
Structural bioinformatics

Identification of population-level differentially expressed

genes in one-phenotype data

Jiajing Xie1,2,†, Yang Xu1,2,†, Haifeng Chen3,†, Meirong Chi1,2, Jun He1,2, Meifeng Li1,2,

Hui Liu1,2, Jie Xia1,2, Qingzhou Guan1,2, Zheng Guo1,2,* and Haidan Yan1,2,*

1Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical

Sciences, Fujian Medical University, Fuzhou 350122, China, 2Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122,

China and 3Department of General Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

Associate Editor: Arne Elofsson

Received on January 2, 2020; revised on April 15, 2020; editorial decision on May 11, 2020; accepted on May 14, 2020

Abstract

Motivation: For some specific tissues, such as the heart and brain, normal controls are difficult to obtain. Thus, stud-
ies with only a particular type of disease samples (one phenotype) cannot be analyzed using common methods,
such as significance analysis of microarrays, edgeR and limma. The RankComp algorithm, which was mainly devel-
oped to identify individual-level differentially expressed genes (DEGs), can be applied to identify population-level
DEGs for the one-phenotype data but cannot identify the dysregulation directions of DEGs.

Results: Here, we optimized the RankComp algorithm, termed PhenoComp. Compared with RankComp,
PhenoComp provided the dysregulation directions of DEGs and had more robust detection power in both simulated
and real one-phenotype data. Moreover, using the DEGs detected by common methods as the ‘gold standard’, the
results showed that the DEGs detected by PhenoComp using only one-phenotype data were comparable to those
identified by common methods using case-control samples, independent of the measurement platform.
PhenoComp also exhibited good performance for weakly differential expression signal data.

Availability and implementation: The PhenoComp algorithm is available on the web at https://github.com/XJJ-stu
dent/PhenoComp.

Contact: Joyan168@126.com or guoz@ems.hrbmu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Significance analysis of microarrays (SAM) (Tusher et al., 2001),
edgeR (Robinson et al., 2010) and limma (Law et al., 2014; Ritchie
et al., 2015), are commonly used methods for identifying differen-
tially expressed genes (DEGs) between disease samples and normal
controls. However, some specific normal controls, such as the heart
and brain, are difficult to obtain for the corresponding disease re-
search. For example, healthy cardiac tissue is usually sampled from
donors who have died of chronic diseases or accidents (Molina-
Navarro et al., 2013). Thus, some heart disease studies have very
few or even no normal control (Ein-Dor et al., 2006). When a study
has no normal control, common methods needing case–control sam-
ples cannot be used. Moreover, due to the existence of batch effects
(Leek et al., 2010; Rung and Brazma, 2013), the normal controls
from different datasets cannot be directly used to identify DEGs for

datasets without normal controls (one-phenotype data). Although
there are some batch effect adjustment methods, such as distance-
weighted discrimination (Benito et al., 2004), ComBat (Johnson
et al., 2007), SVA (Leek et al., 2012), RUV (Peixoto et al., 2015)
and svaseq (Leek, 2014), these methods may distort the true bio-
logical signals (Loven et al., 2012; Wang et al., 2012) and even pro-
duce spurious group differences, especially when two groups are
unevenly distributed across different batches (Cai et al., 2018; Lazar
et al., 2013; Nygaard et al., 2016).

Previously, based on the finding that the within-sample relative
expression orderings (REOs) of genes in a particular type of normal
tissues are highly stable but are widely reversed in the corresponding
cancer tissues, we developed a method, termed RankComp, to iden-
tify DEGs for each disease sample (Wang et al., 2015). Notably, due
to the normal background, stable normal REOs in a particular type
of normal tissue are predetermined in accumulated normal controls
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from different sources, RankComp can be used to identify
individual-level DEGs for datasets without normal controls (or one-
phenotype data) through finding genes whose dysregulation may
lead to reversed REOs within the disease sample compared with sta-
ble normal REOs (Wang et al., 2015). After identifying individual-
level DEGs in a group of one-phenotype samples, RankComp can
detect population-level DEGs using the binomial test to identify a
nonrandom high percentage of samples sharing certain DEGs
(Wang et al., 2015). Because the REOs of genes within a sample are
robust against batch effects and insensitive to data normalization
(Geman et al., 2004; Tan et al., 2005), the REO-based method,
RankComp, can directly use data from different sources (Wang
et al., 2015). However, the dysregulation directions of DEGs are not
provided by the RankComp algorithm, which is important for dif-
ferential expression analysis.

