayesian inference.

In recent years, a number of programs have arisen
that extend statistical comparative biology to Bayesian
inference, in particular, the R packages bayou (Uyeda
and Harmon 2014), POUMM (Mitov and Stadler 2017),
and the program RevBayes (Höhna et al. 2016). The
models used in Bayesian inference are characterized by
the same probabilistic models as their ML analogs, but
notably differ in their ability to include subjective prior
information. There is thus the potential for the prior to
have a strong influence on the results in case the data
are not very informative, or in case parameters are not
separately identifiable, as is the case for the OU model
(Ho and Ané 2013, 2014). Although it has been noticed
that the prior for the number of selective regimes in
the Hansen model could strongly influence the results
(Uyeda and Harmon 2014), to this day, little is known
about the impact of the prior when fitting the OU model.

This article studies how some of the problems
identified in ML inference with the OU and Hansen
models manifest themselves in Bayesian inference. Of
particular interest, are the potential consequences of
the nonidentifiability (or weak identifiability) of some
parameters (the selective optimum and the initial state at
the root on the one hand, and the selection strength and
the rate of evolution on the other hand) in the case where
prior information is vague. Nonidentifiability is shown
to induce correlation among parameters in the posterior,
so that the prior for one parameter may strongly impact
the posterior of another. It is important, in that case,
that investigators are aware that part of the difference
between the posterior and the prior of a parameter is
due to the prior of another parameter. Furthermore, the
parameter for the strength of selection (�) plays a central
role, as it interacts with all other parameters. All conclu-
sions are therefore conditional on the correct estimation
of �, and the prior for � should be set with the greatest
care. I emphasize that, in the absence of precise prior
information about � and/or the rate of evolution, setting
this prior is not straightforward. A reparameterization of
the OU model in terms of only identifiable parameters
is proposed, which I hope makes it easier to set priors
when no prior information is available.

OVERVIEW OF MODELS

OU Model
Consider a rooted ultrametric tree T and a set of

observed tip traits Y (one value per species). Under the

OU model, Y is multivariate normally distributed, with
the same expected trait value for all species:

MOU =�
(

1−e−�tH
)
+Yre−�tH , (1)

where � (in unit of traits) is the selective optimum, Yr
is the root trait, � is the strength of selection (in unit
of time−1), and tH (in unit of time) is the tree height.
Thus, under the OU model, expected trait values are
deterministically attracted from the initial value Yr to the
optimum � as time passes. The stronger the selection, the
faster the trait values are expected to approach �.

The variance–covariance structure of the OU distribu-
tion is given by the matrix:

�OU =�2C(T,�), (2)

where the stochastic rate �2 (in unit of squared
trait/time) scales the amount of stochasticity about
MOU. The matrix C(T,�) determines the expected
covariation between the trait values of the different
species, given the phylogeny and � (see Hansen 1997,
and Appendix 1 of the Supplementary material available
on Dryad at https://doi.org/10.5061/dryad.vdncjsxrc
for details). In particular, C(T,�) assumes a certain
degree of phylogenetic signal, that is, the more recent
the tMRCA of two species, the more similar their trait
values are expected to be. The value of � then determines
how quickly the phylogenetic signal is erased by the
homogenizing effect of selection: the higher �, the
quicker the phylogenetic signal is lost.

We now define two limiting forms of the OU model:
BM, which is the OU model with �→0, and the white-
noise (WN) model, with �→+∞ (see Cooper et al. 2016).

Under BM, without selection, the expected trait value
of all current species given Yr stays constant as time
passes: MOU =Yr. Also, the phylogenetic signal of traits
reaches a maximum as compared to higher values of �.

The other extreme is the WN model, with mean MOU =
�: selection is so fast that all trait values are expected
to be almost immediately located around the optimum.
The phylogenetic signal gets down to zero, meaning that
the phylogenetic relationships among species no longer
influence the trait values. The trait value of a species
is thus independent from the trait values of the other
species and varies around � with variance �= �2

2�
(see

Appendix 1 of the Supplementary material available on
Dryad).

See Appendix 1 of the Supplementary material avail-
able on Dryad for the expression of C(T,�) and more
details on the OU model.

Hansen Model
Hansen’s model (Hansen 1997) is identical to the OU

model, except that � is allowed to vary among branches,
which changes the mean of trait Yi of species i into:

MHi =Yre−�tH +ki,

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
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where ki is a function of �, T, and the set of optima along
the path in the tree from the root to species i.

As for the OU model, in the limit of �→0, the Hansen
model converges to BM, with MHi =Yr for all i. In the
limit of �→+∞, it converges to a WN model with
different means for the different regimes: MHi =�i, with
�i the optimum for species i. The variance–covariance
structure of the Hansen model is identical to the OU
model, with the same implications about the impact of �
on the amount of phylogenetic signal. See Appendix 1 of
the Supplementary material available on Dryad for the
expression of ki and more details on Hansen’s model.

MEASURING THE REALIZED EFFECT OF SELECTION

In the previous section, we have seen how the BM and
WN models are limiting forms of the OU model that
arise as �→0 or �→+∞, respectively. However, these
models are only extremes of a continuum along which
the importance of selection in determining the observed
trait values increases.

Throughout this article, I will use the metric � (slightly
modified from Hansen et al. 2008) as a measure of the
realized effect of selection in determining observed trait
values, for a given OU process:

�(tH)=1− VOU(tH)
VBM(tH)

=1− 1−exp(−2�tH)
2�tH

, (3)

where VOU(tH) is the expected variance of the OU
process at the time of sampling (i.e., at time tH above
the root) and where VBM(tH)≥VOU(tH) is the variance
that would be expected under BM (i.e., if � was 0). See
Appendix 2 of the Supplementary material available on
Dryad for details.

The metric � thus represents the percent decrease in
trait variance caused by selection over the study period
(tH), as compared to the variance expected under pure
drift (i.e., under BM). For instance, �=0.25 means that
selection has reduced the variance of traits by 25% over
period tH .

Notice that the fact that � depends only on the product
�tH implies that it measures the realized effect of selec-
tion (Cressler et al. (2015) called �tH the “opportunity
for selection”). In a case where � is high, but the
process has run for a very small period of time (very
low tH), � will be low, reflecting the fact that selection
(although it is strong) has not had time to substantially
influence the evolution of traits. Conversely, � may be
low and tH very high, in which case � is high because
the accumulation of slow selection over a large period
of time did influence substantially the evolution of
traits. Thus, � describes the net macroevolutionary effect
produced by the accumulation of microevolutionary
selective effects (the magnitude of which is described
by �), over a given period of time (tH). Figure 1 shows
the relationship between �, �, and tH and illustrates how
the value of � reflects the shape of trait evolutionary
trajectories. Further notice that � is a direct indicator of
how close an OU model actually is from the BM and

WN models, statistically, with a high (respectively low)
value of � indicating closeness to a WN (respectively BM)
model (see Appendix 2 of the Supplementary material
available on Dryad for details).

In sum, � measures the realized impact of selection,
given the length tH that the process has run, while �
measures the absolute strength of selection, independ-
ently of tH .

