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Oesophageal adenocarcinoma, which arises from an acquired columnar lesion, Barrett’s metaplasia, is rising in incidence more rapidly
than any other cancer in the Western world. Elevated expression of c-MYC has been demonstrated in oesophageal adenocarcinoma;
however, the expression of other members of the MYC/MAX/MAD network has not been addressed. The aims of this work were to
characterise the expression of c-MYC, MAX and the MAD family in adenocarcinoma development and assess the effects of
overexpression on cellular behaviour. mRNA expression in samples of Barrett’s metaplasia and oesophageal adenocarcinoma were
examined by qRT–PCR. Semi-quantitative immunohistochemistry and western blotting were used to examine cellular localisation
and protein levels. Cellular proliferation and mRNA expression were determined in SEG1 cells overexpressing c-MYCER or MAD1
using a bromodeoxyuridine assay and qRT–PCR, respectively. Consistent with previous work expression of c-MYC was deregulated
in oesophageal adenocarcinoma. Paradoxically, increased expression of putative c-MYC antagonists MAD1 and MXI1 was observed
in tumour specimens. Overexpression of c-MYC and MAD proteins in SEG1 cells resulted in differential expression of MYC/MAX/
MAD network members and reciprocal changes in proliferation. In conclusion, the expression patterns of c-MYC, MAX and the
MAD family were shown to be deregulated in the oesophageal cancer model.
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The incidence of oesophageal adenocarcinoma has increased more
rapidly over the past three decades than any other cancer in the
Western world and continues to rise (Bollschweiler et al, 2001;
Lagergren, 2005). The prognosis for patients with oesophageal
adenocarcinoma remains extremely poor with median survival
time merely 18 months post-diagnosis and 5-year survival rates
approximating just 10% in most European populations (Sant et al,
2003). Barrett’s metaplasia, characterised by the replacement of the
native stratified squamous epithelium of the distal oesophagus
with a heterogeneous columnar mucosa, is the most prominent
risk factor for oesophageal adenocarcinoma (Jankowski et al, 2000;
Lagergren, 2005). The estimated annual risk of progression
to adenocarcinoma in individuals with Barrett’s metaplasia is
0.2–1%, which equates to 30– 125 times the risk in the general
population (Hage et al, 2004; Solaymani-Dodaran et al, 2004).

c-MYC is an oncogenic transcription factor, which, as part of
a heterodimeric complex with MAX, activates the expression of a
diverse range of genes implicated in cellular processes such as
cell growth, proliferation, loss of differentiation and apoptosis
(Nesbit et al, 1999; Grandori et al, 2000). Deregulated or elevated
expression of c-MYC has been documented in a wide range of
human malignancies and is often associated with tumours of an
aggressive, poorly differentiated phenotype (Dang, 1999; Nesbit
et al, 1999). The role of c-MYC in tumorigenesis is complex; its

activation is mediated by a wide range of direct and indirect
mechanisms (Salghetti et al, 1999; Bernasconi et al, 2000;
Chiariello et al, 2001) and its precise role in cell proliferation,
growth arrest and apoptosis is dependent on tissue type and
environment (Pelengaris et al, 2000). In addition, myc over-
expressing mice demonstrate increased incidence of tumours
(Pelengaris et al, 1999). The expression of c-MYC in human
oesophageal malignancy has previously been documented, de-
monstrating that c-MYC expression is elevated in Barrett’s
metaplasia and further overexpressed in oesophageal adenocarci-
noma (Tselepis et al, 2003; Schmidt et al, 2007). The gene encoding
c-MYC is located within chromosomal region 8q23– 24.2, a region
frequently amplified in adenocarcinomas of the oesophagus and
gastro-oesophageal junction and that has been detected in Barrett’s
metaplasia (Walch et al, 2000; Croft et al, 2002; Doak et al, 2003;
van Dekken et al, 2006).