In this study, we optimized the RankComp algorithm to improve
the detection power of DEGs and provide the dysregulation directions
of DEGs. The optimized algorithm was named PhenoComp. For a
particular type of disease, we clearly pointed out that the probabilities
of a gene being upregulated and downregulated should be estimated
separately in each of the disease datasets. The performance of
PhenoComp was evaluated by concordant analysis of DEGs identified
by it and the common methods in independent datasets for ischemic
cardiomyopathy (ICM) and glioma. We also compared the detection
power of PhenoComp with that of RankComp in simulated and real
one-phenotype data and evaluated whether PhenoComp could be
applied to identify DEGs between drug response and non-response
groups for estrogen receptor (ER)-negative breast cancer patients
with neoadjuvant chemotherapy response information.

2 Materials and methods

2.1 Data and preprocessing
As shown in Table 1, seven datasets for heart tissues, eight datasets
for brain tissues and three datasets for ER-negative breast cancer tis-
sues were downloaded from Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013), The
Cancer Genome Atlas (TCGA) data portal (http://tcga-data.nci.nih.
gov/tcga/) (International Cancer Genome Consortium et al., 2010)
and the Genotype-Tissue Expression data portal (https://www.gtex
portal.org/home/index.html) (GTEx Consortium et al., 2017).
Normal and ICM tissues were collected for heart tissues, and normal
and glioma tissues were collected for brain tissues. For breast tissues,
ER-negative breast cancer patients with neoadjuvant chemotherapy
response information were used in this study. The neoadjuvant
chemotherapy included paclitaxel, 5-fluorouracil, cyclophospha-
mide and doxorubicin. Responses to preoperative chemotherapy
were categorized as pathological complete response (pCR) or re-
sidual invasive disease (RD).

Here, gene expression profiles measured by the Affymetrix micro-
array platform were processed by the Robust Multi-array Average al-
gorithm for background adjustment without quantile normalization
(Irizarry et al., 2003). For the Illumina microarray platform, the proc-
essed data were directly downloaded from GEO for subsequent ana-
lysis. For the RNA-sequencing (RNA-seq) platform, the raw
sequencing data were downloaded and processed by Trimmomatic
(Bolger et al., 2014). We aligned the reads to the reference genome
(GRCh37) using hisat2 (Kim et al., 2015). Both count and reads per
kilobase million (RPKM) values were calculated for each gene using
StringTie (Pertea et al., 2015). We used the RPKM values of genes in
the REO-based methods, such as RankComp and PhenoComp, be-
cause the RPKM values could represent the actual expression abun-
dance of genes by normalizing both the gene length and sequencing
depth (Cai et al., 2018; Mortazavi et al., 2008; Trapnell et al., 2010;
Wagner et al., 2012). The count values were used for edgeR
(Robinson et al., 2010) and limma (Law et al., 2014).

2.2 The RankComp and PhenoComp algorithms
For a particular type of disease, our previously developed
RankComp was mainly used to identify DEGs for each of the

disease samples (Wang et al., 2015). Using RankComp, we first
identified highly stable REOs as the normal background (Wang
et al., 2015). For each gene pair, gj and gk (j¼1.m, k¼1.m, and
j 6¼ k), and let ej and ek represented the expression level of gj and gk,
respectively, and m represented the total number of genes. Then, the
REO of gj and gk in a sample was ej > ek or ej < ek. For RankComp,
an REO, keeping at least 99% of previously accumulated normal
samples, was defined as highly stable. Then, for each disease sample,
if a highly stable REO ej > ek or ej < ek in normal samples was
reversed (ej < ek or ej > ek) in the disease sample, the REO was
defined as reversal. Then, for a disease sample, through testing the
null hypothesis that the proportion of reversal REOs supporting the
upregulation of a gene was equal to the proportion of reversal REOs
supporting the downregulation of the gene, the Fisher’s exact test
was used to identify whether the gene was differentially expressed in
the disease sample (Wang et al., 2015). After rejecting the null hy-
pothesis, the gene in the disease sample was defined as upregulated
if the number of reversal REOs supporting the upregulation of the
gene was larger than the number of reversal REOs supporting the
downregulation of the gene; conversely, the gene was defined as
downregulated (Wang et al., 2015).

