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Abstract

Introduction: Several Mendelian randomization studies have been conducted that

identified multiple risk factors for Alzheimer’s disease (AD). However, they typically

focus on a few pre-selected risk factors.

Methods: A two-sample Mendelian randomization (MR) study was used to systemati-

cally examine the potential causal associations of 1037 risk factors/medical conditions

and 31 drugs with the risk of late-onset AD. To correct for multiple comparisons, the

false discovery rate was set at< 0.05.

Results: There was strong evidence of a causal association between glioma risk,

reduced trunk fat-free mass, lower education levels, lower intelligence and a higher

risk of AD. For 31 investigated treatments (such as antihypertensive drugs), we found

limited evidence for their associations.

Discussion: MR found robust evidence of causal associations between glioma, trunk

fat-free, and AD. Our study also confirms that higher educational attainment and

higher intelligence are associated with a reduced risk of AD.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of dementia and places

a tremendous burden on people living with AD, their families, and

caregivers.1 The main hallmarks of AD are amyloid plaques and neu-
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rofibrillary tangles, which lead to a progressive loss of memory and

cognition.2 Apart from a few established risk factors, such as age, fam-

ily history, and apolipoprotein E (APOE) ε4 allele,3 the etiology of AD

is largely unknown. Furthermore, drug discovery and development for

AD remain unsatisfactory, and currently, there is no cure for AD.4
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This has led to substantial interest in promoting disease prevention

and treatment by targeting modifiable risk factors and exploring drug

repurposing, a strategy for identifying new medical uses of existing

drugs.5

Mendelian randomization (MR), a causal inferenceapproach to iden-

tify risk factors and drug repurposing options, has garnered substantial

interest. This is because findings fromconventional observational stud-

ies are susceptible to unmeasured confounders and data from random-

ized controlled trials6,7 are scarce. MR estimates the unbiased causal

effect betweenanexposureandahealthoutcomebyusinggenetic vari-

ants, typically in the form of single-nucleotide polymorphisms (SNPs),

as instruments.8,9 Because genetic variants are randomly assorted

from parents and are fixed at conception, MR can be conceptualized

as a “genetic randomized controlled trial” and hence is less likely to be

affected by unmeasured confounders and reverse causation that could

bias the associations.8,9 Furthermore, MR can be performed by using

summary statistics from genome-wide association studies (GWAS), in

an approach known as two-sampleMR.10 In two-sample MR, the SNP-

exposure and SNP-outcome associations are obtained from twoGWAS

summary data, which are easier to obtain and generally have larger

sample sizes. By leveraging existing GWAS data, two-sample MR sub-

stantially increases the statistical power aswell as the number of expo-

sures that could be investigated.

Several MR analyses have been conducted for AD, which identified

multiple risk factors, such as educational attainment,11 low-density

lipoprotein cholesterol level,12 systolic blood pressure,13 alcohol

consumption,14 and smoking quantity.13 However, they typically

focus on a few pre-selected risk factors, and the results may be

over-optimistic due to publication bias. One recent study systemically

investigated many exposures simultaneously.15 However, this study

may suffer from horizontal pleiotropy. More importantly, recently it

has been proposed thatMR could be applied to predict promising drug

repurposing options. For AD, previous work only investigated a few

medications such as antihypertensive drugs16 for drug repurposing

options. To our knowledge, no promising drug candidates have been

found throughMR analyses. To decipher potentially causal risk factors

and investigate potential drug repurposing options, we applied two-

sampleMR to systematically examine the potential causal associations

of 1037 risk factors and 31 drugs with AD.

2 METHODS

2.1 Risk factors and potential drug repurposing
options

We obtained GWAS summary data for risk factors/medical conditions

and medications/treatments from the Integrative Epidemiology Unit

(IEU) GWAS database. To obtain robust estimation, we focused on the

exposures (including 1037 risk factors/medical conditions and 31med-

ications/treatments) that had at least three independent genome-wide

significant instrument SNPs. Briefly, the medications/treatments were

based onUKBiobank data (field ID 20003) andwere obtained through

a verbal interview by a trained nurse. Logistic regression was used to

RESEARCH INCONTEXT

1. Systematic Review: We reviewed the literature using

online databases. Previous Mendelian randomization

(MR) studies mainly focus on a few risk factors with

strong prior assumptions. Their resultsmay be biased due

to publication bias.