The MAD family of transcriptional repressors, including MAD1
and MXI1, also bind to MAX and are believed to antagonise the
activity of MYC proteins by competing for MAX-binding and
interaction with E-box sequences in target gene promoters, and by
actively repressing transcription of MYC target genes (Ayer et al,
1993; Zervos et al, 1993; Hurlin et al, 1995b). Their roles in
terminal differentiation and growth arrest, and their ability to
block MYC-induced transformation have led to them being
postulated as tumour suppressor genes (Ayer et al, 1993; Zervos
et al, 1993; Cultraro et al, 1997; Queva et al, 1998). However, to
date little evidence to confirm this has been published and there is
conflicting evidence as to whether putative MYC antagonist MXI1
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is lost or mutated in human cancers (Gray et al, 1995; Bartsch et al,
1996; Kuczyk et al, 1998).

There have been a number of isoforms of MXI1 isolated from
glioblastoma and haematological cells that suggest dominant
negative activity; antagonising the normal activity of MXI1 and
demonstrating differential expression (Engstrom et al, 2004;
Kawamata et al, 2005). Of particular interest is MXI1-0, an isoform
with an alternative first exon, which demonstrates elevated
expression in glioblastoma, aberrant cellular localisation and fails
to repress c-MYC dependent transcription (Engstrom et al, 2004).

While c-MYC expression has been widely characterised in
oesophageal adenocarcinoma, expression of members of the MAD
family of putative c-MYC antagonists is yet to be studied in any
detail in gastrointestinal carcinogenesis. The gene-encoding
MAD1 (MXD1) has previously been identified as one of six genes
downregulated at the transcriptional level in oesophageal adeno-
carcinoma (Hourihan et al, 2003), however, this observation has
not been confirmed and other members of the MAD family have
not been addressed. We hypothesised that MAD expression would
be repressed in the progression of oesophageal adenocarcinoma in
a reciprocal pattern to c-MYC. Overexpression of MAD family
proteins in other cell systems has demonstrated decreased cell
cycling and reduced apoptosis, therefore, we postulate that
modulating the expression of MAD1 would have a similar effect
in SEG1 cells and may represent a mechanism by which tumour
growth could be retarded.

MATERIALS AND METHODS

Ethics

This work has been carried out in accordance with the Declaration of
Helsinki (2000) of the World Medical Association. Ethical approval
for this study was approved by University Hospital Birmingham Trust
(LREC 2003/331). All patients provided informed written consent.

Patient tissue

(i) Oesophageal adenocarcinoma resection specimens. Samples
of oesophageal adenocarcinoma (n¼ 37), some of which were
matched with Barrett’s metaplasia (BM) from the same
resection specimen (n¼ 11), were collected during surgery
and each tissue specimen was divided for RNA and protein
extraction and pathological confirmation.

(ii) Endoscopic specimens. Samples of long segment (X3 cm)
Barrett’s metaplasia (n¼ 14), defined as columnar mucosa with
intestinal type goblet cells, with matched normal oesophageal
squamous mucosa (S) and gastric fundal mucosa (F) from the
same patient were collected during routine endoscopy. Any
patients with Barrett’s metaplasia with evidence of dysplasia or
adenocarcinoma were excluded from this study.

(iii) Archived tissue. Paraffin sections of normal oesophagus
(n¼ 10), normal gastric fundus (n¼ 10), Barrett’s metaplasia
(n¼ 25), Barrett’s with dysplasia (BD, n¼ 20) and oesophageal
adenocarcinoma (OAC, n¼ 25) were identified within an
archived tissue bank, Department of Pathology, Queen Elizabeth
Hospital Birmingham, and processed for immunohistochemistry.

Quantitative real-time RT–PCR

Quantitative real-time RT– PCR (qRT–PCR) was performed as
described previously (Brookes et al, 2006) using 18S ribosomal
RNA as an internal standard (Applied Biosystems, Warrington,
UK) and sets of primers and 50FAM 30TAMRA probes listed in
Table 1.