Another interesting transform of � is the phylogenetic
half-life t1/2 = ln2/�, which represents the expected time
needed for a trait to cover half the distance between
the initial value Yr, and the selective optimum �.
Phylogenetic half-life, like �, measures the absolute
magnitude of selection but is probably easier to interpret.
Some authors have preferred to scale t1/2 in units of
tree heights (e.g., Hansen et al. 2008; Ané et al. 2017;
Cooper et al. 2016), in which case, like �, it depends on
the product �tH and is then a measure of the realized
effect of selection over time tH .

I elaborate in the discussion on the pros and cons of
interpreting �, t1/2, or �. Meanwhile, I use � to interpret
the value of � in terms of the realized impact of selection,
given some tH . In particular, this article aims to illustrate
how the prior assigned to � may translate into a very
stringent prior for �, in favor of either BM (low �) or
WN (high �) processes, and how such stringent priors
may impact the estimation of the other parameters, as a
result of complex interactions among parameters.

INTERACTIONS AMONG THE PARAMETERS OF THE OU MODEL

The probability distribution of trait values (i.e., the
likelihood) under the OU model is characterized by two
ridges. The occurrence of a ridge in a likelihood function
implies that the data are equally likely for infinitely
numerous combinations of values of a set of parameters,
implying that the values of the parameters cannot be
separately identified.

This happens the first time for the parameters � and
Yr, which cannot be separately identified under the OU
model when only contemporaneous tip trait values are
observed (Ho and Ané 2014). Specifically, when tips are
contemporaneous, the OU likelihood is invariant along
the following ridge in the �−Yr plane (see Fig. 2a,b):

�(1−exp(−�tH))+Yr exp(−�tH)=MOU,

where MOU is any value considered for the expected
value of tip traits. Indeed, there are infinitely numerous
pairs of values of � and Yr that induce the same value of
MOU (hence not changing the value of the likelihood),
for a given value of �tH (hence for a given value of �).

Nonidentifiability of parameters can be partially
remedied by resorting to Bayesian inference, which
allows including additional information about para-
meter values by specifying prior distributions, thus
limiting the range of plausible values for parameters. For
instance, specifying priors for Yr and � will constrain
inference to remain within a given, plausible part of
the ridge represented in Figure 2. Figure 2a shows that,

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
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FIGURE 1. a) Trait trajectories for a three-tip tree for nine different combinations of values of � and tH . b) Value of � as a function of � and
tH . The nine points correspond to the nine trajectories in (a). Note that the analysis of a given data set with a given tH occurs along a horizontal
line of this graph. c) Priors for � corresponding to a uniform prior for � from 0 to 69, when tH =1 or tH =0.1. The relative heights of the different
bars match the relative distances between the � isoclines in b), along the lines tH =1 or tH =0.1 (represented by dashed lines in b).



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:35 30/9/2022 Sysbio-OP-SYSB220036.tex] Page: 1528 1524–1540

1528 SYSTEMATIC BIOLOGY VOL. 71

FIGURE 2. Example ridges in the OU likelihood. Gray shades represent the value of the log-likelihood, for a data set simulated with �=0.69,
of which the trait values were scaled to mean 0 and unit variance. Density plots with solid lines in the margins represent the priors. The darker
areas superimposed on the likelihood surface represent the 95% highest posterior density region of the joint posterior of � and Yr (in a and b) or
of � and � (in c and d). Density plots with dashed lines in the margins represent the marginal posteriors. The posteriors were approximated by
numerical integration. Black dots represent the true values of the parameters used to simulate the data set. a) and b) represent the �−Yr ridge,
with � fixed to its true value and with �=0.2 (a) or �=0.8 (b). In both cases, the priors for � and Yr are centered normal distributions with sd =
5. The thick black line is the top of the ridge, of equation �(1−exp(−�tH ))+Yr exp(−�tH )=M̂OU, with M̂OU the ML estimator of the mean of tip
trait values (equal to 0 in this example, since trait values were scaled to 0 mean). In a), because � is low, the ridge has a highly negative slope.
As a consequence, the plausible range of �, as constrained by the � prior, corresponds to a narrow interval of high likelihood on the scale of Yr ,
inducing a marginal posterior for Yr that is narrower than its prior. In b), � is high and the converse happens. c) and d) The �−� ridge, with �
and Yr fixed to their true values is represented. The prior for � is in both cases an exponential distribution with mean 10. The prior for � is an
exponential distribution with mean 10 in c) and with mean 1 in d). The thick black line has equation �=�2/(2�), with � the stationary variance of
the process, set to 1 (the sample variance of the tip trait values after scaling). As � grows, this line tends to be the top of the ridge. The difference
with the �−Yr ridge is that the top of this ridge is not completely flat. However, as one moves towards higher � values, it gets ever flatter. In
d), the prior for � restricts inference to smaller values of � than in c). As a consequence, the a priori smaller plausible values of � correspond to
a region around the likelihood ridge that matches smaller � values. This has the effect of shifting the marginal posterior of � towards smaller
values. In this example, the true value of � would even be excluded from the 95% credible interval, because of the prior for �.

when � is low, constraining the range of � by way of a
prior may constrain the posterior range of Yr. In this
case, the investigator will rightfully deduce that the
posterior of Yr is narrower than its prior because the data
carries information about Yr. However, this conclusion
is conditional on: 1) � (equivalently �) being correctly
estimated and 2) the prior for �. Indeed, if� is estimated to
be high (e.g., because of the prior for �, see next section),
the estimated shape of the ridge would be more like that
of Figure 2b, in which case it is the prior for Yr that

constrains the width of the posterior of �. Also, if one
had chosen a wider prior for Yr, the posterior of � would
have been wider. This shows how the nonidentifiability
of Yr and � under the OU model makes the conclusions
of Bayesian inference highly dependent on the relative
widths of the prior distributions of Yr and �, and on the
estimate of �.

A second ridge occurs in the �−� plane. The difference
with the �−Yr ridge is that the top of the �−� ridge
is not completely flat: it seems that there is always one
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single pair of values of � and � that maximizes the
likelihood, for any values of the other parameters (� and
Yr). However, as � increases, the top of the ridge becomes
increasingly flat, and � and � become less and less
separately identifiable. Indeed, we have seen above that
as � increases, the OU likelihood progressively becomes
similar to the WN likelihood, where the expected value
of tip traits is MOU =�, and the variance of tip traits is
�=�2/(2�). Thus, if � is estimated to be sufficiently high
that the WN model can be substituted for the OU model,
any two pairs of values of � and � yielding the same value
of�are almost equally likely. This is visible in Figure 2c,d,
where we observe a ridge in the �−� plane, of equation:

�2 =2��.

The existence of this second ridge implies that the
estimates of � and � may be correlated, which provides
grounds for the priors of one of these parameters to
impact the estimate of the other parameter. For instance,
Figure 2c,d shows the posteriors of � and � obtained with
a wider prior for � (with mean 10) and for a narrower
prior (with mean 1). We can see that the narrower prior
for � induces a narrower posterior, not only for � but also
for �. This emphasizes that the choice of prior for � may
impact the estimate of � or vice versa.

