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Obesity is defined as a chronic disease induced by an imbalance of energy homeostasis.
Obesity is a widespread health problem with increasing prevalence worldwide. Breast
cancer (BC) has already been the most common cancer and one of the leading causes of
cancer death in women worldwide. Nowadays, the impact of the rising prevalence of
obesity has been recognized as a nonnegligible issue for BC development, outcome, and
management. Adipokines, insulin and insulin-like growth factor, sex hormone and the
chronic inflammation state play critical roles in the vicious crosstalk between obesity and
BC. Furthermore, obesity can affect the efficacy and side effects of multiple therapies such
as surgery, radiotherapy, chemotherapy, endocrine therapy, immunotherapy and weight
management of BC. In this review, we focus on the current landscape of the mechanisms
of obesity in fueling BC and the impact of obesity on diverse therapeutic interventions. An
in-depth exploration of the underlying mechanisms linking obesity and BC will improve the
efficiency of the existing treatments and even provide novel treatment strategies for
BC treatment.
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INTRODUCTION

Breast cancer (BC) is ranked as the most common malignancy and the major leading cause of
cancer-related death among women worldwide (1). The main reason is that advanced BC is
frequently confronted with a high rate of relapse, invasion, and metastasis, especially the
organotropic metastasis capacity to the brain and lung (2). Obesity is a pivotal lifestyle driver of
the current and prospective BC rates. According to the individually calculated body mass index
(BMI), the World Health Organization (WHO) has defined that obesity class I-III has a BMI ≥ 30
kg/m2 at baseline and BMI < 30 kg/m2 is considered non-obese (3). Numerous epidemiological
studies have authenticated that obesity is an important risk factor for BC, which means that obesity
is not only associated with the incidence of BC, but also related to poor prognosis, high incidence,
and decreased survival rate in BC patients (4).

Obesity is defined as a chronic disease induced by an imbalance of energy homeostasis. In
obesity, metabolic disorders occur in adipose tissues, leading to the secretion of many pro-
inflammatory cytokines, growth factors, and hormones, which in turn contribute to the
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formation of the tumor microenvironment (TME) and the
progression of cancer within the breast tissue. Although
biological explanations of how obesity affects BC have been
widely discussed, the role of obesity during BC initiation and
development remains incompletely mapped and being
constantly updated. Like other types of cancer, until today, the
main treatment of BC is still surgical resection and radiotherapy,
which is an indispensable part of the treatment of local lesions.
The metastasis and occurrence of BC continue to lead to
unacceptable cancer-related deaths, leading to the diverse
methods of chemotherapy , hormone therapy , and
immunotherapy. Existing researches have shown that obesity
can affect the effectiveness of conventional BC treatments and
further lead to therapeutic resistance. This article will summarize
the latest studies on the functions and mechanisms of obesity in
BC, including the disorders of adipokines, insulin, and insulin-
like growth factor (IGF), endogenous sex hormones, chronic
inflammation. It also summarized the impact of obesity on BC
therapy, such as surgery, radiotherapy (RT), chemotherapy,
endocrine therapy (ET) and immunotherapy, and weight
management in BC. An in-depth understanding of the
mechanisms linking obesity and BC, as well as the impact of
obesity on the effectiveness and tolerance of BC treatment, is
paramount for establishing new strategies for the prevention and
therapeutic interventions of BC.
OBESITY AND THE RISK FACTORS OF
BREAST CANCER

The excess weight gain of women during adulthood can increase
the risk of BC, and can even lead to an earlier onset of BC and a
worse prognosis (5). Patients hospitalized for overweight and
obesity are associated with an increased risk of several specific
cancers, including BC, compared to the general population
(6). Among obese women, BC risk factors have been found
to differ in menopausal status, tumor subtypes, and some
other conditions.

The relationship between obesity and BC is intricate.
The associations appeared to be extremely consistent for
Abbreviations: BC, Breast Cancer; BMI, Body Mass Index; WHO, World Health
Organization; TME, Tumor Microenvironment; IGF, Insulin-like Growth Factor;
RT, Radiotherapy; ET, Endocrine Therapy; TNBC, Triple-negative BC; OS,
Overall Survival; BMBC, Brain Metastases from BC; EMT, Epithelial-to-
Mesenchymal Transition; PDX, Patient-derived Xenograft; obASCs, Obesity-
altered Adipose Stem Cells; DIO, Diet-induced Obesity; CSC, Cancer Stem Cell;
MDSCs, Myeloid-derived Suppressor Cells; FAO, Fatty Acid b-oxidation; HFD,
High-fat Diet; SFRP5, Secreted Frizzled-related Protein 5; InsR, Insulin Receptor;
RFS, Recurrence-free Survival; IGF-1, Insulin-like Growth Factor 1; ASCs,
Adipocyte-derived Stem Cells; CCL2, CC Chemokine Ligand 2; COX-2,
Cyclooxygenase-2; WAT, White Adipose Tissue; IL, Interleukin; TNF, Tumor
Necrosis Factor; HIF-1a, Hypoxia-inducible Factor 1a; CLSs, Crown-like
Structures; PGE2, Prostaglandin E2; miRs, micro-RNAs; CRP, C-reactive
Protein; pCR, Pathological Complete Response; Dox, Doxorubicin; CRF,
Cancer-related Fatigue; AKR, Aldo-keto Reductase; CBR, Carbonyl Reductases;
NAC, Neoadjuvant Chemotherapy; ASCO, American Society of Clinical
Oncology; AIs, Aromatase Inhibitors; Tx, Tamoxifen; CTGF, Connective Tissue
Growth Factor; T-DM1, Trastuzumab Emtansine.
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postmenopausal BC that high obesity is a risk factor for BC in
postmenopausal women independent of ethnic factors. Park et al.
demonstrated that in postmenopausal women in Korea, there was a
positive relationship between obesity and BC (7). This may attribute
to the higher estrogen levels produced in adipose tissue in
postmenopausal women (8). However, there is still controversy
on their impact on the risk of premenopausal BC. The obesity
impact on premenopausal BC risk might be a positive correlation,
negative correlation, or even irrelevant, which is involved in ethnic
differences or/and sample size of the clinical trial. The fact that
many previous studies performed in theWestern population with a
negative association and Asian studies showed uncertain
associations between obesity and BC, indicates the ethnic and
racial importance in premenopausal BC risk. For example, a
systematic analysis of premenopausal BC suggested a negative
association of obesity and BC risk in premenopausal Caucasian
and African women (9). Similarly, the investigation among over 6
million Korean women in 2020 suggested that there was a negative
association between obesity and BC in premenopausal women (7).
However, multiple studies in Asian premenopausal women
indicated no significant effect of obesity on the risk of BC during
the premenopausal period (10) (11). In addition, Jeong et al.
demonstrated an increased risk of triple-negative BC (TNBC) in
obese type II (BMI ≥ 30 kg/m2) premenopausal Korean women
(12). This study was consistent with the finding of a meta-analysis,
which revealed the significant positive association of obesity and
overweight with BC during the premenopausal period in Asian
women (13).

Epidemiological data suggested that large disparities are
presented in the prevalence of obesity and overweight among
women in different populations. In general, different ethnic
groups vary in body size, body composition, and fat
composition, and body fat distribution, which might result in
subtle differences in metabolic levels and BC risk. Compared
with other ethnic groups, Asians seem to have higher overall
fat levels and abdominal fat as well as lower lean body mass for
a given BMI (14). Amadou et al. showed that an increase of
5 kg/m2 in BMI was associated with a significant 5% reduction
in premenopausal BC risk (9). Especially, there was an inverse
relationship between obesity and the risk of premenopausal BC
only among Africans and Caucasians, but there was a significant
positive association was observed among Asian women (9).
Briefly, the determinants of obesity are complex and diverse,
which is concerned with biological alterations, socio-economic
and other environmental and behavioral influences. And,
ethnic and racial differences are a nonnegligible key factor in
obesity and BC risk.

The effect of obesity on BC also varies with different BC
subtypes. In obesity type II (BMI≥30 kg/m2), premenopausal
women had an increased risk of TNBC, and postmenopausal
women had an increased risk of Luminal A, Luminal B, HER2–
BC, and TNBC (12). Furthermore, a retrospective investigation
of clinicopathological BC features of postmenopausal Japanese
women indicated that compared with obese patients, mean
values of the Ki67 labeling index were significantly higher in
lean patients, and HER2+ tumors were more often found in lean
patients (15). More aggressive tumors were observed in lean
July 2021 | Volume 11 | Article 704893
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postmenopausal women, which contradicted the prevailing
perception of BC in obese women. In order to ascertain the
relationship between obesity and BC risk in more refined tumor
subtypes, Nattenmüller et al. evaluated six well-established
immunohistochemical markers in BC samples (16). It
suggested that obesity was related to the risk of breast tumors
with lower aggressiveness such as ER+, PR+, HER2–, Ki67low,
Bcl-2+, and p53– tumors in postmenopausal women. Further
mechanistic studies are required to underlie the associations, as
well as larger-scale analyses of the pooled prospective cohort to
investigate relationships between obesity and BC subtypes in
more detail.

