Molecular Cloning and Expression of the cDNA for α_{3} Subunit of Human $\alpha_{3} \beta_{1}$ (VLA-3), an Integrin Receptor for Fibronectin, Laminin, and Collagen

Yoshikazu Takada, ${ }^{*}$ Elizabeth Murphy, \ddagger Pieter Pil, \ddagger Christopher Chen ${ }^{\ddagger}$ Mark H. Ginsberg, ${ }^{*}$ and Martin E. Hemler ${ }^{\ddagger}$
*Committee on Vascular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037; and \ddagger Division of Tumor Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115

Abstract

VLA-3), a member of the integrin family of cell adhesion receptors, may function as a receptor for fibronectin, laminin, and collagen. A partial cDNA clone (2.4 kb) for the human α_{3} subunit was selected from an endothelial cell $\lambda \mathrm{gtl} 1 \mathrm{cDNA}$ library by specific antibody screening. Several overlapping cDNA clones were subsequently obtained, of a total length of 4.6 kb from various cDNA libraries. The reconstructed α_{3} cDNA was expressed on the surface of chinese hamster ovary cells as detected by an α_{3}-specific mAb after transfection, suggesting that the cDNA is authentic. Within this sequence was an open reading frame, encoding for 1,051 amino acids, including a signal peptide of 32 residues, a long extracellular domain (959 residues), a transmembrane domain (28 residues), and a short cytoplasmic segment (32

residues). Overall, the α_{3} amino acid sequence was $25-37 \%$ similar to the other integrin α subunits that are cleaved, with most similarity to the α_{6} sequence (37%), and less similarity to those α subunits that have I domains ($15-20 \%$, excluding the I domain sequence itself). Features most like those in other α subunits are (a) the positions of $18 / 19$ cysteine residues, (b) three potential metal binding domains of the general structure $\operatorname{DX}(\mathrm{D} / \mathrm{N}) \mathrm{X}(\mathrm{D} / \mathrm{N})$ GXXD, and (c) the predicted transmembrane domain. The mass of α_{3} calculated from its amino acid sequence is 113,505 . The human α_{3} sequence was 89% identical to hamster galactoprotein b 3 , and 70% similar to the chicken CSAT antigen band 2 protein partial sequence, suggesting that these two polypeptides are homologues of human α_{3}.
$\alpha_{3} \beta_{1}$ (VLA-3), a cell surface heterodimer composed of α_{3} and β_{1} subunits, is an integrin $(1,6,19,23,27)$ that has been implicated as a receptor for collagen, laminin, and fibronectin ($13,17,18,49,54$). The role of $\alpha_{3} \beta_{1}$ has been somewhat difficult to assess, partly because its adhesive functions are often obscured by other collagen, laminin, and fibronectin receptors such as $\alpha_{2} \beta_{1}, \alpha_{6} \beta_{1}$ and $\alpha_{5} \beta_{1}$ (13). The binding of $\alpha_{3} \beta_{1}$ to its different ligands appears to be accomplished by multiple binding mechanisms. For example, $\alpha_{3} \beta_{1}$ binding to fibronectin differs substantially from binding to collagen and laminin with respect to both the divalent cation requirements and the influence of RGD peptides (13). In addition to being a receptor for extracellular matrix ligands, $\alpha_{3} \beta_{1}$ could possibly also bind to cell surface ligands, as inferred from $\alpha_{3} \beta_{1}$ localization to cell-cell contact sites (7, 31, 35).