In summary, the mathematical structure of the OU
model is such that the estimates of �, �, and Yr are highly
conditional on the value of �, and on their priors. If the
data are very informative, the estimate of � will depend
little on the priors. But if the data are not so informative,
or if some very stringent priors are used, the outcome of
the analysis will be very dependent on the priors.

SETTING A PRIOR FOR THE SELECTION STRENGTH

In Bayesian inference, investigators must specify prior
distributions for all parameters. With the OU or Hansen
models, the choice of prior for � is very important, as it
may influence the estimation of all other parameters (as
detailed in the previous section), yet this is anything but
an intuitive task.

When an investigator undertakes the task to set a prior,
they may be in one of two cases: 1) they have rather
precise biological information about the value of the
parameter, 2) they have rather vague information, or
no information at all. The first situation is less prone
to errors: the investigator will choose a narrow prior
which covers the a priori credible zone adequately. In the
second situation, the investigator mainly wants the prior
to reflect their large uncertainty about the parameter,
which is not as straightforward as it seems.

To do so, the investigator’s first instinct may be to
use a flat prior that covers all the plausible values of
the parameter, for any natural system similar to that
under study. It is even often the case that the investigator
extends the range of the prior far beyond plausible
values, confident that the flatness of the prior guarantees
that the prior will have no effect. This was my first instinct

when I first came into contact with the OU model and I
set an exponential prior for � with a very large mean.

As an example of a flat prior for �, let us consider a
uniform prior distribution:

�∼Uniform
(
0,c ).

Let us assume branch lengths in our phylogeny are
in Ma, so that � is in Ma−1. We want to decide on an
upper bound c so that �∈ [0,c] covers the whole range
of plausible values of � that we may expect in nature. It
is hard to interpret biologically the value of �, so let us
consider instead the phylogenetic half-time t1/2 = ln2/�
(see Hansen 1997; Cooper et al. 2016), which represents
the time necessary for the process to cover half the way
between Yr and �. We are looking for a small value
t1/2 = ln2/c that represents strong-enough selection. By
browsing the literature, we realize that there certainly
are cases (for some specific traits and organisms) where
rapid selection has been shown to change significantly
the value of a trait over, say, 10,000 years. So let us choose
t1/2 =0.01 Ma, so that c= ln2/0.01≈69 Ma−1 represents
a high-enough value of �.

Now, if we look at this prior on the scale of � for trees of
height tH =1 or tH =0.1 (see Fig. 1c), we see that in both
cases the prior for � is not flat at all and favors WN-like
models a lot. The difference between the shape of the
prior for the two tree heights further illustrates that the
same prior for � for data sets with different tH translates
into different priors for �: the smaller tH is, the more the
prior favors small values of � (i.e., more BM models).

Also notice that, as shown in Appendix 3 of the
Supplementary material available on Dryad, setting a
flat prior on t1/2 instead of � may well result in a very
Brownian prior or very WN prior.

In conclusion, the interpretation of a vague prior for
the strength of selection highly depends on the chosen
scale (�, t1/2, or �). We therefore need to decide whether
we are more comfortable interpreting a prior for 1)
selection’s absolute strength (�), 2) the lag time for
selection to have a certain effect (t1/2), 3) the realized
effect of selection in shaping trait values (�), or 4)
yet another meaningful transform of �. I discuss these
options in the discussion, but for now, it is important
to notice that if we do not choose a prior that blends
relatively evenly the different values of �, we may end
up with a prior that favors overwhelmingly one of the
two extremes of the continuum: BM or WN processes. A
nonexhaustive review of papers fitting the OU or Hansen
models using Bayesian inference shows that the priors
assigned to � range from very BM processes to very
WN processes, corresponding to very different a priori
assumptions about the role of selection in shaping trait
values. These priors are represented on the scale of � in
Figure 3. The two most extreme priors are that of Martin
(2016), very Brownian with 95% of the prior density
below �=0.12 (hereafter the BM prior) and that of Uyeda
et al. (2017), very WN with 95% of the prior density
above �=0.98 (hereafter the WN prior). Note that these
two studies used the same prior for � (a half-Cauchy
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FIGURE 3. A set of five priors for � found in the literature, translated into priors for �. These priors can be observed to range from favoring a
lot low values of � (Martin 2016) or high values of � (e.g., Uyeda et al. 2017).

distribution with scale 1), but for very different tree
heights, which translates into very different priors for �.
Martin (2016) analyzed a tree with 42 taxa (comparable
to the simulations of this study) while Uyeda et al. (2017)
studied a tree with 857 taxa, which is probably much less
sensitive to the choice of prior. Note that the investigators
of these studies have probably based their choice of prior
on sensible considerations and I only want here to point
out that a wide variety of priors are used, when looking
on the scale of �.

SIMULATION STUDY

In order to investigate the impact of the choice of
prior for �, I simulated data sets under various processes
and analyzed them using one or the other of the two
extreme priors for �: the BM prior of Martin (2016), and
the WN prior of Uyeda et al. (2017). Notice that the goal
of these analyses is to see the cascading effects of the �
prior to the estimates of other parameters. To this aim,
I deliberately choose the priors for the other parameters
to be sufficiently wide around their known true value to
show the effects of among-parameter correlations. It is
understood that the priors of the present analysis are not
meant to represent good practice.

Main Analytical Setting
Trees of height 1 were simulated with n=10, 20, or 40

tips according to a Yule process with a speciation rate
equal to ln(n). Twenty replicate trees were simulated for
each value of n (60 trees in total). Continuous traits were
simulated along each tree according to three processes:

• Brownian motion, with Yr =0 and �2 =1

• a WN-like model with �=1 and Yr =0, with �=5
(i.e., �	0.90 for a tree of height 1) and �2 =1

• a Hansen model with two selective regimes, one
for each of the two descendant lineages of the
root, with �1 =−1 and �2 =1, Yr =0, �=5, and
�2 =1. So that we do not end up with selection
regimes applying to a low number of lineages, the
simulated trees were conditioned on having at least
3, 5, and 10 tips on either side of the root for n = 10,
20, and 40, respectively.

In total, 180 data sets were generated (3 tree sizes × 3
sets of trait values × 20 replicates). Simulated ancestral
trait values at internal nodes were recorded along with
tip trait values and the phylogeny.

The OU and Hansen models were fitted to the simu-
lated data sets with RevBayes (Höhna et al. 2016). The
RevBayes code used for these analyses is a modification
of RevBayes tutorials (May 2019a,b) and is available in
Appendix 4 of the Supplementary material available
on Dryad. Ancestral trait values for all nodes were
estimated.

Tip trait values were normalized to mean 0 and unit
variance before inference, so that the same priors could
be used for all analyses. The parameters in units of
traits (i.e., Yr and �) estimated from the normalized
data (scaled parameters) can be converted back to their
original unit (unscaled parameters) if needed. Scaled
parameters are useful for comparison with the prior,
because the scaled prior was the same for all analyses.
However, they cannot be compared to the true values
of parameters used in simulation, since these were
expressed in unscaled trait units (see Appendix 5 of
the Supplementary material available on Dryad for
detail). Figures show unscaled parameters, unless stated
otherwise. The unit of � is time−1 and is thus invariant
to trait scaling.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:35 30/9/2022 Sysbio-OP-SYSB220036.tex] Page: 1531 1524–1540

2022 POINTS OF VIEW 1531

For each analysis, one Monte Carlo Markov Chain
(MCMC) was run for 100,000 iterations after a burnin
period of 10,000. A second run was made for 60 analyses,
showing that different runs yielded qualitatively similar
results.