Here, we used a dataset with only n ICM samples as an example
to illustrate how the RankComp and PhenoComp algorithms iden-
tify population-level DEGs for one-phenotype data. As shown in
Figure 1, after identifying individual-level DEGs for each of the n
ICM samples using RankComp, we showed the differential expres-
sion statuses of all m genes in each of the n samples. The differential
expression statuses included upregulation, downregulation, and
non-differential expression (non-DE). Then, RankComp trans-
formed the upregulation and downregulation statuses of m genes in
n samples to the DE statuses, ignoring the dysregulation directions.
Finally, the binomial test was used to identify DEGs shared by a
nonrandom high percentage of ICM samples, namely, population-
level DEGs for the dataset. For each gene, the null hypothesis was
that p ¼ pde and the alternative hypothesis was p > pde. The P value
to determine whether a gene was population-level differentially
expressed was calculated as follows:

p ¼
Pn

i¼k

ð n
i
Þpi

deð1� pdeÞn�i; (1)

Table 1. Datasets used in this study

Tissues Datasets Platform Controla Caseb

Heart GSE42955 GPL6244 5 12

GSE22253 GPL6244 108 —

GSE57338 GPL11532 136 95

GSE141910 RNA-seq 166 —

GSE116250 RNA-seq 14 13

GSE26887c GPL6244 5 12

GSE46224c RNA-seq 8 8

Brain GSE35493 GPL570 9 —

GSE94349 GPL570 27 10

GSE68015 GPL570 16 11

GSE86574 GPL570 10 15

GSE26966 GPL570 9 —

GTEx RNA-seq 406 —

GSE50161c GPL570 13 34

TCGAc RNA-seq 5 156

Breast GSE20194 GPL96 27 37

GSE23988 GPL96 13 16

GSE20271 GPL96 8 26

aTissues sampled from normal heart, normal brain or pCR ER-negative

breast cancer.
bTissues sampled from ICM, glioma or RD ER-negative breast cancer.
cDatasets were independent datasets used to evaluate the performance of

the algorithms.
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where n and k are the total number of ICM samples in the dataset
and the number of ICM samples in the dataset with the gene being
DE status, respectively. The pde is the probability of observing a
gene being differentially expressed in an ICM sample by chance. For
RankComp, the pde was calculated as the average of the frequencies
of DEGs among the m genes for individual ICM samples (Wang
et al., 2015).

For differential expression analysis, the dysregulation directions
of DEGs were important information, but this key point was not
considered by RankComp. Here, we optimized the RankComp algo-
rithm to improve the detection power and provide the dysregulation
directions of DEGs. The optimized algorithm was named
PhenoComp. As shown in Figure 1, based on the individual-level dif-
ferential expression statuses (upregulation, downregulation and
non-DE) of m genes in n ICM samples identified by RankComp,
PhenoComp respectively produced two sets of genes, denoted Gup

and Gdown. A gene that was upregulated in at least one sample was
in the set of Gup. Similarly, a gene that was downregulated in at least
one sample was in Gdown. Then a gene that was upregulated in parts
of n samples and downregulated in some of the other samples were
in both Gup and Gdown. When the gene was in Gup, PhenoComp
transformed the downregulation status of the gene to non-DE status.
The upregulation status of the gene was transformed to the status of
non-DE when the gene was in Gdown. After transformation, the
genes in Gup only had two statuses of upregulation and non-DE, and
the genes in Gdown only had two statuses of downregulation and
non-DE. Then, using the binomial test, PhenoComp identified the

population-level upregulation and downregulation genes in Gup and
Gdown (Fig. 1). For each gene in Gup (Gdown), the null hypothesis
was that p ¼ pup (p ¼ pdown), and the alternative hypothesis was p >
pup (p > pdown). The probability of a gene being upregulated, pup,
was calculated as follows:

pup ¼ pde � pupjde: (2)

The pde was estimated as the median or average of the frequen-
cies of DEGs among m genes for individual ICM samples. The pupjde

was estimated as the median or average of the frequencies of upregu-
lated genes among DEGs for each of the n ICM samples. The prob-
ability of a gene being downregulated, pdown, was estimated in the
same way. The pdownjde was estimated as the median or average of
the frequencies of downregulated genes among DEGs for each of the
n ICM samples. The Benjamini–Hochberg procedure was used to
control the false discovery rate (FDR) in the multiple tests. Notably,
when a gene was identified as both upregulated and downregulated,
the gene was deleted.

