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Abstract

Background: DNA double-strand breaks (DSBs) are harmful to the cell as it could lead

to genomic instability and cell death when left unrepaired. Homologous recombina-

tion and nonhomologous end-joining (NHEJ) are two major DSB repair pathways,

responsible for ensuring genome integrity in mammals. There have been multiple

efforts using small molecule inhibitors to target these DNA repair pathways in can-

cers. SCR7 is a very well-studied anticancer molecule that blocks NHEJ by targeting

one of the critical enzymes, Ligase IV.

Recent findings: In this review, we have highlighted the anticancer effects of SCR7

as a single agent and in combination with other chemotherapeutic agents and radi-

ation. SCR7 blocked NHEJ effectively both in vitro and ex vivo. SCR7 has been

used for biochemical studies like chromosomal territory resetting and in under-

standing the role of repair proteins in cell cycle phases. Various forms of SCR7

and its derivatives are discussed. SCR7 is also used as a potent biochemical inhibi-

tor of NHEJ, which has found its application in improving genome editing using a

CRISPR-Cas system.

Conclusion: SCR7 is a potent NHEJ inhibitor with unique properties and wide appli-

cations as an anticancer agent. Most importantly, SCR7 has become a handy aid for

improving genome editing across different model systems.
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1 | INTRODUCTION

DNA repair pathways play a significant role in maintaining genome

integrity. Defects in the DNA repair pathways inside cells can pre-

dispose them to cancer.1,2 DNA repair proteins, when over-

expressed in cancers, promote their growth and provide resistance

to therapy.3,4 One of the cancer therapeutic modalities involves

targeting the repair of DNA double-strand breaks (DSBs), resulting

in the inhibition of the repair machinery. This results in the

accumulation of DSBs and cell death.5,6 Among different DNA dam-

ages, DSBs are considered as most deleterious as a failure of their

repair results in cell death.

Three different DNA repair pathways homologous recombination

(HR), nonhomologous end-joining (NHEJ), and alternative NHEJ, are

responsible for the repair of DNA DSBs.7-9 HR is known to operate

during the S-phase of the cell cycle, whereas NHEJ is functional

throughout the cell cycle. HR utilizes the information from a template

to mend the breaks and is precise without errors.10-12 NHEJ is an
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error-prone pathway involving insertion or deletion at the site of

repair as it involves a template-independent mode of joining. When

there is a DSB, the KU proteins (KU70/KU80) localize to the site of

the break to protect them from degradation. KU70/80 then recruit

other proteins like Artemis and DNA-PKcs, which are endonucleases

and bring about end resection.12-15 PAXX, another protein recently

been known to stabilize the repair machinery.16 Pol μ and Pol λ,

belonging to the Pol X family, fill the gap, thereby carrying out the

polymerization at the repair site. The final step of NHEJ being ligation

involves DNA ligase IV/XRCC4/XLF complex to seal the ends and

repair the broken DNA11,17 (Figure 1). Another pathway known as

alternative NHEJ (A-NHEJ), which is a back-up pathway to classical

NHEJ (c-NHEJ) is present in cells and use a short terminal micro-

homology region for sealing the DNA break.9,12,14,18

Several small-molecule inhibitors targeting DSB repair pathways

have been developed.2,19 One such inhibitor is SCR7, which interferes

with the sealing of the nick, which is the last step of the NHEJ.6,12,20

Ligase IV, the enzyme dedicated to the final ligation of broken ends, is

one of the most critical proteins associated with NHEJ. SCR7 binds to

the DNA binding domain of Ligase IV to block NHEJ and leave the

ends unrepaired, resulting in the accumulation of DNA breaks and

thus leading to activation of cell death pathways.20 The activity of

SCR7 has been demonstrated both in vitro in several cancer cell lines

and in vivo in multiple animal tumor models.20

SCR7 was first reported in 2012 and has made an impact across

different fields.12,19 SCR7 has been used in biochemical studies and,

most importantly, to improve genome editing using CRISPR-Cas

technology.6,12 The recent advances in genome engineering technol-

ogy are due in part to the use of small-molecule inhibitors like SCR7,

which has enhanced the efficiency of genome editing. However, in

this short review, we discuss the evolution of SCR7 as a cancer thera-

peutic agent and its other applications.