Western blotting

Western blotting was performed as described previously (Brookes
et al, 2006) with a mouse monoclonal antibody to c-MYC
(1mg ml�1, clone 9E10, Applied Biosystems) or a rabbit polyclonal
antibody to MAD1 (1 mg ml�1, clone C-19, Autogen Bioclear,
Calne, Wiltshire, UK) or MXI1 (1 mg ml�1, clone G-16, Autogen
Bioclear). A mouse monoclonal antibody to cytokeratin 19
(CK19) (0.5mg ml�1, cloneA53-B/A2.26; Merck Chemicals Ltd,
Nottingham, UK) was employed for normalisation of epithelial
protein loading. Immunoreactive bands were subject to densito-
metry using a BioRad GS800 calibrated densitometer and Quantity
one software. Where available a blocking peptide was used to
confirm specific immunoreactive bands (MAD1 5 mg ml�1; MXI1
5 mg ml�1).

Immunohistochemistry

Immunohistochemistry was performed as previously described
(Brookes et al, 2006) using microwave antigen retrieval and
antibodies to c-MYC (2mg ml�1), MAD1 (2 mg ml�1, clone FL-221,
Autogen Bioclear), MXI1 (2.7mg ml�1) or MAX (50 ng ml�1, clone
C-17, Autogen Bioclear). Positive control tissue was included, and
omission of primary antibody and, where available, blocking
peptides (MXI1 13.5mg ml�1; MAX 250 ng ml�1) were used as
negative controls. The slides were scored by a previously described
method for (i) intensity of staining (0¼ negative, 1¼weak,
2¼moderate, 3¼ intense) and (ii) percentage of epithelial cells
staining (0¼ 0 –5%; 1¼ 6 –25%; 2¼ 26–50%; 3¼ 51– 75%;
4¼ 76–100%). These two values were multiplied to yield a final
staining score of between 0 and 12. In addition, cellular localisation
was assessed (Di Martino et al, 2006). All sections were scored
independently by two observers.

Cell culture

The cell line SEG1 (Hughes et al, 1997; a kind gift of Dr David Beer,
University of Michigan, Ann Arbour, MI) was routinely cultured in
DMEM with 10% FCS supplemented with 100 U ml – 1 penicillin and
0.1 mg ml – 1 streptomycin (Invitrogen, Paisley, Renfrewshire, UK).

Table 1 Taqman probe and primer sequences used for qRT–PCR

Gene Sequence

MYC
Forward TCAAGAGGTGCCACGTCTCC
Reverse TCTTGGCAGCAGGATAGTCCTT
Probe CAGCACAACTACGCAGCGCCTCC

MXD1
Forward CCTTAAAACGGAGGAACAAATCC
Reverse AGCGAAGATGAGCCCGTCTA
Probe AAAAGAATAACAGCAGTAGCAGATCAACTCACAATGAAA

MXI1 (Exon 1/2 boundary)
Forward GGGAGCGAGAGTGTGAACATG
Reverse TTCTGTGCCCGGCTCAAC
Probe CCCGACTGCAGCATTCAAAGCCC

MXI1-0 (Exon 0/2 boundary)
Forward CTACCTGGAGCAGATCGAGAAAG
Reverse TCGGCATGGACGGGAAT
Probe AAACAAAAAGTGTGAACATGGCTACGCCTC

MAX
Forward AGGTGGAGAGCGACGAAGAG
Reverse GTGCATTATGATGAGCCCGTTT
Probe CCGAGGTTTCAATCTGCGGCTGAC
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Cells were transfected with pcDNA3.1-MYCER, encoding a
chimeric protein that consists of human c-MYC fused at its
carboxyl terminus to the hormone-binding domain of a mutant
mouse oestrogen receptor (Littlewood et al, 1995), pcDNA3-MAD1
or the corresponding empty vector using Lipofectamine and Plus
reagent according to manufacturer’s instructions (Invitrogen).
Twenty-four hours after transfection with c-MYCER, the fusion
protein was activated by replacing the medium with 100 nM

4-hydroxytamoxifen (4-OHT) (or control medium). Cells were
cultured for a further 24 h before cells processing for RNA or
protein or up to 96 h for a proliferation assay.

