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Abstract: Trace amine-associated receptor 1 (TAAR1) is a Gαs- protein coupled receptor that plays
an important role in the regulation of the immune system and neurotransmission in the CNS.
In ovarian cancer cell lines, stimulation of TAAR1 via 3-iodothyronamine (T1AM) reduces cell
viability and induces cell death and DNA damage. Aim of this study was to evaluate the prognostic
value of TAAR1 on overall survival of ovarian carcinoma patients and the correlation of TAAR1
expression with clinical parameters. Ovarian cancer tissue of n = 156 patients who were diagnosed
with epithelial ovarian cancer (serous, n = 110 (high-grade, n = 80; low-grade, n = 24; unknown,
n = 6); clear cell, n = 12; endometrioid, n = 21; mucinous, n = 13), and who underwent surgery
at the Department of Obstetrics and Gynecology, University Hospital of the Ludwig-Maximilians
University Munich, Germany between 1990 and 2002, were analyzed. The tissue was stained
immunohistochemically with anti-TAAR1 and evaluated with the semiquantitative immunoreactive
score (IRS). TAAR1 expression was correlated with grading, FIGO and TNM-classification, and
analyzed via the Spearman’s rank correlation coefficient. Further statistical analysis was obtained
using nonparametric Kruskal-Wallis rank-sum test and Mann-Whitney-U-test. This study shows
that high TAAR1 expression is a positive prognosticator for overall survival in ovarian cancer
patients and is significantly enhanced in low-grade serous carcinomas compared to high-grade
serous carcinomas. The influence of TAAR1 as a positive prognosticator on overall survival indicates
a potential prognostic relevance of signal transduction of thyroid hormone derivatives in epithelial
ovarian cancer. Further studies are required to evaluate TAAR1 and its role in the development of
ovarian cancer.

Keywords: TAAR1; ovarian cancer; prognostic factor; immunohistochemistry; overall survival;
3-iodothyronamine

1. Introduction

With more than 7000 new cases in Germany in 2016, ovarian cancer (OC) is represent-
ing 3.1% of cancer cases and 5.2% of cancer deaths in females [1]. Due to its high potential
for cancer dissemination into the peritoneum, frequent late symptoms and detection, het-
erogeneity, and acquired and intrinsic chemoresistance [2,3], epithelial ovarian cancer
shows relative 5 years survival rates of less than 50% [4] with only slight improvement
and a wide range of 5 years survival rates in geographic distribution [5]. OC presents
in a histologically diverse way, with epithelial type being the most frequent, accounting
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for more than 90% of all primary ovarian tumors [6]. Other histological subtypes include
sex cord-stromal (5–6%), germ cell (2–3%), and rare miscellaneous entities [6]. This article
focuses on epithelial tumors, which can be subdivided into high-grade serous carcinomas
(70–80% of cases), low-grade serous carcinomas, endometrioid (<5%), clear cell (3%), and
mucinous cancers (<3%) [7].

Therapeutic management of OC lacks effective screening methods. Clinical prog-
nosticators such as disease stage at diagnosis, postsurgical residual disease, histological
subtype, grading, mutation in the breast cancer gene (BRCA), general state of health, age,
guideline-based therapy, and volume of ascites are of value [1,3]. Platinum resistance
after chemotherapy can worsen the prognosis of ovarian cancer patients [8,9]. Attempts of
establishing new prognostic factors have been published in multiple studies [10–12].

Ovarian cancer is regulated by thyroid hormones and its derivatives [13,14]. Thyroid
hormones also have a pro-angiogenic role in various cancer types, making its receptors
potential targets for therapeutic treatment [15]. Similar to ovarian cancer, hypothyroidism
occurs predominantly in aging women [16,17]. Hyperthyroidism is prevalent in women
from the 3rd to 5th decade of life with an 8:1 female:male ratio [18].