2.3 Performance evaluation
Here, two independent datasets for ICM (GSE46224 measured by
RNA-seq and GSE26887 measured by microarray) and two inde-
pendent datasets for glioma (TCGA measured by RNA-seq and
GSE50161 measured by microarray) were used to evaluate the per-
formance of PhenoComp (Table 1). Notably, to illustrate the power
of PhenoComp and RankComp in detecting population-level DEGs

Fig. 1. RankComp and PhenoComp algorithms to identify population-level DEGs. For a dataset with only disease samples, we first identified the individual-level DEGs for a

particular type of disease sample using the stable REOs determined by previously accumulated normal samples as normal background. Then, based on the individual-level dif-

ferential expression statuses of genes, RankComp and PhenoComp developed different methods to infer population-level DEGs
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for one-phenotype data, the normal tissues in the independent data-
sets were not used when we identified population-level DEGs using
PhenoComp and RankComp. Here, a simulated experiment was
first used to evaluate the performance of the two methods. The one-
phenotype data, namely, the data with only the expression profiles
of a particular type of disease sample, were produced based on the
expression profiles of normal tissues in independent datasets (see
Section 3 for a detailed description of simulation experiments).
According to the simulated experiments, we determined the real
DEGs and non-DEGs and then calculated the sensitivity, specificity,
and F-score. The sensitivity (specificity) was calculated as the pro-
portion of correctly identified DEGs (non-DEGs) to all DEGs (non-
DEGs) and the F-score was calculated as follows:

F � score ¼ 2 ðsensitivity� specificityÞ
ðsensitivityþ specificityÞ 3ð Þ

However, we also used the DEGs identified by common methods
as the ‘gold standard’ to evaluate the performance of PhenoComp.
Then, we calculated the concordance score and the percentage of
overlapping genes (POG) score (Cai et al., 2018; Zhang et al., 2008)
to evaluate the consistency between DEGs identified by PhenoComp
and those identified by common methods. The number of overlap-
ping genes between the two lists of DEGs identified by two methods
was denoted as o, and the number of genes that had the same dysre-
gulation directions among the o genes was denoted as s. Then the
concordance score was calculated as s/o. Here, the binomial distri-
bution test was performed to evaluate whether the concordance
score of s/o occurred by chance. For two lists of DEGs with length l1
and l2, the POG score from list 1 (or 2) to list 2 (or 1), denoted as
POG12 (or POG21), was calculated as s/l1 (or s/l2). Common meth-
ods including edgeR, limma and SAM were used to detect
population-level DEGs using case–control samples in the independ-
ent datasets. EdgeR and limma were used for datasets measured by
RNA-seq. Limma and SAM were used for datasets measured by
microarray. However, because the DEGs were only significantly
enriched in pathways that contained a sufficient number of real
DEGs, we also evaluated the performance of PhenoComp by per-
forming enrichment analysis for DEGs detected by it.

2.4 Functional enrichment analysis
We downloaded 244 non-disease pathways with 6934 genes from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al., 2012) in April 2019. The pathways with at least 10 genes
remained in this study (Jung et al., 2019) and a metabolic pathway
with 1266 genes was discarded. Then the remaining 230 pathways
with genes ranging from 10 to 448 were used in this study. The
hypergeometric distribution model was used to test whether a set of
genes observed in a pathway was significantly more than that
expected by chance.