Bromodeoxyuridine incorporation assay

A colorimetric cell proliferation ELISA was performed according
to the manufacturer’s instructions (Roche Applied Biosystems,
Burgess Hill, Sussex, UK). Briefly, cells were labelled with
bromodeoxyuridine (BrdU) followed by fixation and incubation
with anti-BrdU peroxidase, the immune complex was then
detected using a 3,3,5,5-tetramethylbenzidine substrate reaction
with the reaction product assessed at 370 nm.

Statistics

All data are presented as means±1 s.e.m. Statistical significance
was calculated using paired t-test for mRNA analysis, Mann–
Whitney test for analysis of immunohistochemical staining and
unpaired Student’s t-test for in vitro data. Significance was
accepted at Pp0.05. All analyses were performed using SPSS
version 10.0 (SPSS Inc., Chicago, Illinois, USA).

RESULTS

mRNA expression of the MYC/MAX/MAD network in
Barrett’s metaplasia and oesophageal adenocarcinoma

Quantitative real-time RT–PCR was utilised to assess the
expression of the mRNAs encoding c-MYC, MAD1, MXI1,
MXI1-0 and MAX in normal epithelia, Barrett’s metaplasia and
oesophageal adenocarcinoma specimens. This revealed that all the
transcripts analysed were expressed at a higher level in oesopha-
geal adenocarcinoma tissue than in matched normal gastric
(Figure 1) and oesophageal (data not shown) controls. The only
gene to be significantly altered in Barrett’s metaplasia in
comparison with normal gastric mucosa was MXI1-0, the
alternatively transcribed isoform of MXI1. When expression in
adenocarcinoma was evaluated in comparison to matched Barrett’s
metaplasia it was apparent that expression of MYC, MXI1 and
MAX were significantly elevated in the malignant transformation
of Barrett’s metaplasia.

Expression of MYC and MAD family proteins in Barrett’s
metaplasia and oesophageal adenocarcinoma

Western blotting analysis was employed to confirm the alteration
in expression at the protein level. In comparison to matched
normal gastric controls the expression of c-MYC and MXI1 was
significantly upregulated in Barrett’s metaplasia; conversely, the
expression of MAD1 was significantly lower in the metaplastic
lesion than in the normal mucosa (Figure 2). In accordance with
the mRNA data c-MYC, MAD1 and MXI1 expression was
significantly higher in oesophageal adenocarcinoma than in
matched normal gastric controls. While a difference in MYC and
MXI1 was demonstrated between Barrett’s metaplasia and
adenocarcinoma at the level of mRNA, there was no significant
alteration in protein expression in malignancy. However, while
MXD1 expression was not altered at the transcript level, MAD1
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Figure 1 mRNA expression of MYC/MAX/MAD network genes in
Barrett’s metaplasia and oesophageal adenocarcinoma. qRT–PCR was
used to examine expression of genes encoding c-MYC, MAD1, MXI1,
MXI1-0 and MAX in Barrett’s metaplasia (BM n¼ 25) and oesophageal
adenocarcinoma (OAC n¼ 37). Graphs represent mean fold change
relative to matched normal gastric control (G, normalised to one)
±1 s.e.m. * denotes significant change relative to G, 1 denotes significant
difference between BM and OAC (Po0.05).
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protein was expressed more highly in adenocarcinoma than
Barrett’s metaplasia.