Thyronamines, such as 3-iodothyronamine (T1AM), derive from thyroid hormones [19]
via degradation by the enzyme ornithine decarboxylase (ODC) and intestinal deiodi-
nases [20]. In comparison with the mostly epigenetically acting classical thyroid hormones,
decarboxylated thyroid hormones can function rapidly (e.g., via fast change of heart rate
and body temperature) [19]. T1AM is described to inhibit cell growth and viability, induce
cell death, and lead to DNA damage in ovarian cancer cells [13]. Furthermore, T1AM and
its metabolites, T0AM and thyroacetic acid (TA1), can influence pancreatic islets, brain,
heart, and other tissues through the Gαs-protein coupled receptor trace amine-associated
receptor 1 (TAAR1) [20]. Other agonists of TAAR1 are trace amines, which are closely
associated metabolically with the dopamine, serotonin, and noradrenaline systems [21].
The degradation and synthesis of both trace amines and thyronamines proceed via en-
zymes working through decarboxylation. L-thyroxin (T4) is degraded to thyronamines
(T1AM) via ornithine decarboxylase (ODC) [20] while trace amines are synthesized via
L-amino acid decarboxylase [21]. TAAR1 is widely expressed including placenta, brain,
spinal cord, immune cells such as leukocytes, macrophages and dendritic cells, breast
cancer tissue, D-cells in stomach, and pancreatic β cells [22–26]. Activation of TAAR1 leads
to a GαS-protein mediated increase in intracellular cAMP levels [27,28].

Our previously published study showed that an increased TAAR1 expression is
correlated significantly with a positive survival rate in breast cancer patients [24]. To extend
upon this finding, we aimed to analyze the expression of TAAR1 in another gynecological
tumor entity. In detail, TAAR1 expression in ovarian epithelial cancer tissue was evaluated,
and correlation with overall survival and clinical parameters was performed.

2. Results
2.1. Differences of TAAR1 Expression in Histological Subtypes of Ovarian Cancer

TAAR1 was detected in membrane as well as in cytoplasm. Membrane TAAR1 staining
could be gained in n = 134 cases and presented in endometrioid tumors (n = 16) and serous
carcinoma (n = 98), with a median IRS of 3, in clear cell (n = 9) and mucinous tumor (n = 11)
with a median IRS of 1 (p = 0.003), as shown in Figure 1. In n = 22 cases, either staining was
not successful, or no ovarian cancer tissue was hit.

Likewise, correlation of cytoplasmic TAAR1 expression and histological subtype
differs significantly. A total of n = 128 cases could be observed. While endometrioid tumor
(n = 19) showed a median IRS of 4, clear cell carcinoma (n = 10) showed a median IRS of 3.5,
serous carcinoma a median IRS of 3 (n = 89), and mucinous carcinoma (n = 10) a median
IRS of 2.5 (p = 0.009), as shown in Figure 2. On n = 28 slides, staining was not successful, or
no ovarian cancer tissue was gained.
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Figure 1. Correlation of membrane TAAR1 expression with histological subtype (p = 0.003) (a) boxplot
of membrane TAAR1 expression and histological subtype (b) serous carcinoma (n = 98) with a
membrane TAAR1 IRS of 4, magnification ×10 and ×25 in the inset (c) clear cell carcinoma (n = 9)
with a membrane TAAR1 IRS of 1, magnification×10 and×25 in the inset (d) endometrioid carcinoma
(n = 16) with a membrane TAAR1 IRS of 4, magnification ×10 and ×25 in the inset (e) mucinous
carcinoma (n = 11) with a membrane TAAR1 IRS of 0, magnification ×10 and ×25 in the inset;
* p < 0.05 was considered statistically significant.
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Figure 2. Correlation of cytoplasmic TAAR1 expression with histological subtype (p = 0.009) (a) box-
plot of cytoplasmic TAAR1 expression and histological subtype (b) serous carcinoma (n = 89) with
a cytoplasmic TAAR1 IRS of 3, magnification ×10 and ×25 in the inset (c) clear cell carcinoma
(n = 10) with a cytoplasmic TAAR1 IRS of 3, magnification ×10 and ×25 in the inset (d) endometrioid
carcinoma (n = 19) with a cytoplasmic TAAR1 IRS of 4, magnification ×10 and ×25 in the inset
(e) mucinous carcinoma (n = 10) with a cytoplasmic TAAR1 IRS of 2, magnification ×10 and ×25 in
the inset; * p < 0.05 was considered statistically significant.
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2.2. TAAR1 Expression in High-Grade and Low-Grade Serous Ovarian Cancer