In addition to the traditional epidemiological studies, Shu
et al. conducted Mendelian randomization analyses to assess the
connection of BC risk with BMI and other indicators, using
genetic instruments (17). They found genetically predicted
obesity was associated with the BC risk regardless of age,
menopausal status, ER status, and family history, unveiling the
complex inter-relations of genetics, obesity, and BC risk.
Nevertheless, Being overweight might not sufficient for the
development of BC, which may be associated with LEP/LEPR
gene polymorphisms. Liu et al. conducted a large case-control
study among females in southwestern China and showed that
persistent overweight (BMI ≥ 24 kg/m2) along with
LEPrs7799039 AA or LEPRrs1137100 GG genotypes
synergistically increased the risk of BC (18). Bariatric surgery
has been deemed as the most effective manner for obese patients
to lose weight in both the short and long term, and is more
effective in producing sustained weight loss than dieting. It was
interesting that bariatric surgery was significantly relevant to
reduced BC risk, both for cancer incidence and mortality, by a
meta-analysis (19). Finally, further research into the complex
association of obesity and BC risk will help to guide
BC prevention.
OBESITY AND OUTCOMES OF
BREAST CANCER

As Vernaci et al. proposed that, there was a negative impact of
obesity on the prognosis in a population of BC patients (20).
Over a long period of follow-up, a high BMI was associated with
increased rates of relapse, second primary tumors, and death
occurrence. The effect of BMI on the prognosis of BC depends
on many factors, including tumor subtype, menopausal status,
and age. In HR+ HER2– patients, obesity played a negative
prognostic role in both pre-menopausal and post-menopausal
women in the Asian population (21). Besides, in a cross-
sectional study, compared with women of normal weight,
obese and morbidly obese women were affected by advanced
HER2+ BC with histological grades 2 or 3 (22). Wang et al.
found that in Hebei, China, BC patients with a high BMI were
at greater risk of poor prognosis than BC patients with a low
BMI, especially in patients over 50 years of age (23). One
possible key to improving BC outcomes is to maintain an
appropriate BMI for BC patients. However, the conclusion
Frontiers in Oncology | www.frontiersin.org 3
regarding the role of obesity as a prognostic indicator in BC
individuals remains inconsistent worldwide. The study of
Cacho-Dıáz et al. reported that no association was found
between overall survival (OS) and either patient with brain
metastases from BC (BMBC) with a BMI > 25 kg/m2 or normal
weight in Mexico (24). A study conducted in New Zealand
showed that obesity was not associated with inferior
locoregional control or survival outcomes, supporting the
practice of continuing to offer breast-conserving treatment
for women regardless of BMI (25). Thus, studies are still
needed to continue maturing the definition of BMI in
predicting BC prognosis under different situations. On all
accounts, this will ultimately provide a reliable basis for the
individualized prevention and treatment of BC.
MECHANISMS LINKING OBESITY AND
BREAST CANCER

It is well-acknowledged that there is an intensive epidemiological
link between obesity and BC incidence, but the underlying
mechanism is very complicated in the obesity-driven BC
progress. The increased or dysfunctional adipose tissue is
directly associated with increased levels of many adipose-
derived factors, thus creating an environment that encourages
BC cancerization. Nowadays, the proposed mechanisms in this
process mainly include adipokines, insulin and IGF, sex
hormone, and chronic inflammation, in which dysregulation
can increase BC incidence, progression, and worsen clinical
outcomes (Figure 1). It is interesting to note that obesity
reinforces the activation of the inflammatory cascade for BC
carcinogenesis. Concretely, the adipokines, such as leptin,
adiponectin, resistin, and other adipokines like visfatin,
secreted frizzled-related protein 5 (SFRP5), play an indispensable
role in the manipulation of obesity-associated BC. Overall, these
factors contribute to the obesity-induced pro-inflammatory milieu,
as well as the crosstalk between adipocytes, immune cells, and
breast epithelial cells, which are beneficial for BC risk. The
thorough elucidation of the link between obesity and BC will
undoubtedly provide the key clues for BC prevention
and treatment.

Adipokines
Adipokines are soluble factors produced by adipocytes, including
a large proportion of bioactive metabolites, lipids, and bioactive
peptides, and over 600 adipokines have been identified so far. In
the obesity state, the levels of adipokines are usually in an
imbalanced state. The obesity-induced adipokines play a
critical and complex role in driving the malignant phenotype
of BC via endocrine, paracrine, and autocrine pathways. Among
them, leptin and adiponectin are the most studied classic
adipokines associated with obesity-triggered BC progression. It
was reported that the increased level of leptin in obesity could
promote BC initiation, progression, metastasis, and resistance
to therapy through a variety of mechanisms including the
activation of PI3K/Akt, JAK/AKT/STAT, and FAK-Src
July 2021 | Volume 11 | Article 704893
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signaling pathway. In contrast, obesity results in a decreased
expression level of adiponectin, which in turn accelerates the BC
risk and progression. Notably, other adipokine disorders caused
by obesity, including resistin, visfatin, and SFRP5, are also
proved to be key orchestrators in BC oncogenesis and
progression. The specific implicated mechanisms of main
adipokines in regulating obesity-related BC were listed
in Table 1.

Leptin
Among the diverse adipokines, leptin has been acknowledged as
a key candidate molecule linking obesity and BC, due to its
vicious function in obese-related BC growth and metastasis.
Leptin, a 16 kDa protein hormone overexpressed in obesity, is
a crucial adipokine that can regulate appetite satiety. Aberrant
leptin signaling is a hallmark of obesity and has been recognized
to influence BC biology within TME, showing the potential of
serving as a biomarker for BC risk in overweight/obese
women (50).

The disruption of apical polarity in mammary glands is a sign
of BC onset. The normal breast tissue samples characterized by
an elevated leptin/adiponectin transcriptional ratio for obesity
showed the altered distribution of polarity markers at the apex,
while leptin level in breast tissue increased with overweight and
obesity (26). The elevated leptin disrupted epithelial polarity and
Frontiers in Oncology | www.frontiersin.org 4
promoted premalignant alterations of the mammary gland in
obese mice involving the activation of the PI3K/Akt pathway,
providing a molecular basis for early alterations in epithelial
architecture during obesity-mediated cancer initiation (26).
Mahbouli et al. detected the antioxidant responses in three
human mammary epithelial cells and confirmed that different
regulatory effects of leptin on oxidative status depend on the
tumor status of different mammary epithelial cells (27). Obesity-
related leptin secretion may aggravate the carcinogenic effect of
obesity on BC through the regulation of the cellular oxidative
state. Obesity alters the activity of adipocytes or stem cells to
acquire tumorigenic properties, which are subsequently recruited
into the TME with high levels of secreted leptin, leading to tumor
growth through leptin-mediated pathways. By in vitro assay,
Juárez-Cruz et al. established that leptin promoted the secretion
of the extracellular matrix remodelers, MMP-2 and MMP-9, and
invasion in a FAK and Src-dependent manner, strongly
suggesting that leptin promoted the development of a more
aggressive invasive phenotype in mammary cancer cells (28).
This result was similar to the study of Haque et al. that leptin
could induce cell viability, epithelial-to-mesenchymal transition
(EMT), sphere-forming ability, and migration of ERa+ BC cell
line (29). The effect was possibly mediated by inhibiting CCN5
signaling via activating JAK/AKT/STAT-pathway. Sabol et al.
verified that obesity-altered adipose stem cells mediated EMT
FIGURE 1 | Mechanism of obesity in fueling breast cancer. Obesity is a complex abnormal state, accompanied by various alterations capable of regulating the
behavior of BC cells and TME. The obese adipose tissue in BC patient is directly related to the secretion of multiple adipokines, increased levels of insulin, IGF and
endogenous sex hormone, and the chronic inflammation state, thus creating a TME that encourages tumorigenesis, growth and metastasis of BC. BC, breast
cancer; TME, tumor microenvironment; IGF,insulin-like growth factor; SFRP5, secreted frizzled-related protein 5; ADSC, adipose-derived stem cells. The figure was
created with BioRender.com.
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TABLE 1 | The roles of adipokines in linking obesity and BC.

Adipokine Model Function Mechanism Ref.

Leptin 3D cell coculture model (HMT-3522 S1
mammary epithelial cells); DIO murine
model

Leptin could promote BC initiation. Leptin mediated the loss of apical polarity and promoted
premalignant alterations of the mammary gland by
activation of PI3K/Akt signals.

(26)

Mammary epithelial cell models (HMEC,
MCF7 and MDA-MB-231)

Leptin could modulate the oxidative status
of BC.

Leptin modulated the oxidative status of mammary
epithelial cells differently according to their neoplastic state.

(27)

Cultured cell model of BC (MCF7 and
MDA-MB-231)

Leptin could promote BC migration and
invasion.

Leptin induced cell migration and invasion in a FAK-Src-
dependent manner in BC cells.

(28)

Cultured cell model of BC (MCF-7, ZR-
75-1 and MDA-MB-231)

Leptin could induce BC motility, migration
and invasion.

Leptin induced cell viability, EMT, sphere-forming ability,
and migration of ERa+ BC cells which was mediated by
inhibiting CCN5 signaling via activating JAK/AKT/STAT-
pathway.

(29)

Cultured cell model of BC (BT20, MDA-
MB-231, MDA-MB-468, MCF7 and
HCC1806); TNBC PDX model

Leptin could induce BC migration and
metastasis.

Leptin produced by obASCs mediated EMT in vitro and
promoted tumor metastasis in vivo.