2 | THERAPEUTIC ROLE OF SCR7

Cancer cells alter DNA repair protein expression to gain a survival

advantage.21 Harnessing the defects in DNA repair genes and utilizing

differential expression of repair proteins in cancer cells compared to

normal cells can be a great strategy for inhibiting the progression of

cancer.22,23 One such example that has given successful results is the

FDA-approved PARP inhibitor Olaparib that can bring about synthetic

lethality in breast and ovarian cancers that are deficient in

BRCA1/2.24,25 ATM inhibitor KU-55933 has shown promising results in

Fanconi anemia deficient pancreatic cancer cell line.26

NHEJ is a rapid and quick fixing DNA repair process that takes

care of 70% DSBs within the cells particularly operating when homol-

ogy is absent.8,11 When NHEJ is inhibited at the initial steps of dam-

age recognition or end resection, there is a chance of them being

rerouted to the back-up alternative NHEJ pathway.9,18,27 Cancer cells

escape cell death signals as they can shift from one repair pathway to

the other efficiently. Therefore, blocking a protein like Ligase IV at the

final step of the repair process does not allow for shift easily and lead

to efficient cell death signaling.2
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F IGURE 1 Schematic representation of DSB repair pathways that operates in a mammalian cell. There are mainly three pathways to take care
of the repair of DSBs in mammalian cells; homologous recombination (HR), classical nonhomologous end-joining (c-NHEJ), and alternative NHEJ
(A-NHEJ). As shown in the figure, each pathway has its own repertoire of proteins, which aids in repairing the broken DNA. HR repairs DNA
breaks based on the homology and occurs at the replicative phase of the cell cycle and is error-free. c-NHEJ occurs throughout the cell cycle and
is error-prone. Ligation of broken ends is mediated by Ligase IV/XRCC4/XLF complex. Alternative NHEJ is also error-prone, leading to extensive
deletions, and repair occurs based on the microhomology regions
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Chen et al developed L189, a pan-ligase inhibitor, which inhibits

all three ligases, Ligase IV, III, and I. However, this molecule was not

extensively used as anticancer therapeutics.28

The most effective and widely studied DNA Ligase IV/XRCC4

inhibitor is SCR7.12 Chemically, SCR7 is 5,6-bis(benzylidene amino)-

2-mercapto-pyrimidin-4-ol that binds to the DNA-binding domain of

Ligase IV and exerts its action. In the cell-free repair assays, SCR7

showed concentration-dependent inhibition of NHEJ.20 The sensitiv-

ity of cancer cell lines to SCR7 correlated with the expression levels

of Ligase IV. Knockdown studies elucidated the specificity of SCR7.20

Western blotting analysis of MCF7 cells treated with SCR7 showed a

decrease in anti-apoptotic proteins that coincided with an increase in

pro-apoptotic proteins. Induction of the intrinsic pathway of apoptosis

in mouse tumors was evident in the form of DNA fragmentation using

TUNEL assay. In three different mouse models including xenografts,

significant tumor regression was observed even leading to an increase

in lifespan20 (Figure 2).