3 Results

3.1 Estimation of the probability of a gene being

upregulated and downregulated
First, RankComp was used to identify DEGs for each of the ICM
samples. We used 429 normal heart samples, including 180 samples
derived from GSE116250 and GSE141910 measured by RNA-seq
and 249 samples derived from three datasets (GSE42955,
GSE22253 and GSE57338) measured by microarray, to identify
highly stable REOs as the normal background. A total of 66 539 760
and 101 187 275 stable REOs were identified for datasets measured
by RNA-seq and microarray, respectively (Supplementary Table
S1). Among the 35 000 826 overlapping stable REOs in RNA-seq
and microarray, 99.36% (34 775 527) showed the same REO pat-
terns (binomial test, P<1.0E�16). Then, based on these across-
platform stable REOs, individual-level differential expression sta-
tuses of genes, including upregulation, downregulation and non-DE,
were identified for 140 ICM samples from five datasets with ICM
tissues using RankComp. Then, the frequencies of DEGs among all

of the genes, and upregulated and downregulated genes among all of
the DEGs, denoted as fde, fupjde and fdownjde, were calculated in each
ICM sample. The results showed that the distributions of the fde,
fupjde and fdownjde values varied widely across different datasets,
which suggests that the pde, pupjde and pdownjde, should be separately
estimated in each ICM dataset. For RankComp, the pde value in
ICM also needed to be estimated in each dataset when it was used to
infer population-level DEGs. However, RankComp did not clearly
illustrate that the pde value should be estimated in per dataset, or
only merged all analyzed datasets to calculate a mean value of fde as
the pde value. On the other hand, RankComp only used the mean
value of fde as the pde value but did not evaluate whether this method
was reasonable. For PhenoComp, the median (or mean) values of
fde, fupjde and fdownjde were 11.35% (14.91%), 59.65% (59.71%)
and 40.35% (40.29%) for independent dataset GSE46224 and
12.55% (15.59%), 70.45% (68.30%) and 29.55% (31.70%) for in-
dependent dataset GSE26887 (Fig. 2A), which were used as the pde,
pupjde and pdownjde values for the corresponding dataset.

For glioma, using 406 normal brain tissues measured by RNA-
seq and 71 normal brain tissues measured by microarray,
37 305 493 across-platform stable REOs were identified as normal
background (Supplementary Table S1). Then, according to the
individual-level differential expression statuses of genes in each gli-
oma sample identified by RankComp, the fde, fupjde and fdownjde val-
ues were calculated for each of the glioma samples. The result
showed that the distributions of the fde, fupjde and fdownjde values
were also different across different glioma datasets (Fig. 2B).
Therefore, we also evaluated the pde, pup and pdown in each glioma
dataset.

3.2 Evaluation of performance in simulated data
For the heart tissue, based on the expression profiles of eight normal
samples from GSE46224 measured by RNA-seq and five normal
samples from GSE26887 measured by microarray, we simulated
eight and five disease samples by randomly selecting 3000 genes and
changing their expression values in each of the normal samples with
FC levels of 1.5, 1/1.5, 2, 1/2, 2.5, 1/2.5, 3 and 1/3. The expression
values of the remaining genes in disease samples were the same as
those of the corresponding normal samples. The simulation experi-
ments were repeated 100 times for GSE46224 and GSE26887, re-
spectively. Using the same simulation method, we also produced
disease samples for the brain tissues based on the 5 and 13 normal
samples from TCGA and GSE50161. As shown in Figure 3, we set
the medians of fde, fupjde and fdownjde as pde, pupjde and pdownjde for
each dataset, PhenoComp had higher sensitivity than RankComp,
with a slight decrease in specificity in GSE46224 and GSE50161,
whereas no DEGs were identified by RankComp in GSE26887 and
TCGA with only five disease samples. Moreover, the DEGs identi-
fied by RankComp in each simulated experiment were all included
in the DEGs identified by PhenoComp in each dataset
(Supplementary Table S2). This result suggested that RankComp
may have insufficient power to detect DEGs for the one-phenotype
data with a small number of samples.