n = 110 tissue sections from patients diagnosed with serous ovarian carcinoma were
stained (high-grade, n = 80; low-grade, n = 24; unknown, n = 6). Due to missed hits of
ovarian cancer tissue and/or failed staining in n = 17 cases, n = 93 slides were examined.
Correlation of membrane TAAR1 expression, with grading of serous carcinoma, showed
that TAAR1 is expressed significantly higher in low-grade serous carcinoma (median IRS
of 4; n = 22) compared to high-grade serous carcinoma (median IRS of 3; n = 71) (p = 0.028)
(Figure 3).
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Figure 3. Correlation of membrane TAAR1 expression with grading in serous carcinoma (p = 0.028) (a) boxplot of membrane
TAAR1 expression and grading in serous carcinoma (b) low grade serous carcinoma (n = 22) with a membrane TAAR1 IRS
of 4, magnification ×10 and ×25 in the inset (c) high-grade serous carcinoma (n = 71) with a membrane TAAR1 IRS of 2,
magnification ×10 and ×25 in the inset; * p < 0.05 was considered statistically significant.

2.3. TAAR1 Expression Correlated with TNM Classification and FIGO

Correlation of TAAR1 expression and TNM classification was obtained. Ovarian clear
cell carcinomas with smaller sizes of the primary tumor (pT1, n = 6) had a significantly
higher TAAR1 expression (median IRS of 2.5) than clear cell carcinomas with a higher
pT status (pT2, n = 3; pT3, n = 1) (median IRS of 0) (Figure 4a). Patients diagnosed with
ovarian endometrioid carcinoma without local lymph node metastases (pN0, n = 7) had a
significantly higher TAAR1 expression (median IRS of 4) than patients with local lymph
node metastases (pN1, n = 3) (median IRS of 3) (Figure 4b).

There was no significant correlation of TAAR1 expression with distant metastases (pM).
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Figure 4. (a) Correlation of membrane TAAR1 expression with the size or extent of the primary tumor (pT) in clear cell
carcinoma (p = 0.031), median IRS of pT1 is 2.5 (n = 6), median IRS of pT2 is 0 (n = 3), median IRS of pT3 is 0 (n = 1).
(b) Correlation of membrane TAAR1 expression with local lymph node status (pN) in endometrioid carcinoma (p = 0.035),
median IRS of pN0 is 4 (n = 7), median IRS of pN1 is 3 (n = 3); * p < 0.05 was considered statistically significant.

2.4. Correlation of Membrane and Cytoplasmic TAAR1 Expression with Overall and
Progression-Free Survival of Ovarian Cancer Patients

Ovarian cancer patients with enhanced TAAR1 expression in the membrane and/or
cytoplasm (IRS > 3) (n = 69) have a significantly longer overall survival (OS) than patients
with a low TAAR1 expression (IRS ≤ 3) (n = 64), as shown in the Kaplan-Meier curve in
Figure 5 (p = 0.045). TAAR1 expression seems to be a positive prognostic factor for OS
in ovarian cancer patients. To determine the best cut-off level for high and low TAAR1
expression, based on the maximal difference between specificity and sensitivity, a receiver
operating characteristic curve (ROC-curve) was used. The cut-off level for high TAAR1
expression was IRS > 3.
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Figure 5. OS of patients with ovarian carcinoma with high (n = 69) and low (n = 64) TAAR1 expression.
High TAAR1 expression is associated with a better OS in ovarian cancer patients (p = 0.045); * p < 0.05
was considered statistically significant.
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Analysis of multiple variables, with Cox regression analysis for OS, showed that age,
grading, and FIGO, but not TAAR1 expression, are independent prognosticators of OS
(Table 1).