In normal tissue, $\alpha_{3} \beta_{1}$ expression is limited to a few cell types, including kidney glomeruli, and the basal cells of epidermis and other epithelia ($7,16,34,35$). In contrast, nearly all cultured cell lines express $\alpha_{3} \beta_{1}$ except for lymphoid cells (16). Underscoring the likely importance of $\alpha_{3} \beta_{1}$-mediated cell adhesion, its expression levels have been
noted to vary on different cell types and with different growth conditions. For example, $\alpha_{3} \beta_{1}$ levels diminished in response to TGF β in one case (22), but were increased in other examples (21). Also, $\alpha_{3} \beta_{1}$ can be induced by attachment of some cultured cells to extracellular matrix (40) while $\alpha_{3} \beta_{1}$ levels decrease upon shifting of fibroblasts from exponential growth to quiescence (14).
On rat (37) and human (34) transformed cells, $\alpha_{3} \beta_{1}$ levels were elevated, suggesting that $\alpha_{3} \beta_{1}$ could possibly contribute to tumorigenicity and/or invasiveness. However, in several other studies, $\alpha_{3} \beta_{1}$ levels were either unchanged or decreased on malignant cells ($11,35,36$), emphasizing that regulation of $\alpha_{3} \beta_{1}$ expression on cancer cells is complex.
In this paper we have cloned, sequenced, and expressed in eukaryotic cells the cDNA for the α_{3} subunit of $\alpha_{3} \beta_{1}$. We have found that α_{3} resembles other integrin α subunits in having a signal peptide, a long extracellular domain (959 residues) and a putative transmembrane domain and a short cytoplasmic segment (32 residues). The extracellular domain includes 18 conserved cysteine residues and three metal binding domains of the general structure $\mathrm{DX}(\mathrm{D} / \mathrm{N})$ X(D/N)GXXD. The α_{3} subunit amino acid sequence was

Figure 1. Immunological crossreactivity between purified α_{3} and α_{3} fusion proteins. β-Galactosidase fusion proteins were produced from clones 3.22 (lane a), 3.24 (lane b), 3.25 (lane c), and 3.26 (lane d) that had been immunoselected using anti- α_{3} antiserum. NP-40-insoluble material from these fusion protein preparations and from uninfected Y1089 E. coli (lane e) was analyzed by SDSPAGE and stained for protein using Coomassie blue as shown in A. After blotting of these proteins onto nitrocellulose, immunostaining with enriched anti- α_{3} antibodies (1/500-1/1,000 final dilution) was carried out (B). For C, purified fusion protein from clone 3.22 was used to prepare fusion protein-enriched antiserum as described in Materials and Methods, and this antibody stained both the fusion protein from clone 3.22 and purified α_{3} protein. The comigration of the fusion protein and α_{3} protein at $\sim 150,000 M_{\text {r }}$ is fortuitous.
most similar to the integrin α_{6} subunit (37% identity), and had $25-30 \%$ identity to other integrin α subunits. Also, the α_{3} subunit was 89% identical to hamster galactoprotein b3, a protein reportedly upregulated in oncogene-transformed fibroblasts (52), and was 70% similar to the avian CSAT antigen band 2 partial amino acid sequence (43), suggesting that they are homologues of human α_{3} subunit.

Materials and Methods

Purification of $\alpha_{3} \beta_{1}$ and Preparation of α_{3}-Specific Antiserum

The anti- $\alpha_{3} \mathrm{mAb}$ J143 (16) was coupled to CNBr-Sepharose (Pharmacia Fine Chemicals, Piscataway, NJ) according to the manufacturer's instructions and then used for immunoaffinity purification of $\alpha_{3} \beta_{1}$ heterodimer from placental cell extracts as previously described (49). The α_{3} and β_{1} subunits from purified $\alpha_{3} \beta_{1}$ complex (containing $30-50 \mu \mathrm{~g}$ of α_{3} subunit) were then separated using preparative 5% SDS-PAGE and transferred to nitrocellu-
lose. After localization of the α_{3} band relative to ${ }^{125}$ I-labeled α_{3} subunit by autoradiography, that band was cut out and solubilized in the minimum amount of DMSO. After multiple ($5-10 \mu \mathrm{~g}$) injections of purified α_{3} material in Freund's adjuvant, rabbit anti- α_{3} antiserum was obtained.