Here, we used the heart tissues as an example to further investi-
gate the impact of the number of samples in one-phenotype data.
We selected 5, 10, 20, 30 and 40 normal samples with the minimum
top 5, 10, 20, 30 and 40 GSM numbers from GSE141910 measured
by RNA-seq and GSE22253 measured by microarray, respectively.
Using the above simulation method, we produced 5, 10, 20, 30 and
40 disease samples based on their corresponding normal samples
from both GSE141910 and GSE22253. For PhenoComp, when the
number of disease samples was increased from 5 to 40 in
GSE141910, the sensitivity increased from 62.82% to 76.52% at
the cost of a decrease in specificity, from 77.18% to 60.28%, while
RankComp failed to identify any DEG when the number of disease
samples was five (Fig. 3B). In GSE22253, PhenoComp had higher
sensitivity than RankComp with a slight decrease in specificity
across different sample sizes (Fig. 3C). In both GSE141910 and
GSE22253, DEGs identified by PhenoComp included all DEGs iden-
tified by RankComp (Supplementary Table S2).
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We also used the mean values of fde, fupjde and fdownjde as pde,
pupjde and pdownjde to infer the population-level DEGs for
PhenoComp, and similar results were also observed for the simu-
lated data (Supplementary Fig. S1 and Table S3). Overall, these
results suggested that the detection power of both PhenoComp and
RankComp were enhanced when more disease samples in the one-
phenotype data were used to identify DEGs, and PhenoComp had
more robust power than RankComp, especially in small data.

3.3 Evaluation of performance in real data
Using the median values of fde, fupjde and fdownjde as pde, pupjde and
pdownjde in GSE46224 measured by RNA-seq, 1385 population-level
DEGs were identified by PhenoComp for ICM (FDR < 5%). With
FDR < 5%, 1677 and 1182 DEGs were identified by edgeR and
limma. In comparison with edgeR and limma, although the POG12

and POG21 were about 10%, the concordance scores of DEGs
reached 96%, which would be improved with a stricter FDR

(Fig. 4A). Moreover, the DEGs identified by PhenoComp, edgeR
and limma were separately enriched in seven, three and two path-
ways with FDR < 5% (Fig. 4B and Supplementary Table S4).
Because the DEGs could be significantly enriched in pathways only
when it contained a sufficient number of real DEGs, the results
showed that the DEGs for PhenoComp were comparable to those
identified by edgeR and limma. Similarly, 1963, 2519 and 4448
population-level DEGs were identified using PhenoComp, limma,
and SAM, respectively, in GSE26887 measured by microarray (FDR
< 5%). Compared with limma and SAM, the concordance scores
were 97.38% and 92.76%, and the POG12 (POG21) were 17.07%
(13.30%) and 25.47% (11.24%) (Fig. 4A). There were 11, 10 and
23 pathways that were enriched with DEGs identified by
PhenoComp, limma and SAM with FDR <5% (Fig. 4B and
Supplementary Table S4).

The dysregulation directions of DEGs were essential for differen-
tial expression analysis, but RankComp did not provide a method to
evaluate the dysregulation directions for the identified population-

Fig. 2. Distributions of the fde, fupjde and fdownjde in different datasets for ICM (A) and glioma (B). The black squares on the box represent the average values of the fde, fupjde

and fdownjde in each dataset

Fig. 3. Comparison of the performance of PhenoComp and RankComp in simulated data. The pup and pdown were estimated by the mean values of the fde, fupjde and fdownjde

for PhenoComp
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level DEGs. To compare the performance of PhenoComp and
RankComp, we defined a population-level DEG in a dataset identi-
fied by RankComp as an upregulated (downregulation) gene if at
least one disease sample within the dataset was upregulated (down-
regulated) in the gene and no disease sample within the dataset was
downregulated (upregulated) in the gene. Then, the population-level
DEGs, being upregulated in parts of samples and downregulated in
some other parts of samples, were defined as genes with uncertain
directions. Using RankComp, 999 and 1547 population-level DEGs
were identified in GSE46224 and GSE26887, respectively, and al-
most all of the DEGs had certain dysregulation directions (Fig. 4C).
Notably, all of the DEGs with certain dysregulation directions were

detected by PhenoComp in GSE46224 and GSE26887 by setting the
median values of the fde, fupjde and fdownjde as pde, pupjde and pdownjde.
Moreover, compared with RankComp, PhenoComp identified 386
and 416 new DEGs in GSE46224 and GSE26887. With P<5%,
there were 17 and 4 pathways that were enriched with 386 and 416
new DEGs, respectively (Supplementary Fig. S3). For example, the
adherens junction pathway (Celes et al., 2007; Lee et al., 2004) and
cardiac muscle contraction pathway (Greiwe et al., 2016) reportedly
play important roles in ICM.