Immunolocalisation of MYC/MAX/MAD network proteins
in the progression to oesophageal adenocarcinoma

Immunohistochemical staining was utilised to establish MYC/
MAX/MAD network protein localisation in normal oesophageal
and gastric epithelia, Barrett’s metaplasia, dysplastic Barrett’s
epithelium and oesophageal adenocarcinoma (Figure 3). To allow
semi-quantitative evaluation of protein expression, the epithelial
component of each section was scored as described in the methods
for intensity of immunoreactivity and percentage of epithelial cells
stained (Di Martino et al, 2006) (Table 2).

c-MYC staining in native squamous oesophageal epithelium was
confined to the nuclei of cells in the proliferative basal layer.
No immunoreactivity was observed on sections of normal gastric
fundus. Barrett’s metaplasia exhibited weak to moderate nuclear
staining; however, heterogeneity is suggested since staining was
not evident in all glands within a single specimen. Dysplastic
Barrett’s glands demonstrated evidence of nuclear and cytoplasmic
c-MYC expression. Immunoreactivity was widespread and intense
in the majority of adenocarcinoma sections, indicating both
nuclear and cytoplasmic expression in most cases (Figure 3).
Semi-quantitative analysis suggested that c-MYC expression in
dysplastic Barrett’s mucosa and adenocarcinoma tissue was
significantly higher than in normal oesophageal and gastric
mucosae. Expression in Barrett’s metaplasia was lower than in
both dysplasia and adenocarcinoma but significantly higher than
in normal stomach (Table 2).

Weak diffuse cytoplasmic MAD1 immunoreactivity was ob-
served in normal oesophageal and gastric mucosae and Barrett’s
metaplasia. In squamous epithelium staining was localised to the

suprabasal differentiated compartment of the epithelium, gastric
mucosa also demonstrated evidence of nuclear immunoreactivity
in some of the positively stained glands. Only 25% of Barrett’s
metaplasia displayed MAD1 immunoreactivity, similarly half of
the examples of dysplastic Barrett’s epithelium remained negative;
immunoreactivity on the positive sections was indicative of
increased cytoplasmic expression in both cases. Staining in
adenocarcinoma was more evident, with sections demonstrating
cytoplasmic staining with intensity ranging from weak to strong
(Figure 3). Semi-quantitative analysis indicated that expression in
adenocarcinoma was greater than normal oesophageal and gastric
epithelia and non-dysplastic Barrett’s metaplasia (Table 2).

The majority of normal oesophageal epithelium sections did not
display any MXI1 immunoreactivity, in those that did staining was
weak and localised to the nuclei and cytoplasm of the epibasal
cells. In gastric fundus expression of MXI1 was limited, with a
small amount of weak cytoplasmic staining in some sections; the
nuclei of the adjacent lymphoid cells stained positively for MXI1.
Immunoreactivity was evident in approximately one-third of
Barrett’s metaplasia specimens and demonstrated cytoplasmic
expression of weak to moderate intensity. A pattern of expression
also evident in dysplastic tissue with staining consistently
moderate in intensity. MXI1 immunoreactivity in oesophageal
adenocarcinomas was largely moderate in intensity and cyto-
plasmic in localisation (Figure 3). Epithelial immunoreactivity in
tumours was significantly more intense and widespread than in
normal oesophagus, stomach and benign and dysplastic Barrett’s
metaplasia (Table 2).

In normal oesophageal epithelium MAX immunoreactivity was
moderately intense in the nuclei and weak in the cytoplasm of the
suprabasal layers of the stratified epithelium. In normal fundal
mucosa immunoreactivity was moderately intense and largely
nuclear; Barrett’s metaplasia however, displayed weak immuno-
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Figure 2 MYC/MAX/MAD network protein expression in Barrett’s metaplasia and oesophageal adenocarcinoma. Expression of c-MYC, MAD1 and MXI1
protein was examined in Barrett’s metaplasia (BM n¼ 6) and oesophageal adenocarcinoma (OAC n¼ 15) with matched normal gastric mucosa (G) by
western blotting. Immunoreactive bands were assessed by semi-quantitative densitometry. Expression in BM and OAC is expressed relative to G
(normalised to one); cytokeratin 19 (CK19) was employed for normalisation of protein loading. A representative western blot for each protein is shown
alongside densitometry data representing mean expression change ±1 s.e.m. * denotes significant change relative to G, 1 denotes significant change between
BM and OAC.
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reactivity that was predominantly cytoplasmic. Staining in
Barrett’s dysplasia was also cytoplasmic but of moderate intensity.
Adenocarcinoma sections displayed MAX immunoreactivity loca-
lised to both nuclei and cytoplasm (Figure 3). Semi-quantitative
analysis suggested that MAX expression was significantly higher in

adenocarcinoma than in normal mucosae and Barrett’s metaplasia
(Table 2).