(30)

Cultured cell model of BC (MCF7 and
MDA-MB-231)

Leptin could encapsulate in EVs induced
BC proliferation, migration and invasion.

leptin encapsulated in EVs derived from obese adipose
tissue, thereby mediating pro-tumoral activities and
malignancy phenotype of BC cells.

(31)

Cultured cell model of BC (E-Wnt, M-
Wnt and MDA-MB-231); DIO MMTV-
Wnt-1 transgenic murine model

Leptin could induce BC viability, migration,
invasion, CSC enrichment and EMT.

Increased leptin signaling was causally linked to obesity-
associated TNBC development by promoting CSC
enrichment and EMT.

(32)

Co-culture model Leptin could induce a pro-angiogenic effect
on BC.

VEGFA was up-regulated in macrophages after exposure
to adipocytes through releasing leptin.

(33)

Cultured cell model of BC (4T1); DIO
murine BC model (4T1); human TNBC
patients

Leptin could induce BC progression and
metastasis.

The leptin gene expression was negatively correlated with
the infiltration of tumor-reactive CD8+ T cells in human
TNBC tumors from obese patients when compared to
non-obese.

(34)

Cultured cell model of BC (Py8119); DIO
murine BC model (Py8119)

Leptin could increase the oxidation of fatty
acids and BC progression.

Leptin-enriched mammary adipocytes and fat tissues
downregulated CD8+ T cell effector functions through
activating STAT3-FAO and inhibiting glycolysis.

(35)

DIO murine BC model (4T1) Leptin could promote BC progression. Leptin facilitated the MDSCs accumulation, while MDSCs
down-regulated the leptin production. HFD-induced
MDSCs participated in tumor growth facilitation by
inhibiting lethal CD8+ T cells.

(36)

Cultured cell model of BC (MDA-MB-
231, BT-20, MCF7 and MDA-361)

Leptin could promote BC resistance to
immune attacks.

Leptin could drive the tumor to escape from immune
attacks by enhancing fatty acid oxidation and tumor
resistance to NK cell lysis via PGC-1 activation.

(37)

Cultured cell model of BC (MCF-7 and
SK-BR-3)

Leptin could promote bone metastasis of
BC.

Leptin promoted bone metastasis of BC by activating the
SDF-1/CXCR4 axis.

(38)

Co-cultured cell model of BC (MCF-7
and MDA-MB-231); murine BC model
(MCF-7 and MDA-MB-231)

Leptin could promote BC growth and
progression.

The absence of leptin receptor modified BC phenotype
less aggressive in vitro and reduced the macrophage
recruitment in vivo.

(39)

Adiponectin Murine BC model Adiponectin could accelerate the BC
recurrence.

NA (40)

Cultured cell model of BC (MCF-7 and
MDA-MB-231); murine BC model (MCF-
7 and MDA-MB-231)

Adiponectin could inhibit ERa– BC growth
and progression.

Adiponectin played an inhibitory effect on the growth and
progression of ERa– BC cells in vitro and in vivo

(41)

Obese BC patients There was an association between
adiponectin gene polymorphism, serum
adiponectin level, and BC risk in obese
postmenopausal women.

NA (42)

Obese BC patients Polymorphism and promoter methylation of
the adiponectin gene were associated with
BC risk in obesity.

NA (43)

Resistin BC patients Resistin might be a predictive marker in BC
treatment.

NA (44)

Cultured cell model of BC (T47D, MCF-7
and MDA-MB-231)

Resistin could stimulate both ERa+ BC and
TNBC progression.

NA (45)

Cultured cell model of BC (MCF-7, MDA-
MB-231 and MCF-10A)

Resistin could promote BC metastasis. Resistin induced BC cells EMT and stemness through both
CAP1-dependent and CAP1-independent mechanisms.

(46)

Cultured cell model of BC (MCF7, T47D,
ZR-75-1, MDA-MB-231 and Hs-578 T);
murine BC model (MDA-MB-231);
zebrafish model

Resistin could facilitate BC progression by
induction of EMT and stemness properties
of BC cells.

Resistin facilitated BC progression via TLR4-mediated
induction of mesenchymal phenotypes and stemness
properties.

(47)

(Continued)
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in vitro and promoted the tumor metastasis of the TNBC
patient-derived xenograft (PDX) model (30). Leptin produced
by obesity-altered adipose stem cells (obASCs) is a key factor for
mediating tumor metastasis. Notably, leptin could be
encapsulated in extracellular vesicles derived from obese
adipose tissue, thereby mediating pro-tumoral activities and
the malignancy phenotype of BC cells (31). It was confirmed
that diet-induced obesity (DIO) mice exhibited reduced survival,
increased systemic metabolic and inflammatory disorders,
upregulated tumoral cancer stem cell (CSC)/EMT gene
signature, and greater leptin signaling (32). In cell culture
experiments, leptin enhanced mammosphere formation, and
the pro-cancer effects including cell viability, migration,
invasion, and CSC- and EMT-related gene expression. Up-
regulation of leptin signaling could form a causal relationship
with obesity-associated TNBC development by promoting CSC
enrichment and EMT.

Leptin can directly remodel the TME by inducing metabolic
changes in tumor cells and recruiting immune cells such as
macrophages, CD8+ T cells, and myeloid-derived suppressor
cells (MDSCs), which are capable of producing pro-
inflammatory cytokines to maintain angiogenesis and tumor
growth (51). Yadav et al. proved that VEGFA was up-regulated
in macrophages after exposure to adipocytes through releasing
leptin, representing a possible mechanism for the increased risk
of BC progression in obese individuals (33). Evangelista et al.
investigated the gene expression of leptin was negatively
correlated with the infiltration of tumor-reactive CD8+ T cells
in human TNBC tumors from obese patients when compared to
non-obese (34). Besides, It was noticed that leptin could
downregulate CD8+ T cell functions through activating
STAT3-fatty acid b-oxidation (FAO) and inhibiting glycolysis
in obese mice fed on a high-fat diet (HFD) (35). On the other
hand, HFD-induced MDSCs participated in tumor growth
facilitation by inhibiting lethal CD8+ T cells (36). This was
involved in the complicated crosstalk that leptin facilitated the
myeloid-derived suppressor cells (MDSCs) accumulation, while
MDSCs down-regulated the leptin production. Leptin could also
drive the tumor to escape from immune attacks by enhancing
fatty acid oxidation and tumor resistance to NK cell lysis via
PGC-1 activation, thus showing a therapeutic clue for BC by
blocking leptin (37). Duan et al. indicated that higher leptin
receptor expression was related to increased malignancy and
bone metastasis incidence in BC patients (38). The following in
vitro assay further confirmed the role of leptin in promoting BC
cell migration and invasion, via the SDF-1/CXCR4 axis activated
Frontiers in Oncology | www.frontiersin.org 6
by leptin. The absence of leptin receptor modified BC phenotype
less aggressive in vitro and reduced the macrophage recruitment
in vivo, proposing an innovative role of leptin receptor in
modulating BC features (39).

Overall, leptin is emerging as the most important molecular
mediator of the obesity-BC axis. The overactive leptin network
interacts with BC cells directly or with different components in
TME indirectly, thus participating in multiple steps of BC
initiation and progression. Totally, the therapy targeting leptin
deserves a deep evaluation in BC risk control and management
for improving clinical outcomes and reducing mortality.
Adiponectin
Another adipokine that plays a critical role in obesity-associated
BC is adiponectin with a molecular weight of 28-30 kDa, which is
mainly secreted by adipocytes (52). There has been sufficient
literature to prove the important role of adiponectin in the
pathogenesis of obesity-related diseases (52). Ecker et al.
observed that serum levels of adiponectin decreased in a diet-
induced obese mouse model, which was negatively correlated
with obesity and accelerated the BC recurrence (40). Mauro et al.
certified the inhibitory effect of adiponectin on the growth and
progression of ERa– BC cells in vitro and in vivo. While in ERa+
BC cells, low adiponectin levels, similar to the circulating
concentration of adiponectin in obese women, acted as a
stimulator for their growth and progression (41). Based on the
above observations, higher doses of adiponectin and an
appropriate combination of anti-estrogen therapy should be
administered for ERa+ BC obese patients.

There are a variety of single-nucleotide polymorphisms in the
adiponectin gene. Mahmoud et al. confirmed that there was an
association between adiponectin gene polymorphism, serum
adiponectin level, and the risk of BC in obese and overweight
postmenopausal women (42). Besides, Pasha et al .
simultaneously studied the genetic and epigenetic changes of
the serum level of adiponectin gene and uncovered that
polymorphism and promoter methylation of the adiponectin
gene were associated with BC risk in obesity (43). A new non-
invasive biomarker designed by evaluating the methylation status
of the adiponectin gene promoter can be produced and used as
an encouraging tool for early detection of BC.

Decreasing levels of adiponectin in the obese woman may
reduce the beneficial effects of adiponectin on BC, including
inhibiting BC cell proliferation or stimulating apoptosis of BC
cells. Novel therapeutic approaches toward adiponectin could be
TABLE 1 | Continued

Adipokine Model Function Mechanism Ref.

Visfatin Cultured cell model of BC (MCF-7 and
MDA-MB-231)

Visfatin could induce BC proliferation and
inhibit apoptosis.

Extracellular Visfatin induced proliferation through ERK1/2
and AKT and inhibited apoptosis in BC cells.

(48)

SFRP5 Co-cultured cell model of BC (MCF-7
and MDA-MB-231)

SFRP5 could inhibit BC migration and
invasion.