To obtain antibodies enriched for anti- α_{3} binding activity, purified $\alpha_{3} \beta_{1}$ complex (isolated using the J143 mAb column as described above) was used to prepare an immunoaffinity column. First, purified $\alpha_{3} \beta_{1}$ was denatured by boiling for 5 min in the presence of 1% SDS, and coupled to CNBr Sepharose according to the manufacturer's instructions (except that coupling buffer included $0.1 \% \mathrm{SDS}$). Then crude rabbit anti- α_{3} serum was passed over the $\alpha_{3} \beta_{1}$-Sepharose affinity column, and the column was washed successively with 3 column vol each of PBST ${ }^{1}(0.14 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM}$ sodium phosphate, 0.2% Tween 20), 0.2 M KSCN , and then PBST again. For elution of anti- α_{3} antibodies, 3.5 M KSCN was added, and then the eluate (with 0.1% hemoglobin carrier protein) was desalted using a Sephadex G-25 column equilibrated with PBST.
Several putative α_{3} cDNA clones (isolated as described below) were used to produce β-galactosidase fusion proteins in lysogenic Y1089 Escherichia coli as described (26). The insoluble fusion proteins from these clones were purified by repeated washing of the insoluble pellet with 1% $\mathrm{NP}-40,0.14 \mathrm{M} \mathrm{NaCl}$ and 10 mM sodium phosphate, pH 7.4 . The NP-40insoluble fusion protein was further separated by SDS-PAGE and the stained band was cut out from the gel, electroeluted, coupled to Sepharose and then used to positively select anti-fusion protein antibodies from crude anti α_{3} serum.

Isolation of $\alpha_{3} c D N A$

An oligo dT primed λ gtll expression cDNA library, made from endothelial cells was the kind gift of Dr. Tucker Collins (Brigham and Women's Hospital, Boston, MA). That library was screened using affinity-purified α_{3} antibodies according to the method of Young and Davis (55). Positive clones from phage screening were plaque purified and the phage DNA was prepared by the plate lysate method (33). The insert cDNA was cut out from the phage DNA by EcoRI digestion and subcloned into either pGEM-3 (Promega Biotec, Madison, WI) or Bluescript KS + plasmid (Stratagene Corp., La Jolla, CA) as previously described (46, 50).

The initially selected clone 3.24 included only the 3^{\prime} noncoding region and $\sim 100 \mathrm{COOH}$-terminal amino acid residues. Using ${ }^{32} \mathrm{P}$-labeled 3.24 cDNA as a probe, additional clones $(3.122,3.285)$ were selected from a入gtl1 cDNA library made from the hepatocarcinoma cell line Hep G2; a kind gift from Drs. M. Muckler (Massachusetts Institute of Technology, Boston) and M. Krangel (Dana Farber Cancer Institute, Boston). Using ${ }^{32}$ P-labeled 3.122 cDNA as probe, further screening was carried out to finally select clones (3.410 and 3.520) from a different human endothelial cell $\lambda g t 11$ cDNA library (from Dr. J. E. Sadler, Washington University, St. Louis, MO). The insert cDNA was cut out from the phage DNA by Sall digestion in this case. Clone 3.410 included the translation initiation site and 5^{\prime} noncoding region of the α_{3} mRNA (see Fig. 3, below).

Immunoprecipitation of α_{3} Subunit

A polyclonal anti-peptide serum was prepared in the laboratory of Dr. J. McDonald (Washington University, St. Louis) using the synthetic peptide CRIQPSETERLTDDY. This peptide contains the COOH-terminal 14 amino acids predicted for a putative chicken CSAT antigen band 2 sequence (28), and the COOH-terminal 12 amino acids are identical to those predicted for human α_{3} (see Fig. 4, below). The rabbit anti- $\alpha_{3} \mathrm{COOH}-$ terminal peptide serum and the anti- $\alpha_{3} \mathrm{mAb}$ J143 (16) were used to immunoprecipitate α_{3} protein from detergent lysate of LOX cells (a melanoma line), and these were analyzed by SDS-PAGE as previously described (24).

DNA Sequencing

The DNA sequences were determined by the dideoxy nucleotide chaintermination method of Sanger et al. (41), using adenosine $\left.{ }^{35} \mathrm{~S}\right] 5^{\prime}$-[α-thio]triphosphate. To facilitate complete sequencing of both cDNA strands, a series of overlapping deletion clones was made in both directions as described (25) by using the Erase-a-base system (Promega Biotec). Alternatively, synthetic oligonucleotides (~ 20 bases) corresponding to known α_{3} sequence regions were used as sequencing primers. Clones 3.24 and 3.285 , and $5^{\prime}-1 \mathrm{~kb}$ of clone 3.410 were sequenced in both directions.

[^0]

Figure 2. Immunoprecipitation of the α_{3} subunit. Immunoprecipitation was carried out using extract from the surface ${ }^{125}$ I-radiolabeled melanoma cell line LOX. After immunodepletion of labeled material reacting with negative control antibody (lanes $a-c$), the anti- α_{3} MAb J143 (lanes $d-f$), or rabbit anti- α_{3} peptide serum (lanes $g-i$), the remaining LOX extract was then subjected to a second round of immunoprecipitation using J 143 (lanes a, d, g), rabbit anti- α_{3} peptide (lanes b, e, h), or a negative control antibody (lanes $c, f, i)$.