Overexpression of c-MYCER and MAD1 in SEG1 cells

An oesophageal adenocarcinoma cell line, SEG1, was transiently
transfected with pcDNA3.1-MYCER, pcDNA3-MAD1 or the
corresponding empty vectors. To activate c-MYC 4-OHT was
applied to the cells 24 h after transfection. Significant over-
expression of c-MYC and MAD1 was demonstrated at mRNA
and protein level by qRT–PCR and western blotting, respectively
48 h following transfection (Figure 4A and B).

The expression of other members of the MYC/MAX/MAD
network was assessed in transfected cells. MYCER expressing cells
demonstrated elevated levels of the mRNA encoding MXI1-0
(Po0.001) (Figure 5A), whereas MAD1-overexpressing SEG1 cells
demonstrated elevated MYC, MXI1 and repressed MAX expression
(P¼ 0.002, P¼ 0.014, P¼ 0.03, respectively) (Figure 5B). Activated
SEG1-MYCER cells demonstrated significantly higher BrdU
incorporation over 72 h than the untreated controls (107±2%,
P¼ 0.024), conversely SEG1-MAD1 proliferated at a significantly
slower rate than mock transfected controls (87±2%, P¼ 0.006).
These overexpression studies were similarly reproduced in other

S 

c-MYC

MAD1

MXI1

MAX

F BM OAC

Figure 3 Immunolocalisation of MYC/MAX/MAD network proteins in Barrett’s metaplasia and oesophageal adenocarcinoma. Paraffin sections of normal
oesophagus, normal gastric fundus, Barrett’s metaplasia and oesophageal adenocarcinoma were subjected to immunohistochemistry using antibodies
designed against c-MYC, MAD1, MXI1 and MAX. Magnification � 40.

Table 2 Semi-quantitative analysis of c-MYC network proteins in the
oesophagus

Protein Mean score of immunoreactivity

S F BM BD OAC

c-MYC 1.50±0.2 0.50±0.3 2.42±0.5z 4.00±0.7*z1 7.70±0.8*z1
MAD1 1.00±0.4 1.25±0.3 0.54±0.3 1.81±0.5 3.97±0.6*z1
MXI1 0.50±0.3 1.50±0.4 0.78±0.2 1.42±0.6 4.06±0.5*z1
MAX 4.33±1.3 2.00±1.2 1.90±0.3 3.7±0.771 8.00±0.69*z1

Immunohistochemistry for c-MYC, MAD1, MXI1 and MAX was performed on
paraffin sections of normal squamous oesophageal mucosa (S), normal gastric fundus
(F), Barrett’s metaplasia (BM), dysplastic Barrett’s (BD) and oesophageal adenocarci-
noma (OAC). Immunoreactivity was scored as described in Materials and methods.
The mean score is displayed ±1 s.e.m. * denotes significant change in comparison to
S; zdenotes statistical significance compared to F; 1 denotes significance relative to BM,
(Po0.05).
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cell lineages including the oesophageal cell line OE21 (data not
shown).