Adipocyte-derived SFRP5 inhibited BC cell migration and
invasion through Wnt and EMT signaling pathways.

(49)
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DIO, diet-induced obesity; BC, breast cancer; EMT, epithelial-to-mesenchymal transition; obASCs, obesity-altered adipose stem cells; PDX, patient-derived xenograft; TNBC, triple-
negative breast cancer; EVs, extracellular vesicles; CSC, cancer stem cell; VEGFA, vascular endothelial growth factor A; CAP1, cyclase-associated protein 1; SFRP5, secreted frizzled-
related protein 5; MDSCs, myeloid-derived suppressor cells; NA, not applicable.
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of great significance in the prevention or treatment of BC for
obese women.

Resistin
Resistin, a 12.5 kDa protein encoded by the RETN gene, is related
to obesity, inflammation, and various cancer type, including BC.
Based on the anthropometric data and parameters, Patrıćio et al.
indicated that resistin and glucose, as well as age and BMI, could
be used as a powerful biomarker of BC (53). Wang et al.
identified high levels of resistin in BC patients in Chinese Han
women, and resistin might be a predictive marker in BC
treatment (44). They also proved the association between
polymorphisms of the RETN gene and susceptibility for BC.

Growing evidence has indicated that resistin is upregulated in
BC patients, yet the mechanisms of resistin on adjusting BC
behavior during obesity are still largely unknown. Rosendahl
et al. suggested that resistin significantly stimulated both ERa+
BC and TNBC cell progression by utilizing the most extensively
used adipocyte model in vitro, which could be further
strengthened under obesity-related metabolic conditions (45).
CAP1, as a newly identified resistin receptor, was expressed
across a large panel of BC cell lines and primary BC tumors, and
high expression of CAP1 was associated with poorer tumor
characteristics, higher histological grades, and impaired
prognosis among BC patients, highlighting the potential role of
CAP1 concerning BC outcome. Besides, Avtanski et al. pointed
out that adipokine resistin could enhance the metastatic
potential of BC cells via inducing EMT and stemness in vitro,
partially mediating by CAP1 (46). Similarly, Wang et al. observed
that high expression of serum resistin in BC patients was
positively associated with tumor stage, size, lymph node
metastasis, and poor patient survival (47). Their study verified
that obesity-related resistin facilitated BC progression by
induction of EMT and stemness properties of BC cells via
activating TLR4/NF-kB/STAT3 signaling in animal models of
BC tumorigenesis and metastasis. Gao et al. confirmed that
obesity elevated the expression of adipocytic TAZ/Resistin (a
functional downstream target of TAZ), and facilitated
tumorigenesis in vitro and in vivo. They also found that the
resistin expression was strongly related to adipocytic TAZ and
advanced clinical stage in TNBC samples (54).

Other Adipokines
Visfatin is an adipokine and proinflammatory cytokine secreted
by adipocytes, macrophages, and inflamed endothelial tissue and
is dramatically increased in obese BC patients. Elevated levels of
visfatin may promote the development of BC and reduce the
effectiveness of treatment in BC patients (48). Gholinejad
et al. discovered that Extracellular Visfatin induces BC cell
proliferation through activation of the AKT/PI3K and ERK/
MAPK signaling pathways and inhibits apoptosis in these BC
cells (48). The role of visfatin in the development of BC further
confirms the relationship between obesity and BC.

SFRP5 is a novel adipokine with anti-inflammatory properties
and is related to obesity. The plasma level of SFRP5 is significantly
reduced in obese patients and SFRP5 expression is also
decreased in various tumor tissues (49). Zhou et al. revealed
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that in BC patients, SFRP5 is negatively correlated with BMI,
lymph node metastasis, infiltration, TNM stage and higher
Ki67 expression, and elevated SFRP5 levels were connected with
the improved prognosis of BC patients (49). In addition, they
detected reduced SFRP5 level in the obesity-induced hypertrophic
adipocyte model, and the hypertrophic adipocytes augment BC
cell invasion and migration through inhibiting SFRP5 expression.
The promotion effect of hypertrophic adipocytes was reversed
by the addition of SFRP5 via downregulating Wnt and EMT
signaling pathways. SFRP5 is a vital adipokine that could
mediate the crosstalk between obesity and BC metastasis and
new therapy by promoting SFRP5 expression in the adipose
microenvironment might be an effective way in preventing
BC metastasis.

Insulin and IGF
In obesity, the expansion of adipose tissue can lead to a chronic
inflammatory state contributing to the elevated levels of
circulating insulin, IGF, and obesity-related insulin resistance,
thus creating a more favorable TME for carcinogenesis (4).
Hyperinsulinemia has become a research hotspot as a potential
mediator for the growth of obesity-related BC, and the increased
plasma levels of insulin independently predict the increased risk
and mortality in obesity-related tumors, including BC and
several other tumor types (17, 55) Obesity-related
hyperinsulinemia could lead to the abnormal insulin signaling
pathway, which may affect the expression and localization of
insulin receptor (InsR), in BC (56). According to the study by
Swedish scholars, obese patients with nuclear InsR–/ER– had the
worst prognosis of all 900 patients with primary invasive
BC (57).

Insulin can act synergistically with inflammation to promote
BC growth and metastasis (58). Insulin could increase the
expression of VEGFA in macrophages and have pro-
angiogenic effects in vitro endothelial tube formation assay
(33). Rabin-Court et al. validated that the obesity-driven
elevated insulin could upregulate mitochondrial glucose
oxidation in obesity-associated tumor cell lines (BC, colon
cancer, and prostate cancer cells) correlated with a dose-
dependent increase in cell division (59). Rodriguez-
Monterrosas et al. proposed that insulin, by activating insulin-
like growth factor 1 (IGF-1) receptor, induced the proliferation,
migration, invasion, and an enhanced MMP-9 secretion in
MDA-MB-231 cells pretreated with linoleic acid in vitro,
strongly suggesting the important role of insulin signaling in
BC invasion and metastasis (60). Insulin resistance, associated
with hyperinsulinemia, hypertension, and impaired glucose
tolerance, has been considered as the underlying cause of the
relationship between obesity and high BC risk, prognosis, and
survival. Through the more accurate assessment and appropriate
stratification of patients by BMI and menopausal status in a
prospective study, Luque et al. revealed a clear association
between BC presence and higher insulin resistance in
overweight/obese premenopausal women (61).

IGF-1 is an insulin-related hormone that is involved in a
variety of physiological and pathological processes, including cell
proliferation and differentiation, tumor growth, and metastasis.
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IGF-1 has been indicated as an endocrine BC risk factor. Ecker
et al. utilized a genetically engineered mouse model that outlined
the physiological characteristics of obese patients and showed
that HFD obese mice exhibited hyperinsulinemia, increased IGF-
1 levels, and accelerated BC recurrence when compared with the
control mice, suggesting that the insulin/IGF-1 signaling
pathway is a potential mediator of the relationship between
obesity and BC recurrence (40). Tong et al. found that high
IGF-1 was related to an impaired 4-year recurrence-free survival
(RFS) for overweight patients in a retrospective study of HER2+
BC patients (62). It was the first and largest study to prove the
significant interaction between IGF-1 and BMI in predicting RFS
and OS in HER2+ BC patients. Hillers et al. injected the mixed
adipocyte-derived stem cells (ASCs) which were isolated from
HFD fed mice or the control diet with BC cells into the
mammary glands of lean mice and observed that obese mouse
ASCs induced an invasive phenotype of BC cells by increasing
the expression of IGF-1 (63).

Thus, obesity is recognized to be a state of chronic
inflammation characterized by elevated circulating levels of
pro-inflammatory mediators, including IL-6, C-reactive protein
(CRP), CC chemokine ligand 2 (CCL2), TNF-a, and disordered
non-coding RNA, which function in the BC cell proliferation,
invasion, and migration in a paracrine manner. Meanwhile,
inflammation is a common symptom in both obesity and BC
and acts as a direct bridge between the two. Besides, the
inflammation milieu can even interact and collaborate with
hyperglycemia, adipokines, hormone-associated aromatase
alteration, thus creating an extraordinarily complex obesity-
inflammation axis for supporting BC progression. Novel
therapeutic interventions targeting and control l ing
inflammation would be of great value in obesity-related BC.

Sex Hormone
Most of the BC are hormone-dependent tumors, and the
increased exposure to sex hormones may facilitate the
development of BC. It was reported that elevated steroid
hormone levels in obesity increased the mortality in hormone
receptor-positive BC patients (64). In addition, increased
estrogen levels were associated with obesity and independently
correlated with an elevated risk of BC (65). Adipose tissue
converts androstenedione to estrone by aromatase of stromal
cells to produce estrogen after menopause. A randomized,
placebo-controlled trial confirmed that the expression of
aromatase, the rate-limiting enzyme in estrogen biosynthesis,
was increased in the breast tissue of obese patients, which led to
an elevated risk of HR+ BC in obese postmenopausal women and
docosahexaenoic acid could reduce the expression of aromatase
(66). Subbaramaiah et al. pointed out that prostaglandin E2
down-regulated sirtuin1 leading to an increase of aromatase in
breast tissues of obese women, providing novel insights into the
obesity-BC connection (67).