The significant effect of SCR7 that is of additional interest is

that it sensitizes the cancer cells to chemo and radiotherapeutic

agents when given in combination.20 Studies by Gkotzamanidou

et al29 revealed that in patients with multiple myeloma, combination

therapy involving DNA repair (SCR7, NU7026, and RS-1) inhibitors

along with an alkylating agent, melphalan showed better cytotoxic-

ity.29 Another chemotherapeutic drug, doxorubicin, when adminis-

tered along with SCR7, showed a 15% to 50% higher cytotoxicity in

cervical cancer.30 Gopalakrishnan et al31 showed that SCR7

enhances ionizing radiation's effects in one of the most common

types of non-Hodgkin lymphoma, diffuse large B cell lymphoma.31

Further, inhibition of the NHEJ pathway by SCR7 overcomes

HSP110 conferred resistance to oxaliplatin in the SW480 colorectal

adenocarcinoma cell line.32

3 | DIFFERENT FORMS OF SCR7

Vartak et al showed that parental SCR7 get autocyclized to cyclized-

SCR7 that possess the same molecular weight (334.09), formula

(C18H14N4OS), and melting temperature (221�C-225�C).33 Although

parental SCR7 and cyclized version are the same in molecular formula

and other properties, SCR7-pyrazine is an entirely different molecule

with a molecular weight of 332.07, formula C18H12N4OS, and melting

point 194�C to 196�C. Studies have shown that SCR7-cyclized and

SCR7-pyrazine exhibits a Ligase IV-dependent inhibition of NHEJ;

however, the latter shows less specificity inside cells (Figure 3). The

nanopolymer-encapsulated version of SCR7, E-SCR7, induced not

only 5-fold higher cytotoxicity in the cells but also increased its bio-

availability.34,35 SCR7 and its pyrazine form were further developed as

water-soluble versions that regressed tumors in mice.36-38 However,

water-soluble SCR7 was Ligase IV specific, whereas water-soluble

SCR7-pyrazine had pan-ligase activity.6,36,37

One of the drawbacks of SCR7 is its high IC50 in cancer cells.

Recently, SCR130, a spiro derivative of SCR7, was shown to induce

cytotoxicity at 2 μM in Nalm6 cells, 20 times higher than that of SCR7

(40 μM) and exerts its effect in Ligase IV dependent manner.39 It

induces cytotoxicity by activating both the intrinsic and extrinsic apo-

ptotic pathways. Like SCR7, SCR130 also sensitizes cancer cells to

γ-radiation when used in combination.39

4 | SCR7 IS A BIOCHEMICAL INHIBITOR
OF NHEJ

Apart from being an excellent anticancer agent, SCR7 has also been

known for its biochemical role. From previous studies, it is evident
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F IGURE 2 Mechanism of SCR7-mediated cell death during tumor regression. SCR7, an inhibitor of NHEJ, is known to induce cytotoxicity in
cancer cells leading to tumor regression in mice. Once administered, SCR7 is diffused inside the nucleus and binds to the DNA binding domain of
Ligase IV. This prevents the recruitment of Ligase IV to DSBs, resulting in inhibition of NHEJ, thus, culminating in the accumulation of DSBs inside
the cells. Finally, activation of the intrinsic apoptotic pathway led to cancer cell death and thus tumor regression
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that SCR7 can block the ligation of DSBs with either compatible or

noncompatible ends.20 SCR7 can inhibit the amalgamation of breaks

present in both plasmid and oligomers6,12,19,20 [in press]. These

results have given a new dimension to SCR7, focussing on roles

other than anticancer activity. To capture the dynamics of NHEJ in

the cell, single-molecule FRET along with super-resolution
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formula, and melting temperature as that of parental SCR7. SCR7-pyrazine is the oxidized version of parental SCR7. It is a different entity
compared to parental SCR7 with a molecular weight of 332.07 and melting point 194�C–196�C. When parent SCR7 loaded onto polymeric
micelles, called encapsulated SCR7, it showed a better bioavailability. The water-soluble version of SCR had ligase IV activity, whereas
SCR7-pyrazine had pan ligase activity. Part of the figures made using biorender.com
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4 of 7 MANJUNATH ET AL.

http://biorender.com


localization microscopy was used. In this study, 100 μM of SCR7

was used as a control to elucidate the mechanism and dynamics of

NHEJ.40,41 Tripathi et al42 used SCR7 as a biochemical inhibitor to

understand the DNA repair protein's role at different phases of the

cell cycle.42 SCR7 has also been used to understand the resetting

of chromosome territory upon DNA damage.43 The Zebrafish as a

model system has been developed to screen for inhibitors of NHEJ,

owing to the high frequency of NHEJ in early embryonic develop-

ment. SCR7 alleviated SV40 fragment-induced embryonic lethality.