Construction of the $\alpha_{3} c D N A$ Expression Vector and Transfection of CHO Cells

The BamHI (in the vector polycloning site)/NdeI fragment (0.9 kb) of clone 3.410 and the NdeI/EcoRI fragment (1.66 kb) of clone 3.285 were ligated to the BamHI/EcoRI fragment (3 kb) of Bluescript KSII+ vector. The resulting pBSKSII $+\left(\alpha_{3} ; 1-2465\right)$ was digested with HindIII and SalI and the large Sall (in the vector polycloning site)/HindIII fragment (5.46 kb) was ligated with HindIII/SalI fragment (1.08 kb) of cDNA clone 3.520 (SalI site derives from a linker used for ligation of cDNA to phage vector). The Xhol site in the resulting pBSKSII $+\left(\alpha_{3} ; 1-3470\right)$ was converted to XbaI site by digesting with Xhol, filling in reaction with Klenow enzyme, and insertion of XbaI linker. The resulting pBSKSII $+\left(\alpha_{3} ; \mathrm{X} / \mathrm{X}\right)$ was digested with XbaI and the XbaI fragment (3.47 kb) containing α_{3} coding region was ligated to the Xbal-digested, calf intestinal alkaline phosphatasetreated CDM8 vector. $10 \mu \mathrm{~g}$ of the purified plasmid was transfected to 10^{7} CHO cells by electrophoration (8). 72 h after transfection, cells were harvested with 3.5 mM EDTA in 0.14 M NaCl and 10 mM sodium phosphate (pH 7.4), incubated with primary mouse monoclonal antibody and then with FITC-labeled goat anti-mouse IgG antibody, and subjected to a fluores-cence-activated cell sorter (FACS IV, ${ }^{2}$ Becton Dickinson Co., Oxnard, CA) analysis.

Results

Immunoscreening of $\alpha_{3} c D N A$ Clones

An antiserum preparation made against purified placental α_{3} protein was enriched for α_{3} specific antibodies using an $\alpha_{3} \beta_{1}$ Sepharose affinity column. The purified anti- α_{3} antibody preparation strongly recognized a band ($M_{\mathrm{r}} 150,000$)

[^1]

Figure 3. Overlapping α_{3} cDNA fragments. cDNA clone 3.24 was obtained from an endothelial cell λ gt11 cDNA library, clones 3.122 and 3.285 from that of HepG2 hepatocarcinoma cell line, and 3.410 and 3.520 from another endothelial cell cDNA library. Sites of restriction enzymes used for reconstruction of α_{3} cDNA coding region are shown. B, BamHI; E, EcoRI; H, HindIII; N, NdeI.
from crude cellular extracts and purified $\alpha_{3} \beta_{1}$ preparation with very little background (not shown). We then used the purified antibody for immunoselection of α_{3} cDNA clones from a $\lambda \mathrm{gtl} 1 \mathrm{cDNA}$ library from endothelial cells which are known to express substantial amount of α_{3} protein (2). From a few representative isolates, cDNA clones 3.22 and 3.24 were found to cross-hybridize to each other by Southern blotting. Then β-galactosidase fusion proteins (Fig. 1, $a-e$) were prepared from several clones, and of these, the fusion proteins from clones 3.22 and 3.24 were recognized by antiserum enriched for anti- α_{3} antibodies (Fig. $1 B$, lanes a, $b)$. Two other fusion proteins (lanes c, d) and E. coli strain Y1089 control protein (lane e) were not recognized by antiα_{3} antibodies. In a reciprocal experiment, clone 3.22 fusion protein was coupled to Sepharose and then used to enrich for anti-fusion protein antibodies. This antibody preparation (derived from the original crude antiserum) was immunologically reactive with both the fusion protein itself and with purified α_{3} (Fig. 1 C). The cDNA clone 3.24 was subcloned into a plasmid and sequenced, and found to have an amino acid sequence (about 100 residues) similar to the COOH -terminal regions of other known integrin α subunits.