Sabol et al. showed that obASCs promoted ER+ BC tumor
growth through estrogen signaling in vivo, while for metastasis,
the promotion effect of obASCs was not entirely estrogen-
dependent (68). Zhao et al. found that in the breast tissue of
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premenopausal obese women, the expression of genes related to
estrogen (such as ESR1 and GATA3) and genes involved in cell
growth and protein synthesis (such as RPS6KB1) was
significantly reduced in breast tissue. In postmenopausal obese
women, the inflammatory molecule PTGS2, ESR1 target gene
TFF1, and cell cycle G1/S checkpoint gene CCND1 were elevated
(69). The differential expression of these genes may help to
explain the difference in BC-promoting effects of estrogen in
obese women according to menopausal status. Qureshi et al.
showed that the postmenopausal estrone and premenopausal
17b-estradiol played opposing roles in BC-promoting effects of
obesity. Estrone is pro-inflammatory in contrast to the anti-
inflammatory actions of 17b-estradiol and increases with obesity,
and stimulates the expansion of tumor-initiating stem-like cells
in ER+ BC to drive rapid BC growth in vivo (70). Understanding
the hormonal environment in tumor tissue may be crucial to
elucidating the BC etiology and improving patient outcomes.

The excessive fat accumulation, chronic low-grade
inflammation, and numerous pro- and anti-inflammatory
factors caused by obesity are closely related to elevated
estrogen/aromatase expression and activity in post-menopausal
women (71). These changes are determined as the underlying
force of obesity in promoting the occurrence of postmenopausal
BC (72). In general, aromatase and estrogen may still be key
factors in the link between obesity and poor prognosis in ERa
positive, post-menopausal BC patients. The aromatase
overexpression in dysfunctional obesity states indicates its
potential pharmacologic target for BC prevention.

As important inflammatory mediators, interleukin (IL)-6,
tumor necrosis factor (TNF)-a, CCL2, cyclooxygenase-2
(COX-2), and prostaglandin E2 (PGE2) catalyzed from COX-2
participate in the induction of aromatase expression in breast
adipose tissue. In obese mice and subcutaneous adipose tissue
from obese women, CCL2 was increased in breast adipose tissue
and enhanced the glucocorticoid-mediated CYP19A1
transcription, thus promoting the pro-inflammatory milieu and
aromatase expression under obesity condition (73). Hypoxia-
inducible factor 1a (HIF-1a) was a dominant regulator of
oxygen homeostasis and could stimulate aromatase and CREB1
expression in response to tumor-derived and obesity-associated
pro-inflammatory mediator PGE2 (74). Zahid et al. supported
that the obesity-associated increased the aromatase expression in
human breast tissue, at least partially due to the increased in situ
expression of aromatase (75). They also confirmed the involved
mechanism by which leptin could regulate aromatase via the
activation of the p53-HIF-1a/PKM2 axis. TNF-a was a key
driver of aromatase gene expression. Obesity was related to the
enhanced TNF-a and reduction in local IL-10, which mediated
the aromatase and estrogen biosynthesis in mammary adipose
tissue, providing novel insight for prevention strategy of post-
menopausal obesity-associated BC (76).

In the mammary gland and visceral fat of obese mice, the
increase of aromatase mRNA and activity was paralleled with the
increase of TNF-a, IL-1b, and COX-2. These pro-inflammatory
mediators in turn promoted the induction of aromatase (77). The
increase in fat mass and aromatase may be responsible for the
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increased risk of HR+ BC in postmenopausal obese women.
High-sugar/fat diet increased the levels of pro-inflammatory
mediators CCL2, IL-6, COX-2, and PGE2 in breast tissue,
accompanied by the formation of breast coronal structure and
the up-regulated biosynthesis of aromatase/estrogen (78). It
showed that the obesogenic diet accelerated BC carcinogenesis
in a COX-2-dependent manner. By in vitro verification, Bowers
et al. showed that obesity-induced systemic IL-6 indirectly
increased the aromatase expression derived from pre-adipocyte
through augmented BC cell PGE2 production, which resulted in a
subsequent increase in BC cell ERa activity and proliferation (79).
It suggested that obesity IL-6 might be a potential mechanism to
enhance the postmenopausal, hormone-responsive BC
progression via an elevated local aromatase expression.

Therefore, local production of inflammatory mediators
surrounding adipose tissue and in the tumor, and estrogen
increase, which is thought to establish a carcinogenesis-
promoting microenvironment and further drive tumor growth
by significantly increasing the role of aromatase. Obesity-related
aromatase increases in adipose tissue and the whole body system,
while hormone therapy lifestyle interventions including weight
management and may reduce BC risk by decreasing levels of
related hormones and aromatase.

Chronic Inflammation
The relationship between obesity and BC is ascribed to diverse
factors, while the chronic low-grade inflammation accompanied
by obesity is the closest link between them. Recently, the
significant role of white adipose tissue (WAT) inflammation in
the progression and metastasis of obesity-related BC has been
gradually recognized (66, 80). The results of a retrospective study
showed that breast WAT inflammation is usually generated in
overweight/obese BC women and may be related to abnormal
circulatory indicators related to metabolic syndrome (81).
Previous studies have confirmed the systemically BC promotion
effect of adipose inflammation via circulating pro-inflammatory
cytokines, such as IL-6 and TNF-a (82). Since BC is located in a
fat-rich environment, recent studies have mainly focused on the
local effects of inflamed adipose tissue, including the impact of
cytokine levels in mammary adipose tissue on BC (83). A study of
Australian scholars indicated that obesity reduced the local IL-10
level in the mammary fat pad of ovariectomized mice, and the
reduced IL-10 enhanced the expression of aromatase in mammary
fad in ovariectomized mice, contributing to BC development and
progression (76).

In obesity, breast adipose tissue induces inflammation by
increasing the expression of pro-inflammatory cytokines and the
recruitment of macrophages, and the elevated pro-inflammatory
cytokines, in turn, upregulated genes and signaling pathways that
contribute to breast inflammation and BC progression (84, 85).
Notably, the crown-like structures (CLSs), constituted by necrotic
and dying adipocytes encircled by macrophages in adipose
microenvironments, are a histologic hallmark for the pro-
inflammatory process (86). Studies have shown that the CLSs of
the breast are more frequently detected among obese compared to
non-obese BC patients and high CLS-densities are independently
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associated with an increased BC risk (87). CLS-related pro-
inflammatory behaviors are believed to increase the risk of
worse BC prognosis in obese or post-menopausal patients. As
confirmed by Maliniak et al., there was an intensive positive
association between BMI and CLSs from breast adipose tissue in
non-tumor tissue, which was independent of race (87).
Importantly, the adipocyte-macrophage crosstalk in obesity-
related BC mainly involves excessive inflammatory cytokines
secretion (TNF-a, IL-1b, IL-6, and PGE2), TSC1-TSC2
complex-mTOR, insulin resistance, endoplasmic reticulum
stress, and increased levels of aromatase activity and estrogen
production. For instance, in both dietary and genetic models of
obesity, Subbaramaiah et al. proved observed the presence of CLSs
with a typical structural feature, which was related to NF-kB
activation, increased pro-inflammatory cytokines, and the elevated
expression and activity of aromatase in the mammary gland (77).
Moreover, large epidemiologic studies have demonstrated that
obesity positively contributes to the formation of CLSs and their
association with clinical BC outcomes (88). Therefore, targeting
CLSs in breast adipose tissue emerges as a prominent therapeutic
strategy, and the tests of body adipose tissue composition and
inhibition of inflammation state will be of value to direct
combinatorial approaches.

Wilcz-Villega et al. proved that conditioned medium of
macrophages derived from human healthy donors facilitated
the acquisition of malignant traits (such as anchorage-
independent growth and invasiveness) in mammary epithelial
cells in 3D culture, which was mediated by IKKe/TBK1 kinases
and the serine biosynthesis pathway (89). Tiwari et al. proposed a
pro-inflammatory metabolically activated phenotype (MMe)
macrophage reprogrammed by obesity that could promote
tumorigenesis, which is different from the pro-inflammatory
M1 macrophage that antagonized tumorigenesis (90). They
showed that MMe macrophages represented the main
macrophage phenotype in mammary fat of obese women and
mice. MMe macrophages secreted IL-6 in a NOX2-dependent
manner through combining with GP130 on TNBC cells to
promote stem-like properties and tumorigenesis during
obesity. Besides, Kolb et al. identified that obesity increased
tumor-infiltrating macrophages with NLRC4/IL-1b-dependent
upregulation of angiopoietin-like 4, contributing to increased
angiogenesis and BC progression in the obese mouse tumor (91).