For glioma, we also compared the population-level DEGs identi-
fied by PhenoComp with those identified by the common methods
in TCGA measured by RNA-seq and GSE50161 measured by

Fig. 4. Comparison of DEGs identified by different methods. (A) Concordance analysis of DEGs identified by two different methods. The pup and pdown were estimated by the

median values of the fde, fupjde and fdownjde for PhenoComp. Overlaps represent the DEGs identified by both PhenoComp and a common method (edgeR, limma or SAM). The

con_overlaps denotes the overlaps that have the same dysregulated directions in two lists of DEGs. POG12 represents the proportion of consistent overlaps among the DEGs

identified by PhenoComp. POG21 represents the proportion of consistent overlaps among the DEGs identified by the common method. (B) Number of pathways enriched with

DEGs identified by different methods. The DEGs identified with FDR <5% and FDR <1% were all analyzed for pathway enrichment analysis. (C) Comparison of DEGs iden-

tified by PhenoComp and RankComp. Uncertain genes were those DEGs identified by RankComp with uncertain directions. Overlap with uncertain genes denotes that genes

with uncertain directions identified by RankComp could be detected with clear dysregulation directions by PhenoComp
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microarray. In TCGA, 9787, 11 713 and 11 898 DEGs were identi-
fied by PhenoComp, edgeR and limma, respectively (FDR < 5%;
Fig. 4A). The concordance scores of DEGs were 84.38% and
82.64% for PhenoComp compared with edgeR and limma, respect-
ively (Fig. 4A), and the POG12 and POG21 were about 40%.
Although only about 40% of the DEGs identified by PhenoComp
could be reproducibly detected by the common methods, the over-
lapping DEGs were highly consistent. Moreover, with FDR <5%,
the DEGs identified by PhenoComp, edgeR and limma were
enriched in 41, 77 and 79 pathways, respectively (Fig. 4B and
Supplementary Table S4). Similar results were also obtained in
GSE50161.

For RankComp, 6952 and 4051 population-level DEGs were
identified in TCGA and GSE50161, respectively. There were 565
DEGs in TCGA and 57 DEGs in GSE50161 with uncertain direc-
tions (Fig. 4C). Notably, in both TCGA and GSE50161, the DEGs
identified by RankComp with certain dysregulation directions were
all included in those identified by PhenoComp (Fig. 4C).
PhenoComp also identified 2837 and 2044 new DEGs in TCGA and
GSE50161, respectively. With FDR<0.2, only one pathway, corti-
sol synthesis and secretion, was enriched in the 2837 new DEGs,
and no pathway was enriched in the new 2044 DEGs. With a loose
statistical control P<5%, the 2837 and 2044 new DEGs were
enriched in 3 and 10 KEGG pathways, respectively (Supplementary
Fig. S3).

Simultaneously, we also used the mean values of the fde, fupjde

and fdownjde as pde, pupjde and pdownjde to infer the population-level
DEGs for PhenoComp, and similar results were also observed for
ICM and glioma (Supplementary Figs S2 and S4). Hence, these
results suggested that both median and mean values of the fde, fupjde

and fdownjde could be used to estimate pup and pdown for
PhenoComp.

3.4 Performance of PhenoComp in weak differential

expression signal data
To further show that PhenoComp could identify DEGs even when
the differential expression signals were weak, three datasets of ER-
negative breast cancer patients with neoadjuvant chemotherapy re-
sponse data were collected (Table 1). According to the chemother-
apy response information, the ER-negative breast cancer patients
were divided into two groups: pCR and RD. For limma with FDR
<5%, zero DEGs were detected between RD and pCR groups in
three datasets. For SAM with FDR <5%, only 52 DEGs were identi-
fied in GSE20194, and zero DEGS were identified in both
GSE23988 and GSE20271 (Fig. 5A). Using the 39 347 969 stable
REOs identified by the 48 pCR samples merged from GSE20194,