Immunological Evidence for the Identity of the α_{3} Clone

To further assess the identity of the putative α_{3} cDNA, rabbit antiserum against a synthetic peptide containing the COOH -terminal 12 amino acids from the predicted α_{3} amino acid sequence was used to immunoprecipitate a $150,000-M_{r}$ protein from radiolabeled LOX cells (Fig. 2, lane b) which comigrates with authentic α_{3} immunoprecipitated using the mAb J143 (lane a). In addition, prior immunodepletion of the LOX cell extract with either the mAb J143 (lanes $d-f$), or with anti-peptide rabbit serum (lanes $g-i$), almost completely eliminated subsequent immunoprecipitation by either J 143 (lanes d, g) or by the anti-peptide serum (lanes e, h).

Isolation of Clones Corresponding to Full-Length α_{3} cDNA

When a human Hep G2 λ gt11 cDNA library was screened using the cDNA clone 3.24 as a probe, additional clones (3.285 and 3.122) were selected which extended 1.8 kb beyond the 5^{\prime} end of clone 3.24 . Finally, a clone (3.410) was isolated from another endothelial λ gtl1 cDNA library that ctgtgcgctcgccttgatggtggcggccggcggctgcgtcgtctccgccttcaacctgga
 tacccgattcctggtagtgaaggaggccgggaacccgggcagcctcttcggctactcggtcgccctccatcggcagacagagcggcagcagcgctacctgctcctggctggtgccccccgggagctcgctgtgcccgatggctacaccaaccggactggtgctgtgtacctgtgcccactcactgcccacaaggatgactgtgagcggatgaacatcacagtgaaaaatgaccctggccatcacattattgaggacatgtggcttggagtgactgtggccagccagggccctgcaggcag480
agttctggtctgtgcccaccgctacacccaggtgctgtggtcagggtcagaagaccagcg540
$\begin{array}{llllllllllllllllllll}\mathbf{V} & \mathrm{L} & \mathrm{V} & \mathrm{C} & \mathrm{A} & \mathrm{H} & \mathrm{R} & \mathrm{Y} & \mathrm{T} & \mathbf{Q} & \mathrm{V} & \mathrm{L} & \mathrm{W} & \mathrm{S} & \mathrm{G} & \mathbf{S} & \mathrm{E} & \mathrm{D} & \mathbf{Q} & \mathrm{R}\end{array}$gcgcatggtgggcaagtgctacgtgcgaggcaatgacctagagctggactccagtgatga600
$\begin{array}{llllllllllllllllllll}R & M & V & G & K & C & Y & V & R & G & N & D & L & E & L & D & S & S & D & D\end{array}$ctggcagacctaccacaacgagatgtgcaatagcaacacagactacctggagacgggcat660
177
$\begin{array}{llllllllllllllllllll}\mathbf{W} & \mathbf{Q} & \mathbf{T} & \mathbf{Y} & \mathrm{H} & \mathrm{N} & \mathbf{E} & \mathbf{M} & \mathbf{C} & \mathbf{N} & \mathbf{S} & \mathbf{N} & \mathbf{T} & \mathrm{D} & \mathbf{Y} & \mathrm{L} & \mathrm{E} & \mathrm{T} & \mathbf{G} & \mathbf{M}\end{array}$gtgccagctgggcaccagcggtggcttcacccagaacactgtgtacttcggcgcccccgg720
197 tgcctacaactggaaaggaaacagctacatgattcagcgcaaggagtgggacttatctgagtatagttacaaggacccagaggaccaaggaaacctctatattgggtacacgatgcaggt840
$\begin{array}{llllllllllllllllllll}\mathbf{Y} & \mathbf{S} & \mathbf{Y} & \mathbf{K} & \mathrm{D} & \mathbf{P} & \mathbf{E} & \mathbf{D} & \mathbf{Q} & \mathbf{G} & \mathbf{N} & \mathrm{L} & \mathbf{Y} & \mathbf{I} & \mathbf{G} & \mathbf{Y} & \mathbf{T} & \mathbf{M} & \mathbf{Q} & \mathbf{V}\end{array}$aggcagcttcatcctgcaccccaaaaacatcaccattgtgacaggtgccccacggcaccg900acatatgggcgcggtgttcttgctgagccaggaggcaggcggagacctgcggaggaggca960