DISCUSSION

Progressive overexpression of MYC in the oesophageal metaplasia-
dysplasia-adenocarcinoma sequence has been observed previously
(Tselepis et al, 2003; Schmidt et al, 2007); prior to this study
however, the expression of other members of the MYC/MAX/MAD
network had not been studied in any detail in the oesophagus. In
the only study in this area the gene encoding MAD1 was identified
as one of six genes downregulated at the mRNA level in
oesophageal adenocarcinoma when compared with normal squa-
mous oesophageal mucosa (Hourihan et al, 2003). Expression of
c-MYC and MAD in normal oesophageal epithelium was consistent
with previous studies in tissues compartmentalised with respect to
proliferation and differentiation (Larsson et al, 1994; Chin et al,
1995; Hurlin et al, 1995a). c-MYC was confined to the proliferative
compartment, the basal cell layer, a pattern previously observed in
epidermis and colonic epithelium (Osterland et al, 1990; Tselepis
et al, 2003). MAD1 expression was evident in the suprabasal layers,
in differentiating postmitotic cells consistent with the role of
MAD1 in terminal differentiation (Vastrik et al, 1995; Lymboussa-
ki et al, 1996; Queva et al, 1998).

In light of the observations of reduced MAD1 expression in
Barrett’s metaplasia and previous evidence of MXD1 repression in
oesophageal adenocarcinoma (Hourihan et al, 2003), the trend
towards upregulation of MAD1 in adenocarcinomas was not
anticipated and would appear to be in conflict with the suggestion
that MAD1 may have a role as a tumour suppressor (Ayer et al,
1993; Zervos et al, 1993; Cultraro et al, 1997; Queva et al, 1998). In
support of the observations made here, MAD1 expression has been
identified in benign and malignant murine skin tumours where the
differentiation capacity was retained (Lymboussaki et al, 1996).
Similarly, MAD1 expression has been identified in invasive ductal
breast carcinomas of a well-differentiated phenotype (Han et al,
2000). It is possible therefore that an increase in MAD expression
could be attributed to a negative feedback pathway to counteract
aberrant MYC signalling and may be consistent with a role as a
tumour suppressor. Indeed MXI1 upregulation has previously
been observed downstream of MYC (Schuhmacher et al, 2001).

The overexpression of MXI1 in tumours may also, in part, be
explained by the presence of differentially transcribed isoforms of
MXI1 that lack important functional domains (Engstrom et al,
2004; Kawamata et al, 2005). MXI1-0 possesses an alternative first
exon and as it does not express the same Sin3-interaction domain
(SID), it is not capable of suppressing MYC-induced transforma-
tion. Overexpression of this isoform has been reported in
glioblastomas in comparison with normal brain tissue (Engstrom
et al, 2004) and therefore may represent the overexpressed isoform
in oesophageal adenocarcinomas. Analysis of transcript levels by
qRT–PCR allowed the expression of these isoforms to be
differentiated; our data indicate that both isoforms are involved
in the observed MXI1 overexpression in tumours, but that the
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Figure 4 Confirmation of expression in transfected SEG1 cells. SEG1
cells were transfected with pcDNA3.1/Zeo-MYCER, pcDNA3-MAD1 or
the corresponding empty vector (VO); in the case of MYCER the chimeric
product was then activated by the addition of 4-OHT. (A) qRT–PCR was
utilised to assess MYC ( ) or MXD1 ( ) mRNA expression. (B) Western
blotting demonstrated the expression the chimeric protein in SEG1-
MYCER or MAD1 in SEG1-MAD1. Densitometric scanning approximated
the fold increase in expression; a representative blot is also shown. Values
represent the mean of two experiments each performed in triplicate
±1 s.e.m. * denotes statistical significance (Po0.05).
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Figure 5 c-MYC network expression in SEG1 cells expressing
exogenous MYC/MAX/MAD network proteins. (A) qRT–PCR was utilised
to evaluate the expression of MXD1 , MXI1 , MXI-0 and MAX
mRNA in SEG1 cells transiently overexpressing MYCER. Relative gene
expression is expressed as a ratio of SEG1-MYCER not stimulated using
4OHT normalised to one. (B) Expression of MYC , MXI1 , MXI-0
and MAX mRNA was assessed in SEG1 cells transiently overexpressing
MAD1. Relative gene expression is expressed as a ratio of mock
transfected cells normalised to one. Data represent the mean of two
independent experiments each performed in triplicate ±1 s.e.m. * denotes
statistical significance (Po0.05).
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putatively dominant negative isoform may be involved in the
evolution of Barrett’s metaplasia. Haematological tissue expresses
three additional MXI1 isoforms, lacking either the SID-encoding
first exon, the DNA-binding domain encoded by exon 3 or both
these domains, which could also be considered in the oesophagus.
Like MXI1-0, these isoforms may potentially exert a dominant
negative effect (Kawamata et al, 2005).