The effect of the prior for � on estimated parameters
was studied through two series of analyses.

1. An OU model was fitted to each data set with
the BM and the WN priors. This amounted to 360
analyses (180 data sets × 2 priors).

2. I proceeded as in 1., except the Hansen model was
fitted instead of the OU model.

Details on the priors can be found in Appendix 3 of the
Supplementary material available on Dryad, and the R
code and files for running the simulations and prepare
the RevBayes scripts are given in Appendix 4 of the
Supplementary material available on Dryad.

Additional Analyses
I assessed the sensitivity of the results of the OU ana-

lyses (point 1 above) with trees of 40 tips to three aspects
by rerunning these analyses changing one thing at a time.
Ancestral trait values were not estimated. First, trees
with 300 tips were simulated instead of 40 to investigate
a case where the likelihood may be very informative
and dominate the prior. Second, trees were simulated
under a birth–death model instead of a Yule model,
with a net diversification rate �−	= ln40 and a turnover
rate 	/�=0.9. Trees generated in this way have shorter
terminal branches than Yule trees, which may preserve
phylogenetic signal for higher values of �. The value of
	/� has been shown to have substantial effects in ML
parameter inference (Cooper et al. 2016). Third, a flatter
prior was considered for � (with mean 100 instead of
mean 10 in the main analyses), to determine if this could
impact the estimation of�, as suspected above (see Fig. 2).

RESULTS

All the results shown in the main text are for trees
with 40 tips. Results for trees with 10 or 20 tips are
qualitatively similar and can be found in Appendix 6 of
the Supplementary material available on Dryad, along
with a full report on MCMC mixing. The results of
the three additional analyses are given in Appendix 7
of the Supplementary material available on Dryad,
and mentioned where appropriate in the main text.
The posterior distributions for ancestral trait values are
qualitatively similar to those of Yr and can be found in
Appendix 8 of the Supplementary material available on
Dryad.

OU Model
Figure 4a shows that using one or the other prior

for � has an influence on the marginal posterior of this

parameter. For BM data, the posterior of � is equal to
the prior when using the BM prior, as the data do not
disagree with the prior. In contrast, with the WN prior,
the BM data have dragged the posterior of � towards
more Brownian values. With WN data, the marginal
posterior obtained with the BM prior is bimodal, with
one mode located around the true value �=5 and a
smaller mode located as the prior. This is indicative
of a conflict between the prior and the data. A slight
bimodality is also sometimes observed with the WN
prior, with one mode located around the true value, and
a smaller mode located as the prior. For Hansen data, the
phylogenetic signal produced by the two clades having
different selective optima is interpreted as evidence
for low selection. Consequently, the BM prior is not
contradicted by the data, producing a posterior identical
to the prior, while the posterior obtained with the WN
prior is located under much more Brownian values of �
than the prior.

In summary, the chosen prior had an influence on
the estimated value of �, for all types of data sets. This
provides ground for the marginal posteriors of the other
parameters to be influenced by the prior for �, through
the interactions among the parameters outlined above.

For BM and Hansen data, the marginal posterior
distribution of � is located in a region wherein the prior
appears flat, indicating that in these cases estimates of
� are likely driven by the data rather than by the prior.
This was however not necessarily the case for WN data,
for which we notice that the prior is more curved in the
range occupied by the posterior (Fig. 4b). This should
draw our attention, as it is possible that the prior for
� prevents the posterior from moving towards higher
values. Furthermore, Figure 5a shows that the values
of � and � are highly positively correlated when � is
roughly higher than 0.65 (i.e., log10(�)�0), which is
the manifestation of the weak identifiability of these
parameters outlined above. In this context, it is possible
that the prior for �, by excluding higher values, prevents
� from reaching higher values. The analyses shown in
Appendix 7 of the Supplementary material available
on Dryad with a flatter prior for � indicate that this
happened for a number of analyses: with the WN data
and the WN prior, the posterior of � has a fatter tail, and
the upper posterior mode for �, located close to the prior,
becomes dominant.

As predicted above and illustrated in Figure 2, the
posterior of � is similar to the prior whenever the
posterior of � is BM-like, while it is concentrated around
0, the sample mean of tip trait values, when � is estimated
to be higher (Fig. 4c). The inverse is true for the posterior
of Yr, which is estimated close to 0 when � is low, and
similar to its prior when � is high (Fig. 4d). This situation
extends to all ancestral trait values besides Yr, as shown
in Appendix 8 of the Supplementary material available
on Dryad.

Appendix 7 of the Supplementary material available
on Dryad shows that the influence of the prior for �
is lesser with trees of 300 tips and for WN data sets.
As these data sets are more informative than trees
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FIGURE 4. Marginal posteriors for trees with 40 tips when fitting an OU model. Dashed curves, posteriors with the BM prior. Solid curves,
posteriors with the WN prior. Shaded areas represent the priors. For �, the darker and lighter areas represent the BM and WN priors, respectively,
and the vertical line represents the value used in simulations. The posterior densities for five of the 20 analyses are represented (see Appendix 8
of the Supplementary material available on Dryad for graphs for all analyses). Different columns correspond to different simulation models.
The rows correspond to a) �, b) �, c) �, and d) Yr . Note that because the analyses were carried out on scaled trait values, both the priors and the
true values cannot be represented on the same graph for parameters in unit of traits (see Appendix 5 of the Supplementary material available
on Dryad). The scaled version of such parameters is plotted here for comparison with priors.
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FIGURE 5. Correlation among parameters in the joint posterior. Each plot was drawn by pooling the posterior samples of all analyses
conducted on data sets that were produced with the same simulation model. a) and c) Correlation of � and � for inference with the OU and
Hansen models, respectively. The curve �=�2/2�=1 is represented. b) Correlation of � and Yr for inference with the OU model. Only posterior
samples with intermediate � values (i.e., between 1 and 2) were included. The curve �

(
1−e−1.5)+Yre−1.5 =0 is represented. d) Correlation of Yr

and �̄ for inference with the OU model. �̄ is the average of � across branches. Only posterior samples with intermediate � values (i.e., between 1
and 2) were included. The curve �̄

(
1−e−1.5)+Yre−1.5 =0 is represented. Note that in the Hansen model, the formula of the expected relationship

between �̄ and Yr is not this curve, although in this case it comes close to it.
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with 40 tips, the true value is recovered regardless
of the prior for WN data. The estimates of the other
parameters also became less dependent on the prior, but
the correlations among parameters illustrated in Figure 5
due to nonidentifiability largely remain. For the trees
simulated under the birth–death model, the results are
overall similar to pure-birth trees, although we note that,
for WN data and the BM prior, the upper mode located
around the true value (in Fig. 4a) becomes much smaller.
With the WN prior, the upper mode located around
the prior altogether disappears. Both these effects are
likely due to the fact that birth–death trees, through their
having younger nodes, have favored the production of
trait data sets with more phylogenetic structure, which
is interpreted by the model as evidence for more BM
processes.