277 ggtgctggagggctcgcaggtgggcgcetattttggcagcgcaattgccctggcagacct 1020 | V | L | E | G | S | Q | V | G | A | Y | F | G | S | A | I | A | L | A | D | L |
| :--- | gaacaatgatgggtggcaggacctcctggtgggcgccccctactacttcgagaggaaaga 1080 $\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{N} & \mathrm{D} & \mathrm{G} & \mathrm{W} & \mathrm{Q} & \mathrm{D} & \mathrm{L} & \mathrm{L} & \mathrm{V} & \mathrm{G} & \mathrm{A} & \mathrm{P} & \mathrm{Y} & \mathrm{Y} & \mathrm{F} & \mathrm{E} & \mathrm{R} & \mathrm{K} & \mathrm{E}\end{array}$ ggaagtagggggtgccatctatgtcttcatgaaccaggcgggaacctccttccetgctca 1140 $\begin{array}{llllllllllllllllllll}\mathbf{E} & \mathrm{V} & \mathrm{G} & \mathrm{G} & \mathrm{A} & \mathrm{I} & \mathrm{Y} & \mathrm{V} & \mathrm{F} & \mathrm{M} & \mathrm{N} & \mathbf{Q} & \mathbf{A} & \mathbf{G} & \mathbf{T} & \mathbf{S} & \mathrm{F} & \mathrm{P} & \mathrm{A} & \mathrm{H}\end{array}$ cccctcactccttcttcatggccecagtggctctgcctttggtttatctgtggccagcat 1200 tggtgacatcaaccaggatggatttcaggatattgctgtgggagctccgtttgaaggctt 1260 377 G $\quad \begin{array}{llllllllllllllllll}\mathrm{D} & \mathrm{I} & \mathrm{N} & \text { Q } & \mathrm{D} & \mathrm{G} & \mathrm{F} & \text { Q } & \mathrm{D} & \mathrm{I} & \mathrm{A} & \mathrm{V} & \mathrm{G} & \mathrm{A} & \mathrm{P} & \mathrm{F} & \mathrm{E} & \mathrm{G} \\ \mathrm{L}\end{array}$ gggcaaagtgtacatctatcacagtagctctaaggggctccttagacagccccagcaggt 1320 aatccatggagagaagctgggactgcctgggttggccaccttcggctattccctcagtgg 1380

$\begin{array}{lllllllllllllllllllll}417 & \text { I } & \text { H } & \text { G } & \text { E } & \text { K } & \text { L } & \text { G } & \text { L } & \text { P } & \text { G } & \text { L } & \text { A } & \text { T } & \text { F } & \text { G } & \text { Y } & \text { S } & \text { L } & \text { S } & \text { G }\end{array}$ gcagatggatgtggatgagaacttctacccagaccttctagtgggaagcctgtcagacca 1440
 cattgtgctgctgcgggcccggccagtcatcaacatcgtccacaagaccttggtgcccag 1500 gccagctgtgctggaccctgcactttgcacggccacctcttgtgtgcaagtggagctgtg 1560
 ctttgcttacaaccagagtgccgggaaccccaactacaggcgaaacatcaccctggccta 1620

[^2]cactctggaggctgacagggaccgccggccgccccggctccgctttgccggcagtgagtc 1680 cgctgtcttccacggcttcttctccatgccegagatgcgetgccagaagctggagctgct 1740