2. Interpretation: We used a two-sample MR approach to

evaluate 1037 risk factors/medical conditions and 31

drugswith the risk of late-onsetAlzheimer’s disease (AD).

MR estimates the unbiased causal association between

an exposure and a health outcome by using genetic vari-

ants, typically in the form of single-nucleotide polymor-

phisms (SNPs), as instruments.MR found robust evidence

of causal associations between glioma, trunk fat-free,

and AD. Our study also confirms that higher educational

attainment and higher intelligence are associated with a

reduced risk of AD.

3. Future Directions: Future studies should use alternative

study designs or more robustMRmethods to account for

additional confounders and systematically evaluatemore

risk factors and drugs.

determine the effects of each genetic variant. Details on the exposures

are presented in Tables S1 and S2 in supporting information.

2.2 Late-onset AD

We obtained GWAS summary data (i.e., effect size estimates and their

standard errors) for the associations between the genetic variants and

late-onset AD status from the International Genomics of Alzheimer’s

Project (IGAP), which has been described elsewhere.17 In brief, this

study includes data from 17,008 late-onset AD cases and 37,154 cog-

nitively normal elderly controls of European ancestry in four cohorts,

including the Alzheimer’s Disease Genetics Consortium (ADGC), the

Genetic and Environmental Risk in Alzheimer’s Disease (GERAD)

Consortium, the European Alzheimer’s Disease Initiative (EADI), and

the Cohorts for Heart and Aging Research in Genomic Epidemiology

(CHARGE) Consortium. The average age of participants was 71 years.

The associations of late-onset ADwith genetic variants were analyzed

by a logistic regression model adjusting for covariates of age, sex, and

genetic principal components. Because allele frequencies in the IGAP

datawere not reported, we used allele frequencies from503 European

samples in 1000Genomes phase 3.

2.3 Genetic instrumental variables

For each exposure, we selected genetic variants (i.e., SNPs) associ-

ated with the exposure at the genome-wide significance threshold

(P < 5 × 10−8). We first excluded genetic variants that are not
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F IGURE 1 Principles ofMendelian randomization analysis and assumptions that need to bemet to obtain unbiased estimates of causal effects.
Genetic variants have an effect on the exposure (Assumption 1) and are not associated with confounders (Assumption 2) or the outcome directly
(Assumption 3). AD, Alzheimer’s disease; SNP, single-nucleotide polymorphisms

available in the outcome dataset (i.e., IGAP). To alleviate the concern

of horizontal pleiotropy, we excluded genetic variants that were

genome-wide significant (P < 5 × 10−8) for AD in the outcome data.

We then selected independent genetic variants—that is, no linkage

disequilibrium (r2 < 0.001with an extension of 10,000 Kb in the Euro-

pean reference panel of 1000 Genomes phase 3) with other selected

genetic variants.When genetic variants were in linkage disequilibrium,

we chose the variant with the lowest P value. For genetic variants

that were not available in the outcome dataset (i.e., IGAP), we used

proxies that are available in both exposure and outcome datasets

(r2 > 0.8 in the European reference panel of 1000 Genomes phase 3)

as instrumental variables. We further harmonized exposure–outcome

datasets by the R package “twosampleMR” (version 0.5.5),18 allowing

the strand direction of ambiguous SNPs to be inferred by leveraging

allele frequency information.

2.4 Mendelian randomization analysis

For all the available exposures, we applied thewidely used inverse vari-

ance weighted (IVW) method19 to estimate the overall causal effect

of an exposure on AD risk. IVW aggregates causal ratio estimates

provided by each genetic instrument variant and yields a consistent

and efficient estimator when all used genetic variants are valid instru-

mental variables. Valid instrumental variables need to meet three key

assumptions (Figure 1): (1) they are associated with the exposure;

(2) they are not associated with any confounders; and (3) they can

affect the outcome through the exposure only—that is, no horizontal

pleiotropy. The strength of instrumental variables was tested using

F-statistics.20 To obtain valid results and account for the potential

violations of valid instrumental variable assumptions, we conducted

sensitivity analyses by applying several methods that are robust to

horizontal pleiotropy at the cost of reduced statistical power. These

methods include weighted median MR,21 and MR-Egger regression.22

Weighted median MR provides a consistent estimator when up to

50% of the instrumental variables are invalid. MR-Egger regression

allows all the genetic variants to be invalid instrumental variables, and

it is equivalent to a weighted regression with the slope representing

the causal estimate and the intercept representing the bias due to

horizontal pleiotropy.