Table 1. Cox regression analysis.

Variable Significance Hazard Ratio
95% Confidence Interval

Lower Higher

Age 0.040 1.022 1.001 1.044
Histological subtype 0.990 0.998 0.743 1.342

Grading 0.001 1.775 1.262 2.496
FIGO 0.001 1.963 1.323 2.913

TAAR1 0.344 0.807 0.518 1.258

For progression-free survival, no significant difference but a tendency in TAAR1
expression could be detected. High cytoplasmic TAAR1 expression (IRS > 3) (n = 47)
correlates with a worse progression-free survival (p = 0.105), whereas patients with low
cytoplasmic TAAR1 expression (n = 86) have a better progression-free survival (Figure 6).
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Figure 6. Progression-free survival of patients with ovarian carcinoma with a high (n = 47) and a
low (n = 86) cytoplasmic TAAR1 expression. High cytoplasmic TAAR1 expression is tendentially
associated with a worse progression-free survival in ovarian cancer patients (p = 0.105).

2.5. Correlations of TAAR1 and Other Variables

In previous studies, staining of the applied ovarian cancer collective with various
markers had been obtained. Correlation analysis was performed using Spearman’s rank
correlation coefficient. TAAR1 expression in the membrane significantly correlates with
cytoplasmic TAAR1 expression (Spearman rho: 0.591, p = 0.000), estrogen receptor-α (ER-α)
(Spearman rho: 0.342, p = 0.000), progesterone receptor-A (PR-A) (Spearman rho: 0.256,
p = 0.004), progesterone receptor-B (PR-B) (Spearman rho: 0.250, p = 0.005) and negatively
with nuclear vitamin D receptor (VDR) (Spearman rho: −0.178, p = 0.046) and G-protein-
coupled estrogen receptor/G-protein-coupled receptor 30 (GPER/GPR30) (Spearman rho:
−0.177, p = 0.042). Furthermore, membrane TAAR1 expression correlated with Muc-115D8
(Spearman rho: 0.226, p = 0.013), VU3C6 (Spearman rho: 0.180, p = 0.044) and negatively
with Glycodelin A (Spearman rho: −0.223, p = 0.012) as shown in Table S1. Muc-115D8
and VU3C6 are, similarly to HMFG1, VU4H5, and TA-MUC1, Mucin-1 (MUC1) epitopes
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generated by various glyco-modifications of MUC1 during the process of malignant trans-
formation [29]. MUC1 is a high molecular weight transmembrane glycoprotein expressed
at the luminal membrane of many types of physiological epithelial cells [30]. Disruption of
the cell-cell and cell-matrix adhesions, due to MUC1 overexpression by the tumor cells,
is believed to play a role in invasive cancer growth and metastasis [31–35]. Immuno-
histochemical detection of MUC1 via VU3C6 shows a correlation of MUC1 with pT but
not with overall survival, grading, and FIGO in epithelial ovarian cancer patients [36].
Muc-115D8 expression in epithelial ovarian cancer patients is increased with advanced
cancer stages [37].

Cytoplasmic TAAR1 expression correlates with ER-α (Spearman rho: 0.299, p = 0.000),
PR-A (Spearman rho: 0.173, p = 0.049), PR-B (Spearman rho: 0.297, p = 0.001), and negatively
with Glycodelin A (Spearman rho: −0.227, p = 0.009), as shown in Table S2.

2.6. Correlations of TAAR1 Gene with Overall Survival and Progression Free Survival of Large
Independent Ovarian Cancer Cohorts

To validate the overall survival and progression-free survival of the TAAR1 gene in
large independent ovarian cancer patient cohorts, the KM Plotter database [38] was used.
We divided patients into high and low groups based on the median expressions of TAAR1.
Then, progression-free survival and overall survival were chosen to compare these groups.
We selected to follow up the threshold for 240 months and exclude biased arrays that were
selected for array quality control.