Hansen Model
The analyses with the Hansen model yielded results

that were overall similar to analyses with the OU model
(Fig. 6). In particular, the prior for � had a strong
influence on the results, with larger posterior values of �
with the WN prior (Fig. 6a). The main difference between
the two sets of analyses was logically observed with the
Hansen data sets. While the OU model accommodated
the difference in trait values between the two clades with
different regimes in Hansen data sets by invoking low
values of �, the Hansen model yielded larger posterior
values of �, especially with the WN prior. Such high
values of � are indeed more likely under the Hansen
model than under the OU model, because the former
can accommodate the observed phylogenetic structure of
trait values by invoking different selection regimes. This
is obvious when looking at the posterior distribution of
the selective optima obtained for Hansen data, which
has two modes located around the two true values of �
with the WN prior (Fig. 6c).

The interactions between parameters when fitting the
Hansen model are also similar to what was observed
with the OU model. In particular, the posterior of Yr
is narrow and those of the �’s are wide whenever
� is estimated to below, and conversely when � is
estimated to be high, implying that the effect of the
nonidentifiability of Yr and the �’s remains with the
Hansen model (Fig. 6). This lack of identifiability is
further exemplified by the same negative correlation
between the values of the �’s and Yr (Fig. 5d). Finally, we
note the same correlation between� and � when � is high,
with the difference that the relationship between � and �
is no longer the curve �=1 (Fig. 5c). This is expected as,
in the Hansen model with strong selection, the sample
variance of tip trait values (equal to 1) is expected to be
made up of the variance of tip trait values around their
mean (�), plus the variation of the �’s among selective
regimes, so that � is expected to be less than 1.

With the Hansen model, the prior for � further impacts
the number of selective regimes (m, Fig. 6e). With the BM
prior, we see that the posterior of m is rather flat (as is

the prior for m). The standard Bayesian interpretation of
observing a posterior close to the prior is that the data are
not very informative about the parameter. However, in
the present case, this conclusion is conditional on the
estimate of �. Indeed, whenever � is low (as was the
case here with the BM prior), the influence of selection
is so low that the value of m no longer impacts the
posterior significantly. We thus observe the posterior
of m close to the prior, not because the data are
uninformative, but because our choice of prior restricted
inference to BM-like models. Another important aspect
to consider when interpreting the estimate of m is the
quantitative difference in the values of the �’s for the
different regimes. For instance, in Figure 6e, inspecting
the posterior of m for Hansen datasets and the WN prior
does not generally show evidence in favor of m=2, the
true value. However, upon inspection of the posterior
distributions of the �’s in Figure 6c, it is clear that
whenever m>2, the m different values of � fall into
only two significantly different modes. This suggests
that there are only two significantly different selective
regimes, which is the correct answer in this case.

SUMMARY ON PARAMETER ESTIMATION WITH THE OU AND

HANSEN MODELS

The previous sections have shown that choosing a
prior for � is not so straightforward and that it is easy
to set a prior for � that is very stringent in favor of BM
or WN models. Translating the � prior on the scale of �
allows to have a clear sight of whether the prior favors
such extreme models. If this is the case, and data are
not informative enough to contradict the prior, inference
may in effect be carried out with a BM or WN model,
which may have consequences on the estimation of all
the other parameters (�, Yr, and �).

In particular, leaning on the BM side will likely induce
a narrow posterior for Yr as compared to the prior, which
is actually only indicative of the fact that the slope of the
�−Yr ridge is highly negative (as in Fig. 2a). In this case,
conclusions about Yr must be done conditional on the
prior for � and are only valid if the low estimate of �
is correct and not caused by a poor prior choice. The
converse happens when one leans on the WN side, with
a narrow posterior for � being the reflection of the prior
for Yr (as in Fig. 2b). The OU model shows here a rather
counter-intuitive behavior, and I hope that this study can
make this clearer. Most importantly, investigators must
be aware that there is no way to estimate either � or Yr
with contemporaneous data, without prior information
about one of these parameters, as already emphasized
in other studies (see Ho and Ané 2014).

We have also seen that the parameters � and � are
weakly identifiable whenever � and tH translate into
a high-enough value of �. This may induce a strong
correlation of the estimates of � and �, which provides
the opportunity for the prior of one of these parameters
to impact the posterior of the other, as shown in
Figure 2c,d. The priors for these two parameters may
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FIGURE 6. Marginal posteriors for trees with 40 tips when fitting the Hansen model with multiple selective optima. The dashed and solid
curves represent the posteriors obtained with the BM and WN priors, respectively. Shaded areas represent the priors. For �, the darker and
lighter shaded areas represent the Brownian and WN priors, respectively. For � and �, the vertical line(s) represent(s) the value(s) used in
simulations. The posterior densities of 5 of the 20 analyses are represented. Different columns correspond to different simulation models. The
rows correspond to: a) �, b) �, c) the �’s (pooled together), d) Yr , and e) m (the number of selective regimes). The plots of e) are represented for
m≤20 for visibility, but the prior is flat from 0 to the number of branches (see Appendix 3 of the Supplementary material available on Dryad).
The scaled version of parameters is plotted here for comparison with the priors, except for the �’s which have been unscaled for comparison
with the true values.
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even be in conflict if they intersect away from the top of
the likelihood ridge.

All these parameters are common to all types of
inference with the OU model, whatever the purpose
of the analysis, and the issues outlined here probably
concern most types of OU analyses. For instance, if one
wants to estimate ancestral trait values (e.g., Martins and
Hansen 1997; Bokma 2002; Paradis et al. 2004; Harmon
et al. 2008; Lemey et al. 2010; Revell 2012; Landis et al.
2013; Elliot and Mooers 2014; Kratsch and McHardy 2014;
Meseguer et al. 2018), the estimates are conditional on
the prior for � and the estimate of � (Appendix 9 of the
Supplementary material available on Dryad shows that
the �−Yr ridge extends to the trait values of all ancestral
species). If one wants to estimate the rate of phenotypic
evolution �, or its variation among clades (e.g., O’Meara
et al. 2006; Revell and Harmon 2008; Revell and Collar
2009; Eastman et al. 2011; Jones et al. 2015; Martin 2016),
the interaction between the priors for � and � may impact
the results significantly. If the investigator wants to test
whether selection has had a significant impact on the
evolution of traits, by comparing a BM model with an
OU model (e.g., Butler and King 2004; Collar et al. 2009;
Harmon et al. 2010; Beaulieu et al. 2012; Cooper et al.
2016), the prior for � may entirely determine the results.
In the case that we want to determine if the data are
consistent with a Hansen model with several selective
regimes (e.g., Uyeda and Harmon 2014; Cuff et al. 2015;
Vining and Nunn 2016; Uyeda et al. 2017), obtaining
a proper estimate of � is necessary. Studies that test
for the impact of a predictor trait on a response trait
(e.g., Davis et al. 2012; Gohli and Voje 2016; Solbakken
et al. 2017; Lattenkamp et al. 2021) are also concerned. In
particular, we note that the � coefficient of the SLOUCH
model (Hansen et al. 2008), which takes value 1 when
the effect of selection is maximal, and value 0 when it is
minimal, corresponds to �(tH/2) of the present study. It
appears that �(tH) and �(tH/2) are very similar metrics,
so that the extreme � priors studied in the present article
translate into stringent priors for both �(tH) and �(tH/2).
Hence, if SLOUCH were used in a Bayesian context
with, for instance, the BM prior for � of Martin (2016),
the analysis would almost deterministically conclude
that phylogenetic inertia, rather than selection, affected
the response variable. Note that most of the literature
cited here resorted to maximum-likelihood inference,
which does not use priors. However, the advent of
Bayesian programs may soon allow these models to be
implemented for Bayesian inference (most of them could
already be implemented in RevBayes).