 cctgatggacaacctccgtgacaaactccgecccatcatcatctccatgaactactcttt 1800 acctttgcggatgcccgatcgcccccggctggggctgcggtccctggacgcctacccgat 1860 $\begin{array}{llllllllllllllllllll}\mathbf{P} & \mathbf{L} & \mathbf{R} & \mathbf{M} & \mathbf{P} & \mathbf{D} & \mathbf{R} & \mathbf{P} & \mathbf{R} & \mathbf{L} & \mathbf{G} & \mathbf{L} & \mathbf{R} & \mathbf{S} & \mathbf{L} & \mathbf{D} & \mathbf{A} & \mathbf{Y} & \mathbf{P} & \mathbf{I}\end{array}$ cctcaaccaggcacaggctctggagaaccacactgaggtccagttccagaaggagtgcgg 1920 $\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{N} & \mathbf{Q} & \mathrm{A} & \mathbf{Q} & \mathrm{A} & \mathrm{L} & \mathrm{E} & \mathrm{N} * & \mathrm{H} & \mathrm{T} & \mathrm{E} & \mathrm{V} & \mathbf{Q} & \mathrm{F} & \mathbf{Q} & \mathrm{K} & \mathrm{E} & \mathrm{C} & \mathrm{G}\end{array}$ gcctgacaacaagtgtgagagcaacttgcagatgcgggcagccttcgtgtcagagcagca 1980 $\begin{array}{llllllllllllllllllll}\mathbf{P} & \mathrm{D} & \mathrm{N} & \mathrm{K} & \mathrm{C} & \mathrm{E} & \mathbf{S} & \mathrm{N} & \mathrm{L} & \mathbf{Q} & \mathrm{M} & \mathrm{R} & \mathrm{A} & \mathrm{A} & \mathrm{F} & \mathrm{V} & \mathrm{S} & \mathrm{E} & \mathbf{Q} & \mathbf{Q}\end{array}$ gcagaagctgagcaggctccagtacagcagagacgtccggaaattgctcctgagcatcaa 2040 $\begin{array}{lllllllllllllllllll}\mathbf{Q} & \mathrm{K} & \mathrm{L} & \mathbf{S} & \mathrm{R} & \mathrm{L} & \mathbf{Q} & \mathbf{Y} & \mathbf{S} & \mathrm{R} & \mathrm{D} & \mathrm{V} & \mathrm{R} & \mathrm{K} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathbf{S} & \mathrm{I} \\ \mathrm{N} & \text { N }\end{array}$ cgtgacgaacacccggacctcggagcgctccggggaggacgcccacgaggcgctgctcac 2100 $\begin{array}{lllllllllllllllllllll}\text { V } & \mathbf{T} & \mathrm{N} & \mathrm{T} & \mathrm{R} & \mathrm{T} & \mathbf{S} & \mathrm{E} & \mathrm{R} & \mathrm{S} & \mathrm{G} & \mathrm{E} & \mathrm{D} & \mathrm{A} & \mathrm{H} & \mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{L} & \mathrm{T}\end{array}$ cctggtggtgcctcccgccetgctgctgtcctcagtgcgcccccccggggcetgccaagc 2160 $\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{V} & \mathrm{V} & \mathbf{P} & \mathbf{P} & \mathrm{A} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathbf{S} & \mathbf{S} & \mathrm{V} & \mathrm{R} & \mathbf{P} & \mathbf{P} & \mathbf{G} & \mathbf{A} & \mathbf{C} & \mathbf{Q} & \mathbf{A}\end{array}$ taatgagaccatcttttgcgagctggggaaccccttcaaacggaaccagaggatggagct 2220
 gctcatcgcctttgaggtcatcggggtgaccctgcacacaagggaccttcaggtgcagct 2280
 gcagctctccacgtcgagtcaccaggacaacctgtggcccatgatcctcactctgctggt 2340
 ggactatacactccagacctcgcttagcatggtaaatcaccggctacaaagcttctttgg 2400 $\begin{array}{llllllllllllllllllll}\mathbf{D} & \mathbf{Y} & \mathbf{T} & \mathbf{L} & \mathbf{Q} & \mathbf{T} & \mathbf{S} & \mathbf{L} & \mathbf{S} & \mathbf{M} & \mathbf{V} & \mathbf{N} & \mathbf{H} & \mathbf{R} & \mathbf{L} & \mathbf{Q} & \mathbf{S} & \mathbf{F} & \mathbf{F} & \mathbf{G}\end{array}$ ggggacagtgatgggtgagtctggcatgaaaactgtggaggatgtaggaagccccctcaa 2460