The results showed that the survival time of patients in the high-TAAR1 expression
group (n = 170) was longer than that of the low-expression group (n = 485) for overall
survival (Figure S1a). While 8.2% of the patients in the high-TAAR1 expression group were
alive after 100 months, only 7.0% were alive in the low-TAAR1 expression group after the
same period. This difference was not significant.

The progression free survival of patients in the high-TAAR1 expression group (n = 299)
was nearly identical with the progression free survival of patients in the low-expression
group (n = 315) with no significant difference (Figure S1b).

3. Discussion

In our study, we could show that ovarian cancer patients with high TAAR1 expression
in the membrane and/or cytoplasm have a significantly longer overall survival (OS)
compared to patients with a low TAAR1 expression and that high membrane TAAR1
expression correlates significantly with low-grade serous ovarian cancer.

Trace amine-associated receptor 1 (TAAR1) is a Gαs-protein coupled receptor, which
acts by the binding of thyronamines (e.g., 3-iodothyronamine (T1AM)), trace amines, and
other agonists. This leads to the activation of TAAR1 and increasing cAMP levels [27,28].
TAAR1 can be expressed in membrane, cytoplasm, nucleus, and cytoskeleton [39]. Accord-
ing to our findings, TAAR1 expression is detectable in the cytoplasm and membrane of
ovarian cancer tissue. In previously published studies, we could show that TAAR1 expres-
sion is a positive prognostic factor for OS in breast cancer patients [24] and that stimulation
of breast cancer cell lines with T1AM leads to an increase in TAAR1 expression and a
decrease in cell viability [40]. Likewise, the current study showed that general high TAAR1
expression is a positive prognostic factor for OS in ovarian cancer patients (p = 0.045). This
finding is in line with a study of Shinderman-Maman and colleagues (2017), who showed
that stimulation of ovarian cancer cell lines with T1AM leads to a decrease in cell viability
and induces cell death and DNA damage [13]. Cox Regression analysis was carried out
and showed that TAAR1 is not an independent factor for OS (Table 1). A reason might
be that TAAR1 correlates significantly with multiple factors, such as histological subtype,
grading, and partly TNM classification.

T1AM binds to TAAR1 and has neither an affinity to thyroid receptor (TR)-α or
TR-β, nor the ability to modulate nuclear TR-mediated transactivation [41]. A widely
known effect of the interaction between T1AM and TAAR1 is immediate reduction in body
temperature and heart rate [19]. T1AM has the opposite effect to the thyroid hormones
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triiodothyronine (T3) and thyroxine (T4) (e.g., hyperthermia and increased cardiac output
in hyperthyroidism) and acts more rapid compared to T3 and T4 [19,41]

Approximately 85–90% of ovarian malignancies derive from the ovarian surface ep-
ithelium (OSE) [42]. Stimulation of OSE cells with 17β-estradiol, which binds to ER-α
and GPER/GPR30 [43], leads to oxidative DNA damages [44] and increases prolifera-
tion in ovarian surface epithelium [42]. Further in vivo studies show that treatment with
17β-estradiol decreases survival, in a transgenic mouse model, of ovarian cancer [45] and
accelerates ovarian tumor progression in vivo [46]. In T1AM stimulated breast cancer
cells, additional co-stimulation with estradiol leads to an upregulation of TAAR1 expres-
sion [40]. Interestingly, high ER-α expression in serous ovarian cancer is associated with
longer OS [47] whereas the role of GPER/GPR30 in ovarian cancer patient survival is being
discussed controversially [48–50]. In this study, we found that membrane, (Spearman rho:
0.342, p = 0.000) as well as cytoplasmic (Spearman rho: 0.299, p = 0.000), TAAR1 expression
correlates significantly with ER-α expression in ovarian cancer tissue. Additionally, mem-
brane TAAR1 expression correlates negatively with GPER/GPR30 (Spearman rho: −0.177,
p = 0.042). Further in vitro studies are required to establish the exact interactions between
TAAR1, ER-α and GPER/GPR30 in ovarian cancer.