The influence of obesity-induced inflammation and hormone
production on tumorigenesis is determined by the menopausal
status. Cranford et al. found that HFD induced inflammation
was correlated with increased tumorigenesis in an ovariectomized
mouse model of premenopausal hormone receptor-positive BC,
but had no significant effect in postmenopausal mice (92). Certain
micro-RNAs (miRs) that participated in the regulation of
inflammation are known as inflamma-miRs. A cohort study of
Tunisian patients reported that chronic inflammation in obese BC
patients was associated with aggressive BC by inducing
overexpression of oncomiRs (such as miR-21 and miR146a) and
reducing the expression of tumor suppressor miRs (such as miR-
34a) (93). More comprehensive mechanism studies connecting
obesity-driven inflammation with BC are needed for more
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potential therapeutic strategies of BC. In total, obesity often leads
to insulin resistance, which can cause compensatory
hyperinsulinemia. Adipocyte dysfunction in the context of
obesity is the basis of insulin resistance and chronic
inflammation, which can lead to the development and
progression of BC. Moreover, the cross binding of insulin to the
IGF-1 receptor expressed on BC cells stimulates the proliferation
of BC cells. Therefore, insulin and IGF-1 have been identified
as BC promoters that activate many pathways that drive aggressive
BC biology. The favorable insulin signaling control will optimize
BC risk prevention and BC survival.
THE EVOLVING ROLE OF OBESITY IN
BREAST CANCER THERAPY

Surgery
Generally, obesity is thought to be a risk factor in surgery procedures
due to the increased incidence of complications. Patients with obesity
are at increased risk of developing complications of varying degrees
[such as infection (94, 95) seroma formation (96), lymphedema (97),
flap thrombosis/necrosis (98), and delayed breast cellulitis (99)] after
mastectomy alone or in combination with autologous/implant-based
immediate breast reconstruction (100). Garland et al. indicated that
increasing obesity progressively increased the postoperative
complication rates even without BC reconstruction (101). Obesity
is indispensable information of preoperative consultation and
appropriate risk stratification for BC patients. Most of the
surviving patients who undergoing BC surgery suffer from
persistent pain, which greatly reduced their quality of life. Ding
et al. reported that BMImight be positively correlated with the risk of
persistent pain after BC surgery (102).

With the rising prevalence of obesity, breast reconstruction in
obese patients is becoming the norm rather than the exception
nowadays. In plastic surgery studies comparing autologous and
prosthetic reconstruction between obese and nonobese patients, it
found an increased complication rate and a decreased satisfaction
rate in the obese group (103). Consistently, in a retrospective study,
the obese patients with BC reconstruction after mastectomy
exhibited increased complications and failure rates compared
with the normal population, while reconstruction with free tissue
transfer from the abdomen presented more satisfactory outcomes
and decreased complications than prosthetic reconstruction (103).
Chang et al. also proved the safety of autologous breast
reconstruction in obese patients (104). These results meant that
obesity was not contraindicant andmight be an excellent option for
reconstruction in obese patients. For obese women with surgical
risk factors for prosthetic breast reconstruction, surgical
modification can also reduce the occurrence of perioperative
complications (105). Therefore, the personalized assessment of
preoperative risk, intraoperative techniques, and postoperative
management are essential to maximize prognosis and reduce
complications for obese patients.

Radiotherapy
Post-surgery adjuvant RT significantly reduces the local
recurrence rate and ameliorates the clinical outcomes of BC
Frontiers in Oncology | www.frontiersin.org 10
patients. RT-caused adverse responses, mainly including skin
toxicity, pain, lymphedema, and telangiectasia, are caused by RT
damage to the surrounding normal tissue and negatively impact
the overall quality of patient life. Cutaneous inflammation and
toxicity may be a major source of RT-related pain in BC patients.
The inflammatory biomarker CRP is an indicator of RT-related
pain in BC patients. Intriguingly, Lee et al. firstly proposed that
obesity was a correlative factor, as more increased risk of RT-
related pain appeared in obese patients (pre-RT CRP ≥ 10 mg/L)
than those non-obese patients (pre-RT CRP < 10 mg/L) (106). In
BC patients with RT therapy, Hu et al. also pointed out the risk of
obesity-related to Grade 4+ skin toxicity and other late effects
(107). Obesity-induced metabolism abnormalities are crucial for
aggravating RT resistance and poor prognosis of BC. In a
retrospective study with BMBC patients treated with RT,
McCall et al. confirmed that BMI negatively affected OS and
local control, showing the significance of BMI for prognosis and
clinical trial design by using as a stratification (108). The in vitro
assay of Sabol et al. evaluated the effects of obesity-altered ASCs
on ER+ BC cell response to RT (109). They concluded that
obesity could alter the ASCs phenotype to confer undesired RT
resistance via enhanced secretion of leptin by ASCs, promoted
the production of IL-6, and activated Notch pathways in these
BC cells. Thus, it posed evidence of obesity-related paracrine
effect in shaping obese BC prognosis.

Chemotherapy
Emerging clinical studies have shown that obesity is able to hurt
chemotherapy efficacy, leading to a reduced likelihood of
achieving pathological complete response (pCR) in obese and
overweight patients. Interestingly, multi-agent regimens also
enhance the risk of gaining weight during chemotherapy, and
this weight gain might reduce the effectiveness of treatment.
Obesity-mediated drug resistance can be achieved by altering
drug pharmacokinetics, formulating chronic inflammation, and
promoting tumor-related adipocyte adipokine secretion (110).
By using a co-culture system to grow BC cells with primary
mammary adipocytes isolated from lean and obese patients,
Lehuédé et al. found that these human mammary adipocytes
induced chemoresistance in BC cells, which was amplified by
obesity (111). Adipocytes induced a multidrug-resistant
phenotype in BC cells, as the level of major vault protein was
increased to promote doxorubicin (DOX) nuclear efflux. Liu
et al. showed that resistin treatment could induce autophagy to
decrease the DOX-induced BC cell apoptosis in vitro, suggesting
that upregulated levels of resistin conferred DOX resistance in
BC therapy (112). Therefore, targeting resistin might be a novel
strategy to improve chemoresistance. Mentoor et al. found that
DIO weakened the DOX efficacy in a breast tumor-bearing
mouse model (113). They found that both the expression level
of leptin and resistin were significantly increased in the HFD
group treated with DOX, confirming obesity conditions induced
the changes in tissue fatty acid composition to further reduce the
therapeutic effect of DOX.

Obesity is also associated with some side effects of chemotherapy.
For young BC patients before menopause, adjuvant chemotherapy
may cause interrupted menstruation and premature menopause,
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which may damage their life quality. Yeo et al. led a study of 280
young Chinese women with premenopausal BC who received
adjuvant chemotherapy for 3 to 10 years, concluding that
overweight/obesity was associated with more severe menopausal
symptoms (114). To determine the relationship between obese BC
patients and febrile neutropenia, Collins et al. conducted a single-
center, retrospective chart review (115). The results indicated that
obese patients had no increased risk of febrile neutropenia, but the
threshold for febrile neutropenia was lower and required more
antibiotics after chemotherapy. It is worth noting that up to 90%
of BC patients experience cancer-related fatigue (CRF), which is
considered the most durable and painful physical injury after
treatment. Inglis et al. evaluated the obesity impact on CRF in BC
patients and found that obese patients underwent higher CRF from
before chemotherapy to 6 months after chemotherapy (116). Active
measures related to weight loss interventions and diet changes may
improve the CRF degrees of obese BC patients pre- and
post-chemotherapy.

Aldo-keto reductase (AKR) is a supergene family which
comprises 14 families and more than 40 members. AKR enzymes
are NADPH-dependent oxidoreductases that can interconvert
carbonyl groups with alcohols. But recent studies have shown
that AKR1 takes part in the malignant transformation of some
human tumors, such as BC, and as well as in the resistance to cancer
treatment (1). AKR1C3, belonging to the AKR family, may play an
important role in the development of hormone-dependent or
hormone-independent BC. It is known that AKR1C3 is
abundantly expressed in BC and is associated with a worse
prognosis. AKR1C3 is also related to DOX resistance in human
BC (2). Byrns et al. confirmed that the expression of AKR1C3 in
MCF-7 cells resulted in the elevated ratio of 17b-estradiol:
progesterone, conferring a proliferative preponderance to BC cells
(3). AKR and carbonyl reductases (CBR) enzymes can metabolize a
variety of drugs and obese individuals can express high levels of
these enzymes. It seems that AKR and CBR enzymes might play an
important role in obesity-induced BC drug resistance. Sheng et al.
demonstrated that obesity was associated with higher adipose tissue
expression levels of AKR isoenzymes, including AKR1C1, AKR1C2,
and AKR1C3, prompting the inactivation of anthracyclines, such as
daunorubicin, by conducting mouse experiments and human tissue
verification for the first time (4). These alterations may lead to the
local reduction of efficacy of chemotherapy and result in BC
chemotherapy resistance.

The effect of obesity on BC patients receiving neoadjuvant
chemotherapy (NAC) is still a matter of debate. Some studies
have shown that obese and overweight patients are less likely to
achieve NAC pCR, while others have found no significant
difference in pCR between obese and non-obese women.
Karatas et al. assessed BMI and pCR to NAC and revealed that
obesity was associated with lower pCR to NAC and lower OS,
which may be caused by the reduction of therapeutic dose in this
group of patients due to obesity-induced chemotherapeutic
resistance (117). The NeoALTTO trial showed that obesity and
overweight were associated with a decreased chance of HER2+
luminal BC patients obtaining pCR (118). Notably, there was no
differential effect observed between BMI and pCR in HR– cases,
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leading to a statistically significant interaction between BMI and
HR status. Obese BC patients are known to have a lower pCR
rate, and more aggressive, dose-free chemotherapy combinations
could be considered for better efficacy. Farr et al. retrospectively
analyzed the obesity-related effects on pCR and survival (119).
The main finding was that obese women who received a full
unbounded dose of anthracycline-taxane-based NAC increased
pCR and benefited progression-free survival, which might also
lead to increased dose intensity associated with improved efficacy
and toxicity. Méndez-Hernández analyzed the serum and tissue
samples of primary BC patients in Mexican that received
neoadjuvant therapy and confirmed that the polymorphisms of
Leptin (LEP rs7799039) and adiponectin (ADIPOQ rs1501299)
were risk-contributing factors in overweight/obesity patients
(120). These genotypes influenced the response to
chemotherapy, indicating that the obese microenvironment
was more inclined to tumor progression and drug resistance by
defining TME.