SCR7-induced disruption in NHEJ established Zebrafish as a model

system for screening targets against NHEJ, which might be useful

for the development of novel anticancer drugs.44

5 | ROLE OF SCR7 IN GENOME EDITING

Another vital role of SCR7 is its use in genome editing.6,12,38 In

CRISPR/Cas9 mediated genome editing, after the induction of DSBs

by Cas9, endogenous DNA repair pathways, HR or NHEJ are acti-

vated. NHEJ being error-prone in its action results in gene disruption

by generating indels at the target; on the other hand, HR can integrate

the donor DNA into the target site.45 Efforts have been put in the

direction of shifting the balance toward HR during the editing pro-

cess.6 Various studies had shown that the addition of SCR7 showed a

2-19-fold enhancement in the efficiency of genome editing in mam-

malian cells and mice embryos. Inhibition of NHEJ by SCR7 shifts the

mode of repair to HR46-48 (Figure 4). The efficiency of CRISPR/Cas

mediated gene editing increased by 2 to 3-folds in porcine fetal fibro-

blast and cancer cells in the presence of SCR7.49,50 Apart from mam-

malian systems, SCR7 also increased HDR by 40% when transfection

studies were performed after cloning genes of interest from Saccharo-

myces cerevisiae.51,52 One of the gene inactivation methods involves

the integration of markers (resistance cassette) for productive

editing.53 showed that SCR7 increased the efficacy of productive

(integration) editing. Similarly, enhanced knock-in efficiency using

CRISPR/Cas in the presence of SCR7-pyrazine in Xenopus oocyte has

been reported,54 suggesting the use of SCR7 in inhibiting NHEJ inde-

pendent of the model system and gene editing mechanisms using

CRISPR/Cas.

6 | CONCLUSION

It has become evident that inhibiting DNA DSB repair pathways

has a broad range of applications. Among that, NHEJ inhibitor

SCR7 and its novel derivative SCR130 are the most potent to date

as they block NHEJ efficiently both in vitro and ex vivo. Not only

as a monotherapy, in combination with radiation but SCR7 has

also shown promising results. Both autocyclized and oxidized forms

of SCR7 inhibit NHEJ efficiently, although the oxidized pyrazine

version is less efficient inside the cells. The broad spectrum of

SCR7 utility is evident in the form of cancer therapeutics to its

use as a biochemical inhibitor. Besides, SCR7 is also an attractive

tool for improving genome editing using CRISPR/Cas across model

systems.

7 | FUTURE DIRECTIONS

The use of DNA repair inhibitors, combined with DNA-damaging

drugs, has revealed its therapeutic importance both in laboratories

and clinical trials. Olaparib is one of the successful examples of DNA

repair, which is currently used in clinics. NHEJ inhibitor, SCR7 in com-

bination with chemotherapeutic agents and radiation, has been tested

in preclinical settings; however, more studies are required to assess its

clinical relevance. Although SCR130 showed improved IC50 and NHEJ

inhibition, itrelevance in vivo tumor regression is yet to be seen. More

potent derivatives of SCR7 need to be explored in combination with

chemotherapy to achieve efficient tumor regression at lower doses.

Besides, to classify cancers that would respond to Ligase IV inhibitors

based on the expression of Ligase IV is essential for its use as thera-

peutics. Patients with low levels of ligase are generally sensitive to

radiation. Cataloging of patients based on polymorphisms and Ligase

IV expression can be used as a standard in deciding the therapeutic

regimen using NHEJ inhibitors. Also, it would be interesting to see

how new SCR7 derivatives contribute toward biochemical inhibition

of NHEJ and their impact on improving CRISPR/Cas mediating gene

editing, the future of cancer therapeutics as well as other genetic

diseases.
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