A significant positive correlation between membranous TAAR1 expression and PR-A
(Spearman rho: 0.256, p = 0.004) and PR-B (Spearman rho: 0.250, p = 0.005) could be found.
Similarly, cytoplasmatic TAAR1 expression correlates significantly with PR-A (Spearman
rho: 0.173, p = 0.049) and PR-B (Spearman rho: 0.297, p = 0.001). Progesterone receptors
might have influence on the development of ovarian cancer and PR-B is known to be an
independent positive prognostic factor for OS in ovarian cancer patients [51].

An association between TAAR1 and grading of ovarian serous carcinoma was found,
showing that high membrane TAAR1 expression correlates with low-grade ovarian serous
carcinoma (p = 0.028) (Figure 3). This is in line with the prognostic value of high TAAR1
expression and low-grade serous carcinoma, both of which are associated with better
survival [52]. Furthermore, low grading (G1) in breast cancer tissue similarly correlates
with high TAAR1 expression [24].

TAAR1 is well described in the neurological field where it can modulate the serotoner-
gic and dopaminergic systems in brain tissue [53]. Dopamine receptor 2 (D2R) interacts
with TAAR1 in the membrane of human embryonic kidney 293 (HEK-293) cells [54]. Stim-
ulation with D2R-antagonists disrupts the interaction between D2R and TAAR1 and leads
to a selectively enhanced TAAR1-mediated increase in cAMP [54]. Antagonism of D2R is
described to have effects on tumorigenesis in ovarian cancer, cervical cancer, breast cancer,
leukemia, and hepatoma [55–59]. Interestingly, some studies showed that dopamine can
inhibit tumor growth and tumor angiogenesis in mouse ovarian tumor via its specific
D2R [60,61]. In HEK-293 cells, TAAR1 is mainly expressed intracellularly, but membrane
expression of TAAR1 increases with the presence of dopamine receptor D2 (D2R) [62]. The
current study showed that high TAAR1 expression correlates significantly with better OS
(p = 0.045) and thus, TAAR1 represents a positive prognosticator for ovarian cancer. It is of
special interest to evaluate the exact D2R interaction with TAAR1 in ovarian cancer and its
influence on tumorigenesis.

4. Materials and Methods
4.1. Patients

156 female patients who were diagnosed with ovarian cancer, and underwent surgery
at the Department of Obstetrics and Gynecology, University Hospital of the Ludwig-
Maximilians University Munich, Germany between 1990 and 2002, were included in this
study. No patient received neoadjuvant chemotherapy. There was no preselection of
patients. Munich Cancer Registry provided patient follow up data. The mean of patients’
age was 58.9 ± 12.5 years in the range of 30.3 to 88.0 years. In the course of the study,
104 deaths were observed with a mean OS of 3.2 ± 3.0 years.
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Four histological subtypes of epithelial ovarian cancer were included into this study
(serous (n = 110), clear cell (n = 12), endometrioid (n = 21), and mucinous (n = 13)) (Table 2).
Tumor grading (G1 (n = 36), G2 (n = 11), G3 (n = 97)) was performed, according to WHO,
by two experienced gynecological pathologists (E.S., D.M.). TNM classification (T = size or
direct extent of the primary tumor, n = regional lymph node status, M = distant metastasis)
was conducted according to the Union for International Cancer Control (UICC). Extent
of the primary tumor (pT1 (n = 40), pT2 (n = 18), pT3 (n = 93), pT4 (n = 4)), local lymph
node metastases (pN0 (n = 43), pN1 (n = 52)) and distant metastasis (pM0 (n = 3), pM1
(n = 6)) were evaluated (Table 2). FIGO stage was ascertained according to the criteria of
the International Federation of Gynecology and Obstetrics.

Table 2. Patients’ characteristics.