Because APOE is a pleiotropic region and is highly associated with

AD,we conducted the analysis described above by excluding the region

of linkage disequilibrium surrounding the APOE region (44,409,039-

46,412,650 bp in chromosome 19) first as a sensitivity analysis.

For the significant results, we also conducted MR pleiotropy resid-

ual sum and outlier (MR-PRESSO) test.23 MR-PRESSO detects hori-

zontal pleiotropy via a global test, corrects for horizontal pleiotropy

via outlier removal, and tests if the causal estimates are significantly

different before and after outlier correction. To further investigate

the impact of pleiotropic genetic variants, we conducted leave-one-out

analysis in which one genetic variant was omitted in turn.We also con-

ducted bidirectional MR in which we switched the “exposure” variable

and the “outcome” variable to determine the causal direction.

Results are presented as odds ratios (ORs) per genetically predicted

increase in eachexposure (i.e.,modifiable risk factors or drug repurpos-

ing options) with default scale reported in each GWAS. For the binary

risk factors, the estimates represent the OR per 1 unit higher log odds

of the exposure. To correct for multiple comparisons, the significance

level was set to 5 × 10−4, a threshold corresponding to a false discov-

ery rate (FDR)< 0.05.Moreover, 5 × 10−4 < P < 5 × 10−3 was used to

determine suggestive associations. The associations that changed sig-

nificantly after removing theAPOE region orwith P > 0.05 inweighted

medianMRanalysiswere considered tobe spurious. All statistical anal-

yses were conducted using R version 4.0.0 (R foundation).
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TABLE 1 Odds ratios for associations between significant risk factors/medical conditions and Alzheimer’s disease risk

IVW Weightedmedian

MR-Egger

intercept

MR-PRESSO

global

Exposure OR 95%CI P OR 95%CI P P P

College or University

degree

0.41 0.28–0.60 4.0 × 10−6 0.38 0.23–0.63 1.3 × 10−4 0.57 <0.001

Years of schooling 0.68 0.58–0.80 5.1 × 10−6 0.62 0.49–0.78 2.8 × 10−5 0.22 0.02

A levels/AS levels or

equivalent

0.27 0.15–0.50 2.5 × 10−5 0.35 0.15–0.84 0.019 0.57 0.42

Trunk fat-freemass 0.78 0.68–0.89 2.0 × 10−4 0.76 0.62–0.93 8.7 × 10−3 0.86 0.01

Intelligence 0.72 0.60–0.86 4.6 × 10−4 0.66 0.52–0.83 2.6 × 10−4 0.94 <0.001

Glioma 1.13 1.06–1.21 4.8 × 10−4 1.11 1.02–1.21 0.014 0.40 –

Qualifications: None of

the above

3.68 1.77–7.67 5.0 × 10−4 3.8 1.42–10.18 8.0 × 10−3 0.24 0.10

Notes: IVW represents thewidely used inverse varianceweightedmethod, weightedmedianMR is a robustMRmethod that provides a consistent estimator

when up to 50% of the instrumental variables are invalid. MR-Egger intercept test andMR-PRESSO global test are used to check directional pleiotropy and

heterogeneity.

Abbreviations: CI, confidence interval; IVW, inverse variance weighted; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy

residual sum and outlier; OR, odds ratio.

2.5 Data availability

All the GWAS summary data used in this article can be down-

loaded at https://gwas.mrcieu.ac.uk. The harmonized data for all

the exposure-outcome pairs and related source codes are available

at https://github.com/ChongWuLab/ADMR. The institutional review

board, ethics committee approvals, and the informed consent for all

human subjects are exemptedbecauseour studyonly involves the anal-

ysis of publicly available anonymized data.