The American Society of Clinical Oncology (ASCO) clinical
practice guidelines published a study on the appropriate
chemotherapy dose for obese adult cancer patients in 2012
(121). Morrison et al. added the evidence supporting the use of
actual weight-based dosages in accordance with the 2012 ASCO
guideline for appropriate chemotherapy dosing, including in older
cancer patients (122). Dose adjustment is a feasible strategy to
potentially improve long-term survival in obese patients without
increased toxicity. A prospective PANTHER study also showed
that customized, dose-intensive epirubicin/cyclophosphamide and
docetaxel were associated with improved BC relapse-free survival
in obese patients compared to standard care, but not in non-obese
patients (123). Natural phytochemicals can affect BC proliferation
and metastasis signaling networks by regulating chronic
inflammation related to excess, and sensitize the efficacy of
chemotherapy drugs on BC cells (124). Some novel
combinations of phytochemicals, developmental agents and/or
chemotherapeutic agents will facilitate the achievement of
effective solutions that expand and enhance multi-tiered
intervention strategies for BC prevention and treatment. A series
of further studies with a larger sample will enable us to better
understand the dynamic changes of obesity to BC chemotherapy
and other adjuvant treatments synergistically.

Endocrine Therapy
Since approximately 75% of BC express two hormone receptors;
ER and/or PR, adjuvant ET is used in the treatment of most BC
patients, including anti-estrogen therapy or suppression of
estrogen production (125). The standard therapy for most ER+
BC patients includes selective ER modulators and aromatase
inhibitors (AIs), which can counteract the tumorous on ER
activity or suppress the adipose tissue to aromatize androgens
into estrogen. Obesity increases the levels of circulating sex
hormones, including estrogen, and is associated with a higher
risk of ER+ BC and ET side effects. This will cause ET to be less
effective in obese women with BC. AIs are the treatment of
choice for some women with ER+ BC, but there are reports that
tamoxifen (Tx) may be more effective for obese women
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compared with AIs (126, 127). Zewenghiel et al. investigated the
effect of BMI on ET efficacy in postmenopausal women with
metastatic HR+ BC and showed that fulvestrant and AIs had no
difference in the efficacy among normal, overweight, and obese
women (128). Regarding the relationship between BMI and
decreased efficacy of AIs, the existing results are still
controversial. Obesity is associated with a reduced risk of fracture
in healthy postmenopausal women, but for patients with early BC
treated with AI, obesity may have the opposite effect. One possible
mechanism for this was that AIs inhibited estrogen production,
resulting in a loss of protection against fragility-related fractures
(129). Obesity may become an additional parameter for clinical
decisions to use bisphosphonates or denosumab to reduce fracture
risk in ET patients with AI.

The mechanism of obesity in promoting ET resistance is
complex and has been well concerned. In the athymic nude mice,
the obesogenic diet could induce obesity, glucose tolerance, and
hyperinsulinemia, and insulin resistance, which further mediated
letrozole resistance. This effect might partially be attributed to
the higher aromatase expression in the adipose tissue with
obesity (130). In order to understand the mechanism of the
weakened effect of ET on BC cells in the presence of the
adipocyte secretome, mature adipocytes were co-cultured with
BC cells and treated with ET (Tx, fulvestrant, Showing that the
interplay between the adipocyte group and cells together played
an important and complex role in ET resistance (131). Hagen
et al. quantified non-adherence and discontinuation to ET in
post-menopausal women with BC and found that overweight
and obesity were time-dependent risk factors predictive for ET
termination (125). Maintaining a normal BMI can improve ET
compliance in postmenopausal women with BC. Wellberg et al.
demonstrated that obesity and excess energy shaped a tumor
environment characterized by ET resistance, and identified the
participation of FGFR1 signaling in obesity-related BC
progression (132). In the co-culture system of MCF7 cells and
human adipocytes exposed to high Glucose, adipocyte-derived
IL-8 mediated the enhanced connective tissue growth factor
(CTGF) mRNA and reduced tamoxifen responsiveness of BC
cells (133). Moreover, targeting IL-8 in the TME could not only
reduce the inflammatory state but also indirectly modulate
CTGF, thus improving the effectiveness of tamoxifen treatment
in BC. Morgan et al. cultured the patient-derived stroma in an
organotypic breast model in vitro and found that MCF7-derived
ducts co-cultured with obese stromal cells possessed higher
maximal aromatization-induced ER transactivation and
reduced anastrozole sensitivity (134). This suggests that breast
adipose stromal cells from obese women decrease AI sensitivity
and supported obesity as a therapeutic for ER+ BC patients.
Strong et al. suggested that ER+ BC cells were responsive to the
obASCs with enhanced growth and EMT during direct co-
culture mode, whereas lnASCs were unable to increase ER+
BC growth (135). The mechanism validation showed the obASC-
derived leptin was a key molecule to drive BC tumorigenicity and
potential ET therapy. More intriguingly, compare to normal
control, the plasma exosomes from obese women significantly
promoted the BC cell proliferation, migration, invasion, and
Frontiers in Oncology | www.frontiersin.org 12
resistance to tamoxifen, indicating that the obese circulating
exosome was a potential mediator of adipose tissue involved in
tamoxifen resistance.

Specific adipokines could reduce the efficacy of ET in the
treatment of overweight/obesity. Bougaret et al. studied whether
mature adipocytes and their secretions from adipose stem cells of
normal-weight (MA20) or obese (MA30) women, could
influence the effects of Tx (136). In a co-culture 3D model, the
anti-proliferative effect of Tx on MCF-7 BC cells was
counteracted by MA30. Besides, leptin, IL-6, and TNF-a could
decrease the anti-proliferative efficacy of the active metabolite 4-
hydroxytamoxifen of Tx. Especially, it is worth noting that
obesity-related leptin has been confirmed to interfere with the
endocrine therapy outcomes in BC patients, such as tamoxifen.
Obese patients secrete a large amount of leptin to exert
proliferative, mitotic, anti-apoptotic, and pro-inflammatory
activities, thus may have antagonistic effects on the treatment
of Tx (137). For example, the in vitro leptin administration could
result in promoted tamoxifen-resistance via leptin/Ob-Rb/
STAT3 pathway by regulating the apoptosis-related genes
BCL2 and WWOX in HER2-overexpressing BC cells (138).
Besides, Qian et al. found that leptin-mediated tamoxifen
resistance of BC was correlated with the activation of ERK1/2
and STAT3 signaling and overexpression of cyclin D1 in MCF-7
BC cells by binding to ObRb (139). Similarly, Gelsomino et al.
found a role of obesity-related leptin in sustaining AIs resistance
that leptin signaling boosted the AIs resistant BC cell growth and
macrophage activation (140). Therefore, the hyperactive leptin
signaling network influences the BC through direct effects on
tumor cells or indirect impacts on different components of the
TME (141). This evidence highlights the clinical value of
targeting leptin in improving the hormone therapy for BC in
obese BC patients. In particular, identifying specific adipokine
levels could help individualize the management of overweight BC
patients. The efficacy of leptin-targeted drugs deserves in-depth
exploration in the individualized management of overweight BC
patients to improve clinical outcomes and decrease mortality.
Furthermore, because obesity loses an equilibrium in the energy
metabolism and has a modifiable nature, change body weight
index, adjust feature of fat metabolism, reduce adipose factor
maladjusted, have benefited greatly to performing cancer
prevention and cure.

Immunotherapy
Obesity has become a risk factor for an attenuated anti-tumor
immune landscape. Obesity may up-regulate the pro-inflammatory
adipokines and down-regulate the anti-inflammatory adipokines
expression levels, leading to an excessive adipokine secretion and a
persistent immune imbalance accompanied by a chronic
inflammatory. Importantly, the characteristics and functions of
immune cells have undergone largely impaired biological changes
with the obese state (142). The tumor-killing effector cells (CD8+ T)
were suppressed and the immunosuppressor cells (MDSCs/M2)
were over-activated to drive their recruitment and suppressive
capacity, which could be mediated by obesity-related molecular
markers, such as IL-6, CRP, leptin, IL-1b.
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For instance, in elderly mice given systemic anti-tumor
immunotherapy, obesity caused a fatal cytokine storm, which
increased M1 macrophage polarization, and proinflammatory
TNF-a and IL-6 release, leading to a reduced anti-tumor effect
and low survival rate (143). PD-L1 has been shown to be
overexpressed BC than in normal breast tissue and is closely
associated with tumor immune surveillance and prognosis.
Wang et al. found that obesity or metabolic syndrome-related
M1 macrophages up-regulated PD-L1 expression in TNBC by
partially secreting IL-6 in a JAK/STAT-dependent pathway,
which in turn affected immunotherapy targeting the PD-L1/
PD-1 axis in vitro (144). Gibson et al. firstly identified the effect
of obesity on MDSC-mediated immunotherapy resistance in a
BC mouse tumor model and found that obesity could lead to the
accumulation of FasL+ granulocytic MDSCs, thus promoting
apoptosis of tumor-Infiltrating CD8 T cells and immunotherapy
(adenovirus encoding TRAIL + CpG) resistance in BC (145). It
posed a novel pathway of MDSC-related resistance and its
disruption may improve immunotherapy outcomes in patients
with BC and obesity.