GSE23988 and GSE20271, individual-level DEGs for each of the 79
RD samples were identified. Then, using PhenoComp by setting the
medians of the fde, fupjde and fdownjde as pde, pupjde and pdownjde,
2702, 4973 and 368 DEGs were identified in GSE20194, GSE23988
and GSE20271 (FDR < 5%), respectively. Moreover, the concord-
ance scores of DEGs in any two of the three datasets were >97%
(Supplementary Table S5). A total of 6250 DEGs were identified by
PhenoComp in GSE20194, GSE23988 and GSE20271, including
3376 upregulated genes and 2874 downregulated genes. There were
18 and 20 biological pathways enriched with 3376 upregulated
genes (Fig. 5B) and 2874 downregulated genes (Fig. 5C), respective-
ly. Most of the enriched pathways were reportedly involved in
chemotherapy resistance, such as Retinol metabolism (Chen et al.,
1997), DNA replication (Warner et al., 2017) and cell-cycle path-
ways (Ingham and Schwartz, 2017). When the pup and pdown were
estimated by the mean values of the fde, fupjde and fdownjde, the simi-
lar results were also observed (Supplementary Fig. S5 and Table S6).

4 Discussion

In this study, PhenoComp was mainly developed to identify
population-level DEGs for datasets with only one phenotype, which
is of special importance for heart and brain disease analysis due to
the lack of normal controls. Compared with the original RankComp
algorithm, the optimized PhenoComp clearly illustrated how to esti-
mate pup and pdown, and provided the dysregulation directions of
population-level DEGs and showed better detection power in both
simulated and real one-phenotype data, especially for data with
small sample size. Moreover, the DEGs inferred by PhenoComp
using only one-phenotype data were comparable with those identi-
fied by the common methods using two-phenotype data, and
PhenoComp could capture the weak differential expression signals,
which was hardly detected by the common methods. Particularly,
because the REOs of genes within individual samples were insensi-
tive to batch effects and data normalization (Geman et al., 2004;
Tan et al., 2005), and the normal background was across-platform,
the REO-based PhenoComp could be applied to analyze a particular
type of disease data from different sources and by different
platforms.

For each independent dataset, due to a lack of real DEGs, we
used the simulated experiments to estimate the performance of
PhenoComp. In a one-phenotype dataset, the detection power of
both PhenoComp and RankComp will be improved when more dis-
ease samples are included in the dataset. Especially, in small data,
PhenoComp showed better detection power than RankComp. On
the other hand, the DEGs detected by the common methods were

Fig. 5. Analysis of preoperative chemotherapy response data of breast cancer. (A) Number of DEGs identified by PhenoComp, SAM and limma in GSE20194, GSE20271 and

GSE23988, respectively. The pathways enriched with upregulated genes (B) and downregulated genes (C) identified by PhenoComp. GeneRatio denoted the proportion of

DEGs within a pathway among the total genes within the pathway
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also used as the ‘gold standard’. Although the POG12 and POG21

scores were relatively low for both ICM and glioma, the concord-
ance scores of DEGs between PhenoComp and one of the common
methods were high in each independent dataset. The results sug-
gested that the DEGs detected by PhenoComp were reliable, and dif-
ferent portions of DEGs may be detected by different methods in
each dataset. For ICM, the DEGs identified by PhenoComp were
significantly enriched in many biological pathways related to it,
such as cytokine-cytokine receptor interaction (Cinquegrana et al.,
2005) and cell adhesion molecules (Ortega et al., 2016). We also
applied PhenoComp to analyze for glioma. The DEGs identified by
PhenoComp were also significantly enriched in many biological
pathways related to glioma, such as mTOR signaling pathway
(Yuan et al., 2017). Given that DEGs can be significantly enriched
in pathways only when it contains a sufficient number of real DEGs,
this result provided an additional clue to prove the reliability of the
DEGs identified by PhenoComp.

In addition, PhenoComp can also be used for data lacking a suf-
ficient number of normal controls by combining these normal con-
trols with previously accumulated normal controls to construct a
normal background. For multi-class data, PhenoComp cannot be
directly used to identify population-level DEGs. A possible way to
solve this problem is to transform the multi-class (e.g. five-class)
samples into multiple groups (10 groups) of two-class samples and
identify DEGs for each group of two-class samples by PhenoComp.
Then the DEGs shared in a nonrandom high percentage of groups
by using the binomial test might be defined as population-level
DEGs for the multi-class samples.

In summary, PhenoComp is an efficient algorithm for analyzing
specific types of data, including one-phenotype data and weak dif-
ferential expression signal data, independent of the measurement
platform used.
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