3 RESULTS

We first present the medical conditions and modifiable risk factors

with robust causal effects on AD (Table 1). Table S3 in supporting

information includes the estimates generated from the IVW, weighted

median analysis and MR-Egger, F-statistics, as well as the numbers

of instrument variants used for each risk factor/medical condition we

investigate. In addition, we present the results of excluding the APOE

region for each risk factor/medical conditionwe investigate in Table S4

in supporting information. We further present suggestive associations

(Table 2) and the results for drug repurposing options (Tables S5 and S6

in supporting information).

3.1 Glioma

Genetically predicted glioma status was significantly associated with

a higher risk of AD. The OR was 1.13 (95% confidence interval [CI]:

1.06–1.21; P = 4.8 × 10−4) per unit higher log odds of having glioma.

By using the MR-Egger intercept test, we found limited evidence of

horizontal pleiotropy (P = 0.40). Also, the association was consistent

in sensitivity analysis as the weighted median provided similar conclu-

sions butwith less precision. Leave-one-out analysis also indicated that

no single SNP had an influential influence on the estimation (Figure

S1 in supporting information). In bidirectional MR analysis, we found

no evidence that genetically predicted AD was associated with glioma

(P = 0.55). Because all three instrumental variables are not in the

APOE region, the results remained the same after removing the APOE

region (Table S4).

3.2 Trunk fat-free mass

Genetically predicted trunk fat-free mass was significantly associated

with a reduced risk of AD. The OR was 0.78 (95% CI: 0.68–0.89;

P = 2.0 × 10−4) per standard deviation (5.17 kg) higher of fat-free

mass. The OR was unchanged after removing the APOE region (Table

S4). There was limited evidence of directional pleiotropy or hetero-

geneity based on the MR-Egger intercept test (P = 0.94) and MR-

PRESSOglobal test (P = 0.01). The association remained robust in the

weightedmedianMRand leave-one-out analyses (FigureS2 in support-

ing information).

3.3 Education and intelligence

Genetically predicted higher education was significantly associated

with a reduced risk of AD. The ORs were 0.68 (95% CI: 0.58–0.80;

P = 5.1 × 10−6) per year of education completed and 0.41 (95% CI:

0.28–0.60; P = 4.0 × 10−6) per unit higher log odds of having com-

pleted college or university, 0.27 (95% CI: 0.–0.50; P = 2.5 × 10−5)

per unit higher log odds of having completed A levels/AS levels and

equivalent, and 3.68 (95% CI: 1.77–7.67; P = 5.0 × 10−4) per unit

higher log odds of not having education. Not having education means
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TABLE 2 Odds ratios for associations between suggestive risk factors/medical conditions and Alzheimer’s disease

IVW Weightedmedian

MR-Egger

intercept

MR-PRESSO

global

Exposure OR 95%CI P OR 95%CI P P P

Neoplasms 0.06 0.01–0.30 6.3 × 10−4 0.04 0.01–0.34 5.8 × 10−3 0.16 0.63

Basal metabolic rate 0.79 0.69–0.91 7.5 × 10−4 0.78 0.64–0.96 0.020 0.59 0.001

Vitamin D levels 0.60 0.44–0.82 1.3 × 10−3 0.65 0.46–0.91 0.037 0.28 0.45

Height 0.90 0.84–0.96 1.8 × 10−3 0.90 0.82–1.00 0.045 0.57 <0.001

Job involvesmainly

walking or standing

1.89 1.24–2.89 3.2 × 10−3 1.87 1.06–3.32 0.024 0.43 0.37

Standing height 0.87 0.79–0.96 4.4 × 10−3 0.86 0.75–0.99 0.034 0.88 <0.001

Number of days/week

of moderate physical

activity 10+minutes

1.52 1.14–2.03 4.5 × 10−3 1.54 1.04–2.27 0.031 0.85 0.60

Notes: VW represents the widely used inverse variance weightedmethod, weightedmedianMR is a robustMRmethod that provides a consistent estimator

when up to 50% of the instrumental variables are invalid. MR-Egger intercept test andMR-PRESSO global test are used to check directional pleiotropy and

heterogeneity.