INTERPRETATION OF � OR �

The speed at which trait values are attracted towards
the optimum, in units of traits/time, is given by 1

� (�−
Y(t)). The inverse of � thus acts as a coefficient mod-
ulating the speed of attraction by selection. We hardly
have any experience in real life of such a quantity as �,

in unit of time−1, and it is certainly not common to find
estimates of selection in the biological literature in this
unit. As a consequence, it may be preferable to find a
transformation of � whose meaning is clearer.

The meaning of the phylogenetic half-time (t1/2 =
ln2/�) is much clearer: it is the time necessary for a trait
value to cover half the way to the optimum, whatever
the starting point. An evolutionary biologist certainly
has a better intuition of whether, for instance, a hundred
thousand years for a trait value to climb half way up a
hill in an adaptive landscape is plausible or not in their
study system.

I find that the quantity � is another meaningful
transform of � (and tH), which renders the cumulative
effect that selection has had on the traits, from the root
to the tips of the particular tree being studied. It is a
direct reflection of the shape of evolutionary trajectories,
which should be quite meaningful to many investigators,
and the same value of � represents the same trajectory
shape in every system. In contrast, neither � nor t1/2
bear such a universal meaning, as the same value of any
one of these quantities can translate into flat or steep
trajectories, depending on the height of the tree at study.
In fact, it is common place for investigators using the OU
model to interpret � or t1/2 relative to tree height (e.g.,
Hansen et al. 2008; Ané et al. 2017; Cooper et al. 2016).

In the shoes of an investigator that has no prejudice on
whether selection has been influential in determining the
trait values under study, parameterizing the OU model
in terms of � rather than � or t1/2 thus makes sense to
me. The investigator can choose a prior distribution for �
and verify graphically how this prior translates in terms
of expected trajectories. It can be verified that the prior
blends flat (BM-like) and steep (WN-like) trajectories,
thus expressing correctly an a priori uncertainty about
the relevance of selection in the study system. Also
notice that many studies have used the OU model as
a means for testing whether selection has had an effect
at all, through the statistical comparison of a BM versus
an OU model (e.g., Butler and King 2004; Collar et al.
2009; Harmon et al. 2010; Beaulieu et al. 2012; Cooper
et al. 2016), concluding that selection had a significant
effect when the OU model is better than the BM model.
However, as shown in Appendix 2 of the Supplementary
material available on Dryad, the value of � determines
how close the OU model is to a BM model independently
from tree height, while � does not. Thus, setting a prior
on � that favors extreme � values may have a substantial
impact on model selection. For instance, if the true model
is an intermediate OU model with, say, �=0.3, and the �
prior is WN (such as the prior of Uyeda et al. 2017), the
comparison is actually made between BM and WN, and
the rejection of the WN model is incorrectly interpreted
as a rejection of the OU model. In contrast, a prior for �
that includes low and high values would not favor one
or the other model a priori.

In opposition to the use of � instead of � or t1/2 is the
following argument. We note that � is not a parameter
sensu stricto, as it is calculated from � (a parameter)
and tH (a datum). Consider now an investigator who

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac036#supplementary-data


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:35 30/9/2022 Sysbio-OP-SYSB220036.tex] Page: 1537 1524–1540

2022 POINTS OF VIEW 1537

samples a natural process at time tH1 and assigns some
prior for �, which translates into some prior for �. Had
this investigator sampled the process at a later time
tH2, by setting the same prior for �, they would have
assumed a different prior for �. This means that the a
priori of the investigator about the absolute magnitude
of selection (�) in one given natural system depends
on the time of sampling. One could rightfully argue
that the same prior should be assigned for the same
natural process, independently of the time at which the
process is observed. Note that the same argument would
preclude scaling the tree to unit height, as recommended
in other studies (e.g., Cooper et al. 2016). While I consider
this argument to be valid, I think that, in practice,
investigators that are unsure about how to formulate a
prior about � or t1/2 in their original unit, had better
set the prior on �, and check the shape of evolutionary
trajectories that the prior corresponds to. In fact, as we
will see below, a uniform prior on � is able to correctly
estimate �, for data sets simulated under BM or WN.

Finally, notice that, although I focused here on �(tH),
others may prefer to calculate � for another reference
time period. For instance, considering that most of the
tree nodes are located closer to the present, using �(tH/2)
may seem more meaningful to some. Also, if one knows
approximately the generation time g of the studied
organisms, the metric �(g) reflects the percent variance
that is lost in one generation due to selection.

REPARAMETERIZATION OF THE OU MODEL

When using models like the OU model, whose
parameters are not separately identifiable, or weakly
so, Bayesian inference provides a sensible means to
leverage prior information to identify the parameters.
Investigators that have such prior knowledge about
some parameters should implement it, by expressing a
prior on a scale that they feel comfortable interpreting.
Therefore, this study should not be interpreted as an
argument against setting a prior on � or t1/2 in time
units, but rather addresses investigators that have vague
or no prior information about the OU parameters. I
particularly want to emphasize the fact that a prior
that may seem uninformative on a certain scale, may
appear very stringent when looked at on another scale.
Furthermore, the prior for one parameter (especially �)
may have cascading effects on the other parameters, in
ways that may not be immediately obvious.

These words of caution should not be taken to mean
that the OU model cannot be used when one has no prior
information, and I propose here a reparameterization
of the OU model, building on that of Ho and Ané
(2014), that seems to behave nicely all along the BM–WN
continuum.

The OU model is reparameterized in terms of para-
meters that are fully identifiable, and for which I think
we can easily set a meaningful prior distribution. These
parameters are �, the expected tip trait value 
 (see
Ho and Ané 2014), and the variance of tip traits V.

Appendix 10 of the Supplementary material available on
Dryad shows how these three parameters are sufficient
information for calculating the OU likelihood, and how
the parameters � and � can be deduced from these new
parameters. Given the nonidentifiability of � and Yr, it
is necessary to further assume a value for � to deduce a
value for Yr, or vice versa. But, this is only necessary for
those who are specifically interested in these parameters.

We have seen above the meaning of �, and a uniform
prior distribution for � between 0 and 1 blends trait
trajectories ranging from flat (BM) to steep (WN),
expressing our prior ignorance about the net effect of
selection. Some investigators may prefer using a beta
prior for � and play around with the parameters to adjust
the prior mix of trait trajectories as they see fit.