Number of Cases
(Total Number of Cases: n = 156) %

Histopathological tumor subtype
Serous 110 70.5

Clear cell 12 7.7
Endometrioid 21 13.5

Mucinous 13 8.3
Tumor grading

G1 36 23.1
G2 11 7.1
G3 97 62.2

Unknown 12 7.7
Extent of primary tumor (pT)

pT1 40 25.6
pT2 18 11.5
pT3 93 59.6
pT4 4 2.6

Unknown 1 0.6
Regional lymph node involvement (pN)

pN0 43 27.6
pN1 52 33.3

Unknown 61 39.1
Presence of distant metastatic spread (pM)

pM0 3 1.9
pM1 6 3.9

Unknown 147 94.2
FIGO classification

FIGO I 35 22.4
FIGO II 10 6.4
FIGO III 103 66.0
FIGO IV 3 1.9

Unknown 5 3.2

4.2. Immunohistochemistry

TAAR1 expression was obtained in tissue micro arrays (TMAs), which were created
from a collective of formalin-fixed, paraffin-embedded ovarian cancer samples. The ex-
periment was initiated by deparaffinization of the slides (4 µm) by xylol. In order to
inactivate endogenous peroxidase, 3% H2O2 in methanol (20 min) was used. Rehydration
of the slides was obtained by a descending ethanol gradient. A pressure cooker filled
with Epitope Retrieval Solution pH 9.0 (Novocastra by Leica, Wetzlar, Germany) provided
the preparation of the tissue for heat induced epitope retrieval. Next, blocking solution
was applied to prevent non-specific binding of the primary antibodies. The slides were
incubated at room temperature for 1h with anti-TAAR1 (polyclonal rabbit IgG, Atlas An-
tibodies by BIOZOL, Eching, Germany) diluted 1:100. Antibody reactivity was detected
using ImmPRESS Anti-Rabbit IgG Polymer Kit (Vector Lab. by BIOZOL, Eching, Germany)
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according to the manufacturer’s protocol, followed by application of substrate and chro-
mogen (3,3′-diaminobenzidine Agilent Technologies, Waldbronn, Germany). In the next
step, the slides were counterstained with hematoxylin Gill’s formula (Vector Lab.) and
cover slipped.

4.3. Quantification

The slides were analyzed using a Leitz Diaplan microscope (Leitz, Wetzlar, Germany).
Quantification of each slide’s staining was examined by application of the semiquantitative
immunoreactive score (IRS). Therefore, optical estimation of intensity and distribution
pattern of the antigen expression is obtained [63]. The IRS is calculated by multiplying
staining intensity (0: none; 1: weak; 2: moderate; 3: strong) with the number of positively
stained cells (in %) (0: no staining, 1: <10% of the cells; 2: 11–50%; 3: 51–80%; 4: >80%). A
scale from 0 (no expression) to 12 (very high expression) was used. Provided photos were
taken with a CCD color camera (JVC: Victor Company of Japan, Yokohama, Japan).

4.4. Statistics

IBM SPSS 26 Statistics for Windows, Version 26 (IBM Corp: Armonk, NY, USA), was
used for data analysis. p values lower than p < 0.05 were considered statistically significant.
Nonparametric Kruskal-Wallis rank-sum test and Mann-Whitney-U-test were used as
appropriate for group comparisons regarding ordinal analysis variables. Correlations be-
tween variables were obtained using Spearman’s rank correlation coefficient. For survival
analysis, we used Cox Mantel log rank test. Analysis of TAAR1 as an independent prog-
nosticator was done using Cox regression analysis. IBM SPSS 25 Statistics for Windows,
Version 26, as well as Microsoft® PowerPoint for Mac Version 16.30 (19101301) were used
for design of figures.

5. Conclusions

In this hypothesis generating study, we could observe that TAAR1 was a positive
prognosticator for OS in ovarian cancer patients and was expressed significantly higher
in low-grade serous carcinoma. The influence of TAAR1 on OS in epithelial ovarian
cancer patients indicates a potential prognostic relevance of signal transduction of thyroid
hormone derivates in ovarian cancer. Therefore, TAAR1 could be a novel therapeutic target
in ovarian cancer patients. To establish the exact role of TAAR1 in ovarian cancer cells,
further studies are required.
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