Overweight and obese women with BC are prone to acquire
worse clinical outcomes with antibody-based immunotherapy,
which has been confirmed by some clinical studies. The inherent
associations potentially operating to link obesity and prognosis
in BC are complex. The adipocyte secretion-associated alteration in
obesity, including the changes in the ratio of leptin to adiponectin,
the expression levels of pro-inflammatory cytokines, IGFs, and
estrogen, may be the mechanisms potentially leading to BC
immunotherapy resistance. For example, Ado-trastuzumab
emtansine (T-DM1) is a novel antibody-drug conjugate suitable
for the treatment of HER2+ BC. In obese patients receiving T-DM1
might require more treatment modifications secondary to adverse
events compared to non-obese patients (146). In a cohort of HER2-
metastatic BC patients treated with first-line paclitaxel and
bevacizumab, Pizzuti et al. found that BMI did not affect overall
response rate or disease control rate in the overall patient cohort,
but higher disease control rate associated with BMI ≥ 25 kg/m2 in
TNBC patients (147). Furthermore, in the NeoALTTO study
treated with neoadjuvant lapatinib, trastuzumab, or their
combination plus paclitaxel, obesity was associated with reduced
access to pCR in HER2+ luminal BC patients, but not in HER2-
cases (118). In a multicentre observational cohort study, Eriseld
et al. suggested that class I obesity was correlated with a worse OS in
HER2+ metastatic BC patients treated with pertuzumab and/or
trastuzumab emtansine (148).

On the other hand, immunotherapy side effects in these
patients caused by obesity should be closely monitored and
effectively managed. In addition, in a retrospective cohort
study, obesity might be a risk factor of cardiotoxicity in
HER2+ BC patients receiving trastuzumab, indicating the
necessity to prevent cardiotoxicity when receiving this regimen
for patients with obesity and other risk factors (149).
Furthermore, Wang et al. also addressed the predictive value of
obesity and affirmed that obesity was an independent risk factor
of trastuzumab-related cardiac toxicity in elderly BC patients
who received trastuzumab therapy (150).
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Totally, obesity may exert different effects depending on the
tumor type, immunotherapy method, and patient cohorts, which
is attributed to a variety of lifestyle, clinical and pathological
factors, emphasizing the significance of obesity as an important
evaluation factor for BC immunotherapy efficacy and side effects.
These findings pave the way to future research in taking into
account patient BMI, in clinical modification of combined
immunotherapy strategies aimed at obtaining an ideal
clinical outcome.

Weight Management
Observational evidence has linked physical inactivity and obesity
to an increased risk of BC and a poor outcome in BC. Recent
studies have revealed that weight management or interventions
via diet, physical activity, bariatric surgery could be important
determinants of BC risk and outcomes (151–157). As Lee et al.
reported that a 16-week of supervised aerobic and resistance
exercise interventions could decrease the 10-year risk of
cardiovascular disease in early BC women who were
overweight or obese (158). In the study of Sweeney et al., a 16-
week exercise significantly promoted the shoulder function in
overweight or obese women after BC treatment (159).

Physical activity can improve the health outcomes of BC
survivors by affecting insulin, IGF, insulin resistance, glucose
metabolism, sex hormones, adipokines, inflammatory factors,
oxidative stress, and DNA damage repair ability (160). A
randomized controlled trial displayed that a 16-week aerobic
and resistance exercise intervention could reduce M1 ATMs and
adipose tissue secretion of the pro-inflammatory cytokines IL-6
and TNF-a, and increase M2 ATMs and secretion of anti-
inflammatory cytokines such as adiponectin in obese post-
menopausal BC survivors (161). The HFD-fed and
ovariectomized mice showed a reduced anti-oxidative response
and inflammation in TME, accompanied by the change of
adiponectin and leptin in different tissues (162). It indicated
that in the case of obesity, spontaneous physical activity could
repress tumor progress by the interplay of adipose tissue, muscle
and tumor tissue. Besides, diet and exercise interventions
implemented in overweight/obese BC survivors may improve
metabolic risk, insulin resistance and leptin biomarkers. Travier
et al. designed a study that provided a 12-week diet and exercise
program for overweight/obese BC survivors (154). the metabolic
risk markers and insulin resistance indicators of BC survivors
were significantly improved, while the reduction in leptin was
not significant while adiponectin was significantly reduced. In
another 18-month weight-loss trial of overweight/obese BC
survivors women who lost >10% exhibited a significantly
increased expression in serum adiponectin, as well as the
improved adiponectin at 6 to 18 months despite weight regain
(163). Achieving this level of weight loss appeared to be related to
the regulation of adiponectin and was of great significance to the
overall adipokine environment including the adiponectin/leptin
ratio, insulin and PAI-1. Interestingly, Adams et al. enrolled 2
trials about the novel miRNAs that involved in BMI and weight
loss in BC development (164). The results showed that obesity
could affect the expression of tumor-associated miRNAs,
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highlight the potential mechanisms of the positive relationship
between BMI and BC risk. Therefore, moderate-to-vigorous
intensity resistance and aerobic exercise play positive roles in
attenuating adipose tissue inflammation in obese BC patients,
which could be beneficial for controlling BC.
CONCLUSION

Collectively, a large increasing body of evidence strongly verifies
obesity as a known risk factor for BC initiation and progression.
The prevalence of obesity is posing challenges in BC incidence
control and management considerations. Obesity is a very
complex abnormal state, accompanied by various physiological
and molecular alterations, which involves the complicated roles
of adipokines (leptin, adiponectin, resistin, visfatin, and SFRP5),
insulin, IGF, sex hormone, and chronic inflammation. These
factors will synthetically affect cell proliferation, angiogenesis
alteration, oncogene activation, oxidative stress, and immune cell
dysfunction, which capable of regulating the behavior of BC cells
and BC TME, ultimately. Targeting adipocyte-derived factors
may be a feasible therapeutic approach to improving the
prognosis of obese patients. On the other hand, obesity has
Frontiers in Oncology | www.frontiersin.org 14
recently been explored to present treatment resistance and
potential drug side effects in various BC regimens, including
surgery, RT, chemotherapy, ET, immunotherapy, and weight
management, posing challenges for the maximum efficacy and
minimum side effects of BC therapy (Figure 2).

Nevertheless, there are still some challenges to be addressed in
terms of obesity and BC. First of all, although the interest in
obesity and BC carcinogenesis gains momentum, the mechanism
studies of obesity-triggered BC in favor of BC prevention and
therapy are still investigational. Inflammation of adipose tissue
may contribute to BC independently of obesity. More thorough
and ongoing studies with large-scale in the future are warranted
to decipher the interrelationships and roles that underlie the
obesity-derived factors and BC conundrum. Secondly, in
different BC subtypes, especially the high incidence TNBC and
HER2+ BC, the relationship between obesity and prognosis is
unclear and the conclusions are not quite consistent. This might
attribute to the fact that obesity involves many confounding
factors including age, the presence or absence of CLSs,
population, menopausal status, and molecular type of the
tumor. It means that the influence extent and difference of
obesity on the treatment and prognosis of these BC subtypes
remains to be clarified. Thirdly, obesity might counteract the
FIGURE 2 | Therapeutic impact of obesity on breast cancer. Obesity could aggravate treatment resistance and potential drug side effects in various BC treatments,
including surgery, RT, chemotherapy, ET, immunotherapy, and weight management, posing challenges for the maximum efficacy and minimum side effects of BC
therapy. breast cancer, BC, breast cancer; RT, radiotherapy; CRF, cancer-related fatigue; ET, endocrine therapy. The figure was created with BioRender.com.
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benefits of BC treatment and raise the possible side effects. Some
of the associations with adverse outcomes may have to do with
poor therapeutic doses in obese patients due to dose-limiting
toxicity. Attention needs to be paid to individualized dosing and
close monitoring of treatment for BC patients with obese states.
Of cause, lifestyle interventions via weight control, such as
exercise, weight loss, and alimentary control, are considered as
emerging approaches for better prevention and survival of BC
patients. Fourthly, BMI is an index for weight in large amounts of
studies. But BMI is defined only in relation to weight and height,
which actually lacks body composition measure. Sometimes BMI
might be inaccurate in defining obesity or emaciation. Therefore,
the definition of body composition patterns and biomarkers
related to the true nature induced by obesity is necessary for
more accurate verification. Besides, key biomarkers of risk are
still lacking in obesity-related BC prevention, although ongoing
studies have been devoted to this area. The identification of more
specific biomarkers will provide mechanistic insight into
predicting the response to effect, adverse reaction, and resistance
of combined targeted therapies of BC patients with obesity. At last,
a comprehensive understanding of the biological mechanisms of
Frontiers in Oncology | www.frontiersin.org 15
obesity on treatment effectiveness and tolerance is necessary for
maximizing the efficacy of BC therapy. Addressing the obesity
state will allow the improvement of more personalized and
effective prevention and treatment strategies for BC.
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Activation of Antioxidant Defences of Human Mammary Epithelial Cells
Under Leptin Depend on Neoplastic State. BMC Cancer (2018) 18(1):1264.
doi: 10.1186/s12885-018-5141-8
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