MAX expression is widely acknowledged to be ubiquitous and in
excess of other network members, whose expression is more
tightly regulated (Blackwood and Eisenman, 1991; Berberich et al,
1992). Therefore, it was interesting to observe an increase in its
expression in oesophageal adenocarcinoma. It has been suggested
that although MAX is likely to be in excess of c-MYC and other
binding partners in most circumstances, it may be limiting during
the period when c-MYC levels are sharply elevated during cell cycle
entry (Walker et al, 2005). This raises the possibility that MAX
may also be limiting in tumours where c-MYC levels are very
high. The observed overexpression demonstrated here may
act to overcome this limitation, and may limit the antagonistic
relationship between c-MYC and the MAD proteins that are
evidently coexpressed. Increased MAX expression has been
linked to increased proliferation (Martel et al, 1995), but the
mechanism by which MAX overexpression may occur in tumours
is elusive.

Cytoplasmic expression of MYC/MAX/MAD network proteins
may be an indication that, although overexpression occurs, these
proteins may not be completely functional. It has been suggested
that cytoplasmic localisation of c-MYC in colon cancer may be due
to alterations in the C terminus of the protein, reducing the
efficiency of nuclear targeting (Royds et al, 1992). While this may
also be the case for other network members, evidence of murine
mmip2-mediated cytoplasmic translocation of mad proteins (Yin
et al, 1999) and cytoplasmic localisation of MXI-0 (Engstrom et al,
2004) lend other potential mechanisms to cytoplasmic expression.

Consistent with in vitro and transgenic models of MYC
amplification (Pelengaris et al, 2002), an increase in cellular
proliferation was demonstrated following c-MYCER activation in
SEG1 cells. c-MYC overexpression resulted in an increase in the
expression of MXI1-0 but had no effect on MXI1 suggesting
alternative factors involved in their expression. Indeed Engstrom

et al (2004) suggest that regulation of MXI1-0 may differ from the
AP2-mediated repression of the MXI1 promoter (Benson et al,
1999). As MXI1-0 is thought to lack the antagonistic effects of
MXI1, one may suggest that increased expression may facilitate the
activity of c-MYC.

MAD1 overexpression in SEG1 cells resulted in a reduction in
cellular proliferation at 72 h in concordance with earlier studies
associating MAD1 with reduced cell cycling and compromised
tumourigenicity and colony formation (Chen et al, 1995; Wechsler
et al, 1997). MAD1 overexpression has previously been associated
with accumulation of cells in G0/G1 mediated in part by limited G1
phase cyclin/CDK complex kinase activity and moderate increases
in the expression of CDK inhibitors p27KIP1 and p21CIP1. Although
the observations made in SEG1 cells are consistent with previous
overexpression studies, they oppose the observation that MAD1 is
overexpressed in oesophageal adenocarcinoma.

To conclude, the overexpression of c-MYC in Barrett’s
metaplasia and oesophageal adenocarcinoma has been confirmed.
Interestingly, this was accompanied by an overexpression of
c-MYC antagonists MAD1 and MXI1 in many tumours. These
observations demonstrate that the expression patterns and
regulation of this network of proteins may be more complex than
initially predicted. This may, in part, be due to the natural
heterogeneity of tumour tissue, indeed localisation by immuno-
histochemistry demonstrated heterogeneous staining. Multiple
isoforms of MXI1 have been identified in a variety of tissues,
which raises the possibility that alternative isoforms of other
network members might exist that interfere with their previously
known functions. Therefore, it is worth considering that any MYC-
targeted therapy approach may also need to take into account the
action of the MAD family proteins.
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