Parameter 
 should be estimated to lie somewhere
around the sample mean 	 of tip trait values. It is thus
logical to choose a prior for 
 that is centered around
	. A normal distribution with mean 	 and a standard
deviation equal to two times the sample standard
deviation should do nicely, allowing the estimate of 

to deviate substantially from 	.

For high values of �, covariances of trait values among
species are close to 0, so that V should be estimated close
to the sample variance v of tip traits. For low values of �,
due to higher covariances, V is expected to be greater
than v. Appendix 10 of the Supplementary material
available on Dryad shows that values of V higher than
3v are highly unlikely. A log-normal prior for V with a
mode at v and a standard deviation on the log scale equal
to 0.5 (which has most of the density between 0 and 3v)
should thus be appropriate.

To assess the behavior of this reparameterization, it
was applied to the same simulated data sets as above
(simulated under BM or WN, with a single selective
optimum). Figure 7 shows an overall good coverage, for
both BM- or WN-simulated data sets, suggesting that
the reparameterization is a sensible way to use the OU
model in the absence of prior information.

Appendix 11 of the Supplementary material available
on Dryad provides a RevBayes script to implement this
reparameterization, fully or partially: investigators can
choose between setting a prior on �, �, or t1/2; on 
 alone
or on any combination of two parameters among Yr, �,
and 
; on V, �, or � (the stationary variance). Notice that,
based on Ho and Ané (2014), I suspect that the same type
of reparameterization could be used for Hansen’s model
for regimes applying to connected subtrees, albeit with
several values of 
 for the different regimes.

CONCLUSION

Bayesian inference with the OU model may behave
in an unexpected manner due to complex interactions
among parameters, caused by ridges in the likelihood
function. In this context, investigators should be aware
that some of their conclusions are highly dependent
on the chosen priors. In particular, the value of the
parameter � (related to the parameter � for the strength
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FIGURE 7. Marginal posterior densities obtained with the reparameterized OU model. a) Posterior of �, directly comparable to Figure 4a. b)
Posterior of �, comparable to Figure 4b, except here � is unscaled for comparison with the true value. c) Posterior of �. d) Posterior of 
 (unscaled).
e) Posterior of V (unscaled). The data sets used here are a subset of those used for Figure 4: 5 BM (�=0) and 5 WN (�=5) data sets. The vertical
lines show the true values of the parameters. The prior for � was a uniform distribution. The prior for 
 was a normal distribution centered
around the sample mean of tip traits and SD of 2. Two priors were considered for V, consisting of log-normal distributions with a mode at
the sample variance of tip traits, and with an SD on the log scale of 0.5 (solid curves) or 2 (dashed curves). � and � are not parameters of the
reparameterized OU model, and their values were deduced a posteriori from the values of �, 
, and V (see Appendix 10 of the Supplementary
material available on Dryad).
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of selection and to tree height), which conveys a sense
of the relevance of selection in determining trait values,
largely determines the outcome of inference, whatever
its purpose (i.e., estimate the strength of selection,
ancestral traits, the neutral rate of evolution, compare
models with or without selection, assess the impact of
a trait on another, etc...). I hope that this article can
entice investigators to cautiously consider the priors they
use when using the OU model. I think that despite
these potential pitfalls, investigators who have little
prior information about the parameters should not be
discouraged to carry out OU inference, for even in
this situation comparative data can still provide useful
insights into trait evolution. It seems that the proposed
reparameterization of the OU model may help achieve
this, or at least be a good tool for safety check.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.vdncjsxrc.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation program
under the Marie Sklodowska-Curie grant agreement
No. 708207. I thank Michael Landis, Michael May, Josef
Uyeda, and the associate editor Sebastian Höhna for their
very constructive comments on this article.

REFERENCES

Ané C. 2008. Analysis of comparative data with hierarchical autocor-
relation. Ann. Appl. Stat. 2(3):1078–1102.

Ané C., Ho L.S.T., Roch S. 2017. Phase transition on the convergence rate
of parameter estimation under an Ornstein-Uhlenbeck diffusion on
a tree. J. Math. Biol. 74(1):355–385.

Beaulieu J.M., Jhwueng D.-C., Boettiger C., O’Meara B.C. 2012.
Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck
model of adaptive evolution. Evolution 66(8):2369–2383.

Blomberg S.P., Garland T.J., Ives A.R. 2003. Testing for phylogenetic
signal in comparative data: behavioral traits are more labile.
Evolution 57(4):717–745.

Boettiger C., Coop G., Ralph P. (2012). Is your phylogeny inform-
ative? Measuring the power of comparative methods. Evolution
66(7):2240–2251.

Bokma F. 2002. Detection of punctuated equilibrium from molecular
phylogenies. J. Evol. Biol. 15(6):1048–1056.

Butler M.A., King A.A. 2004. Phylogenetic comparative analysis: a
modeling approach for adaptive evolution. Am. Nat. 164(6):683–695.

Cavalli-Sforza L.L., Edwards A.W. 1967. Phylogenetic analysis: models
and estimation procedures. Evolution 21(3):550–570.

Collar D.C., O’Meara B.C., Wainwright P.C., Near T.J. 2009. Piscivory
limits diversification of feeding morphology in centrarchid fishes.
Evolution 63(6):1557–1573.

Cooper N., Thomas G.H., Venditti C., Meade A., Freckleton R.P. 2016.
A cautionary note on the use of Ornstein–Uhlenbeck models in
macroevolutionary studies. Biol. J. Linnean Soc. 118(1):64–77.

Cressler C.E., Butler M.A., King A.A. 2015. Detecting adaptive
evolution in phylogenetic comparative analysis using the Ornstein-
Uhlenbeck model. Syst. Biol. 64(6):953–968.

Cuff A.R., Randau M., Head J., Hutchinson J.R., Pierce S.E., Goswami
A. 2015. Big cat, small cat: reconstructing body size evolution in
living and extinct Felidae. J. Evol. Biol. 28(8):1516–1525.

Davis R., Javoiš J., Pienaar J., Õunap E., Tammaru T. 2012. Disentangling
determinants of egg size in the Geometridae (Lepidoptera) using
an advanced phylogenetic comparative method. J. Evol. Biol.
25(1):210–219.

Eastman J.M., Alfaro M.E., Joyce P., Hipp A.L., Harmon L.J. 2011.
A novel comparative method for identifying shifts in the rate of
character evolution on trees. Evolution 65(12):3578–3589.

Elliot M.G., Mooers A.Ø. 2014. Inferring ancestral states without
assuming neutrality or gradualism using a stable model of
continuous character evolution. BMC Evol. Biol. 14:226.

Felsenstein J. 1973. Maximum-likelihood estimation of evolution-
ary trees from continuous characters. Am. J. Hum. Genetics
25(5):471–492.

Felsenstein J. 1985. Phylogenies and the comparative method. Am. Nat.
125(1):1–15.

Felsenstein J. 1988. Phylogenies and quantitative characters. Annu. Rev.
Ecol. Syst. 19(1):445–471.

Freckleton R.P., Harvey P.H. 2006. Detecting non-Brownian trait
evolution in adaptive radiations. PLoS Biol. 4(11):e373.

Gohli J., Voje K.L. 2016. An interspecific assessment of Bergmann’s rule
in 22 mammalian families. BMC Evol. Biol. 16(1):1–12.