Abbreviations: CI, confidence interval; IVW, inverse variance weighted; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy

residual sum and outlier; OR, odds ratio.

participants select “None of the above” for the question: “which of

the following qualifications do you have? (You can select more than

one)” Possible answers were: “college or university degree/A levels or

AS levels or equivalent/O levels or GCSE or equivalent/CSEs or equiv-

alent/NVQ or HND or HNC or equivalent/other professional qualifi-

cations, for example, nursing, teaching/none of the above/prefer not

to answer.” Also, there was a significant association between geneti-

cally predicted intelligence and lower odds of AD (OR: 0.72; 95% CI:

0.60–0.86; P = 4.6 × 10−4). MR-Egger analyses showed no evidence

of directional pleiotropy. While completed college or university and

intelligence had heterogeneity problems as indicated by MR-PRESSO

global test, the associations remained similar after removing outliers

(Table S7 in supporting information). There was no outlier detected for

either completing A levels/AS levels and equivalent or years of school-

ing. Furthermore, the associations were consistent in sensitivity anal-

yses as the weighted median method yielded similar (yet less precise)

results. These results remained largely unchanged after excluding the

APOE region (Table S4).

3.4 Suggestive associations

We found several suggestive associations. Specifically, we found sug-

gestive evidence of an inverse association between neoplasms and

AD. There was a suggestive association between genetically predicted

higher basal metabolic rate and lower odds of AD (OR: 0.79; 95%

CI: 0.69–0.91;P = 7.5 × 10−4). Genetically predictedmonocyte count

showed suggestive association with a reduced risk of AD. We found

suggestive evidence for a positive association between AD and having

a job that involves mainly walking or standing.

We also found a suggestive association between higher height and

a reduced risk of AD (OR: 0.90; 95% CI: 0.84–0.96; P = 1.8 × 10−3).

Genetically predictedvitaminD levelswere associatedwith lowerodds

of AD suggestively. The OR was 0.60 (95% CI: 0.44–0.82; P = 1.3 ×

10−3). These associations remained robust in theweightedmedianMR

and there was limited evidence of pleiotropy and heterogeneity.

3.5 Medications/treatments

There was limited evidence for an overall effect of 31 medica-

tions/treatments we investigated on the risk of AD, as most estimates

provided limited evidence to exclude the possibility of no association

(Tables S5andS6). For example, antihypertensivedrugs amlodipine and

atenolol had an OR of 0.47 (95% CI: 0.05–4.49; P = 0.51) and 0.14

(95%CI: 0–6.28; P = 0.31), respectively.

4 DISCUSSION

We conductedMR studies that systemically examined the causal asso-

ciations of 1037 risk factors and 31 drugs with AD. This MR analysis

found strong evidence for a positive association between genetically

predicted glioma and risk of AD, and an inverse association between

genetically predicted trunk fat-freemass and risk of AD.We confirmed

that a higher educational attainment and a higher intelligence are asso-

ciated with a reduced risk of AD.

4.1 Comparison to existing literature

Recently, a similar systemic MR study has been conducted for AD,

and they summarized their results in a database called AlzRiskMR.15

Our study is new and novel in the following two respects. First, we
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carefully extracted the instrumental variables to alleviate the con-

cern of horizontal pleiotropy by excluding genetic variants that were

genome-wide significant for AD. We also selected proxy genetic vari-

ants that are available in both exposure and outcome GWAS. Second,

we conducted several sensitivity analyses toprovide robust results. For

example, we excluded the APOE region as a sensitivity analysis for all

the exposures we considered.

Conventional observational studies provide inconsistent evidence

for the associations between glioma and AD: some suggest an inverse

association between the two,24 while others suggest a positive

association.25 These inconsistent findings may result from unadjusted

confounding factors. Through MR analyses, we found strong evidence

to support that gliomawas significantly associatedwith a higher risk of

AD. This finding is also consistentwith a recent study. 25 Using the bidi-

rectionalMRanalysis,wedidnotdetect anassociationbetweengeneti-

cally predictedADandglioma, further supporting that glioma increases

the risk of AD and not the other way around.