Grafen A. 1989. The phylogenetic regression. Philos. Trans. R. Soc.
Lond. B 326(1233):119–157.

Hansen T.F. 1997. Stabilizing selection and the comparative analysis of
adaptation. Evolution 51(5):1341–1351.

Hansen T.F., Martins E.P. 1996. Translating between microevolutionary
process and macroevolutionary patterns: the correlation structure
of interspecific data. Evolution 50(4):1404–1417.

Hansen T.F., Pienaar J., Orzack S.H. 2008. A comparative method
for studying adaptation to a randomly evolving environment.
Evolution 62(8):1965–1977.

Harmon L.J., Losos J.B., Davies T.J., Gillespie R.G., Gittleman J.L.,
Jennings W.B., Kozak K.H., McPeek M.A., Moreno-Roark F., Near
T.J., Purvis A., Ricklefs R.E., Schluter D., Schulte II J.A., Seehausen
O., Sidlauskas B.L., Torres-Carvajal O., Weir J.T., Mooers A.Ø. 2010.
Early bursts of body size and shape evolution are rare in comparative
data. Evolution 64(8):2385–2396.

Harmon L.J., Weir J.T., Brock C.D., Glor R.E., Challenger W. 2008.
GEIGER: investigating evolutionary radiations. Bioinformatics
24(1):129–131.

Ho L.S.T., Ané C. 2013. Asymptotic theory with hierarchical
autocorrelation: Ornstein-Uhlenbeck tree models. Ann. Stat.
41(2):957–981.

Ho L.S.T., Ané C. 2014. Intrinsic inference difficulties for trait evolution
with Ornstein-Uhlenbeck models. Methods Ecol. Evol. 5(11):1133–
1146.

Höhna S., Landis M.J., Heath T.A., Boussau B., Lartillot N.,
Moore B.R., Huelsenbeck J.P., Ronquist F. 2016. RevBayes:
Bayesian phylogenetic inference using graphical models
and an interactive model-specification language. Syst. Biol.
65(4):726–736.

Ingram T., Mahler D.L. 2013. SURFACE: detecting convergent evolution
from comparative data by fitting Ornstein-Uhlenbeck models
with stepwise Akaike Information Criterion. Methods Ecol. Evol.
4(5):416–425.

Jones K.E., Smaers J.B., Goswami A. 2015. Impact of the terrestrial-
aquatic transition on disparity and rates of evolution in the
carnivoran skull. BMC Evol. Biol. 15(1):8.

Kratsch C., McHardy A.C. 2014. RidgeRace: ridge regression for
continuous ancestral character estimation on phylogenetic trees.
Bioinformatics 30(17):i527–i533.

Lande R. 1976. Natural selection and random genetic drift in pheno-
typic evolution. Evolution 30(2):314–334.

Landis M.J., Schraiber J.G., Liang M. 2013. Phylogenetic analysis using
Lévy processes: finding jumps in the evolution of continuous traits.
Syst. Biol. 62(2):193–204.

Lattenkamp E.Z., Nagy M., Drexl M., Vernes S.C., Wiegrebe L.,
Knörnschild M. 2021. Hearing sensitivity and amplitude coding in
bats are differentially shaped by echolocation calls and social calls.
Proc. R. Soc. B 288(1942):20202600.

https://doi.org/10.5061/dryad.vdncjsxrc


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:35 30/9/2022 Sysbio-OP-SYSB220036.tex] Page: 1540 1524–1540

1540 SYSTEMATIC BIOLOGY VOL. 71

Lemey P., Rambaut A., Welch J.J., Suchard M.A. 2010. Phylogeography
takes a relaxed random walk in continuous space and time. Mol.
Biol. Evol. 27(8):1877–1885.

Martin C.H. 2016. The cryptic origins of evolutionary novelty: 1000-
fold faster trophic diversification rates without increased ecological
opportunity or hybrid swarm. Evolution 70(11):2504–2519.

Martins E.P. 1994. Estimating the rate of phenotypic evolution from
comparative data. Am. Nat. 144(2):193–209.

Martins E.P., Hansen T.F. 1997. Phylogenies and the comparative
method: a general approach to incorporating phylogenetic inform-
ation into the analysis of interspecific data. Am. Nat. 149(4):646–667.

May M.R. 2019a. Relaxed Ornstein-Uhlenbeck models. Available from:
https://revbayes.github.io/tutorials/cont_traits/relaxed_ou.html.

May M.R. 2019b. Simple Ornstein-Uhlenbeck models. Available from:
https://revbayes.github.io/tutorials/cont_traits/simple_ou.html.

Meseguer A.S., Lobo J.M., Cornuault J., Beerling D., Ruhfel B.R.,
Davis C.C., Jousselin E., Sanmartín I. 2018. Reconstructing deep-time
palaeoclimate legacies in the clusioid Malpighiales unveils their role
in the evolution and extinction of the boreotropical flora. Global
Ecol. Biogeogr. 27(5):616–628.

Mitov V., Stadler T. 2017. Fast and robust inference of phylogenetic
ornstein-uhlenbeck models using parallel likelihood calculation.
bioRxiv, p. 115089. https://doi.org/10.1101/115089.

O’Meara B.C., Ané C., Sanderson M.J., Wainwright P.C. 2006. Testing
for different rates of continuous trait evolution using likelihood.
Evolution 60(5):922–933.

Paradis E., Claude J., Strimmer K. (2004). APE: analyses of
phylogenetics and evolution in R language. Bioinformatics
20(2):289–290.

Revell L.J. 2012. phytools: an R package for phylogenetic com-
parative biology (and other things). Methods Ecol. Evol.
3(2):217–223.

Revell L.J., Collar D.C. 2009. Phylogenetic analysis of the evolutionary
correlation using likelihood. Evolution 63(4):1090–1100.

Revell L.J., Harmon L.J. 2008. Testing quantitative genetic hypotheses
about the evolutionary rate matrix for continuous characters. Evol.
Ecol. Res. 10(3):311–331.

Solbakken M.H., Voje K.L., Jakobsen K.S., Jentoft S. 2017. Linking
species habitat and past palaeoclimatic events to evolution of the
teleost innate immune system. Proc. R. Soc. B 284(1853):20162810.

Uyeda J.C., Hansen T.F., Arnold S.J., Pienaar J. 2011. The million-
year wait for macroevolutionary bursts. Proc. Natl. Acad. Sci. USA
108(38):15908–15913.

Uyeda J.C., Harmon L.J. 2014. A novel Bayesian method for infer-
ring and interpreting the dynamics of adaptive landscapes from
phylogenetic comparative data. Syst. Biol. 63(6):902–918.

Uyeda J.C., Pennell M.W., Miller E.T., Maia R., McClain C.R. 2017. The
evolution of energetic scaling across the vertebrate tree of life. Am.
Nat. 190(2):185–199.

Vining A.Q., Nunn C.L. 2016. Evolutionary change in physiological
phenotypes along the human lineage. Evol. Med. Public Health
2016(1):312–324.


	Bayesian Analyses of Comparative Data with the Ornstein--Uhlenbeck Model:Potential Pitfalls