We found that genetically predicted trunk fat-freemass was signifi-

cantly associated with a lower risk of AD. This is in line with the results

from observational studies showing AD patients had lower lean tissue

mass than healthy elderly individuals.26 This potential causal associa-

tion may relate to sarcopenic obesity.26 Through MR analysis, we did

not find the causal relationship among body mass index (BMI), waist-

hip ratio, andAD. Such findings are consistentwith some observational

studies.26,27 For example, Buffa et al. showed that BMI were similar in

AD patients and normal controls in a cross-sectional study.26

The evidence from observational studies and previous MR analy-

ses consistently supports that genetically predicted high educational

attainment11 is associated with a reduced risk of AD. Furthermore,

with a larger GWAS of 78,398 individuals for intelligence,28 we were

able to use more instrumental variables. With such improvement, we

confirmed that higher intelligence was significantly associated with

reduced risk of AD, which was only a suggestive association in the ear-

lierMR analyses.11

For the 31 drug repurposing options we analyzed, we did not

observe evidence supporting their potential effects on reducing AD

risk. Specifically, consistent with previous MR analyses,16 there was

limited evidence to support the effects of antihypertensive drugs on

AD. For cholesterol drugs (such as ezetimibe, rosuvastatin, simvas-

tatin, and atorvastatin), anti-diabetic drugs (such as gliclazide andmet-

formin), and anti-inflammatory drugs (such as ibuprofen and aspirin),

we also did not find any evidence supporting their effects on reducing

AD risk.

4.2 Strengths and limitations

The strengths of this study include the two-sample MR design and a

systematic assessment of risk factors, medical conditions, and drug

repurposing options in relation to AD. By leveraging large-scale GWAS

data, the two-sample MR design simultaneously reduces the risk of

confounding and improves the statistical power; by systematically

accounting for a large number of potential exposures, it also reduces

the concern of publication bias.

Causal inference of the associations identified in this study, how-

ever, relies on several assumptions (Figure 1) that may be violated

in the analyses. First, because the same GWAS data have been used

to select instruments and to estimate SNP-exposure associations, our

findings might be affected by weak instrument bias. Nevertheless,

given the nature of the two-sample MR analysis, the weak instru-

ments only induce a bias toward the null hypothesis. Hence, such a

bias will not inflate the Type 1 error rate for false-positive findings.

Second, this study cannot completely rule out the risk of horizontal

pleiotropy, which is challenging for all MR analyses. We addressed

this by removing genome-wide significant SNPs in outcome data when

preparingharmonizeddata andby conducting several sensitivity analy-

ses, including further removing the APOE region, the weightedmedian,

MR-Egger, MR-PRESSO global test, and leave-one-out analysis. Incon-

sistent results from the IVW and sensitivity analyses were treated as

spurious. Third, because of the limited sample size of someGWASdata,

the power was limited for some exposures, and thus the null findings

may result from the Type 2 error with false negative findings. Third,

this study may be affected by survival bias. Survival bias is a particu-

lar concern because the average age of participants in the AD study is

older than that of many in exposure traits. Through simulations, Smit

et al. show that survival bias decreases instrument strength and intro-

duces a bias toward the null hypothesis.29 However, we need to be cau-

tiouswith the association between glioma andADbecause the onset of

glioma is usually much earlier than late-onset AD, and the survival bias

may bemore severe.

Another limitation relating to drug repurposing discovery is that

drugs/treatments typically are given for short periods, whereas MR

estimates the effect of lifelong exposures. This inconsistency indicates

that the effect sizes estimated in this study will likely be different

from those observed in clinical trials or clinical practice. There are

two new GWAS for AD,30,31 but we were unable to use them due to

the data usage requirements and overlapping samples for many expo-

sures; instead, data from IGAP were used in this article. Finally, the

current analyses were focused on individuals of European ancestry;

special attention is needed when generalizing our findings to other

populations.

5 CONCLUSIONS

In summary, by using the MR design, we observe evidence that having

glioma is associated with a higher risk of AD and higher trunk fat-free

mass is associated with a reduced risk of AD. Our study also confirms

that a higher educational attainment and higher intelligence are asso-

ciated with a reduced risk of AD.
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