 gtatgaattccaggtgggcccaatgggggaggggctggtgggcctggggaccctggtcct 2520 $\begin{array}{llllllllllllllllllll}\mathbf{Y} & \mathbf{E} & \mathbf{F} & \mathbf{Q} & \mathbf{V} & \mathbf{G} & \mathbf{P} & \mathbf{M} & \mathbf{G} & \mathbf{E} & \mathbf{G} & \mathrm{L} & \mathbf{V} & \mathbf{G} & \mathrm{L} & \mathbf{G} & \mathbf{T} & \mathrm{L} & \mathbf{V} & \mathrm{L}\end{array}$ aggtctggagtggccctacgaagtcagcaatggcaagtggctgctgtatcccacggagat 2580
 caccgtccatggcaatgggtcctggccetgccgaccacctggagaccttatcaaccctct 2640 $\begin{array}{llllllllllllllllllll}\mathbf{T} & \mathbf{V} & \mathbf{H} & \mathbf{G} & \mathbf{N} * & \mathbf{G} & \mathbf{S} & \mathbf{W} & \mathbf{P} & \mathbf{C} & \mathbf{R} & \mathbf{P} & \mathbf{P} & \mathbf{G} & \mathrm{D} & \mathrm{L} & \mathrm{I} & \mathrm{N} & \mathbf{P} & \mathrm{L}\end{array}$ caacctcactctttctgaccctggggacaggccatcatccccacagcgcaggcgecgaca 2700
 gctggatccagggggaggccagggccccccacctgtcactctggctgctgccaaaaaagc 2760 $\begin{array}{llllllllllllllllllll}\mathbf{L} & \mathbf{D} & \mathbf{P} & \mathbf{G} & \mathbf{G} & \mathbf{G} & \mathbf{Q} & \mathbf{G} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{V} & \mathbf{T} & \mathbf{L} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{K} & \mathbf{K} & \mathbf{A}\end{array}$ caagtctgagactgtgctgacctgtgccacagggcgtgcccactgtgtgtggctagagtg 2820
 ccccatccctgatgcccccgttgtcaccaacgtgactgtgaaggcacgagtgtggaacag 2880
 caccttcatcgaggattacagagactttgaccgagtccgggtaaatggctgggctaccct 2940 $\begin{array}{llllllllllllllllllll}\mathbf{T} & \mathbf{F} & \mathbf{I} & \mathbf{E} & \mathbf{D} & \mathbf{Y} & \mathbf{R} & \mathbf{D} & \mathbf{F} & \mathbf{D} & \mathbf{R} & \mathbf{V} & \mathbf{R} & \mathbf{V} & \mathbf{N} & \mathbf{G} & \mathbf{W} & \mathbf{A} & \mathbf{T} & \mathbf{L}\end{array}$ attcctccgaaccagcatccccaccatcaacatggagaacaagaccacgtggttctctgt 3000 $\begin{array}{llllllllllllllllllll}\mathbf{F} & \mathbf{L} & \mathbf{R} & \mathbf{T} & \mathbf{S} & \mathbf{I} & \mathbf{P} & \mathbf{T} & \mathbf{I} & \mathbf{N} & \mathbf{M} & \mathbf{E} & \mathbf{N} * & \mathbf{K} & \mathbf{T} & \mathbf{T} & \mathbf{W} & \mathbf{F} & \mathbf{S} & \mathbf{V}\end{array}$ ggacattgactcggagctggtggaggagctgccggccgaaatcgagctgtggctggtgct 3060
 ggtggccgtgggtgcagggctgctgctgctggggctgatcatcctcctgctgtggaagtg 3120 $\frac{V}{}$ eggettcttcaagcgagcocgcactcgegccotgtatgaagctaagaggcagaaggcgga 3180 $\begin{array}{lllllllllllllllllll}\mathbf{G} & \mathrm{F} & \mathrm{F} & \mathrm{K} & \mathrm{R} & \mathrm{A} & \mathrm{R} & \mathrm{T} & \mathrm{R} & \mathrm{A} & \mathrm{L} & \mathrm{Y} & \mathrm{E} & \mathrm{A} & \mathrm{K} & \mathrm{R} & \mathbf{Q} & \mathrm{K} & \mathrm{A}\end{array} \mathrm{E}$ gatgaagagccagccgtcagagacagagaggctgaccgacgactactogagggggcagccc 3240 $\begin{array}{llllllllllllllll}1037 & \text { M } & \text { K } & \text { S } & \text { Q } & \text { P } & \text { S } & \text { E } & \text { T } & \text { E } & \text { R } & \text { L } & \text { T } & \text { D } & \text { D } & \text { Y }\end{array}$

Figure 4.
cccgcccccggcccacctggtgtgacttctttaagcggacccgctattatcagatcatgc ccaagtaccacgcagtgcggatccgggaggaggagcgctacccacctccagggagcaccccagtcactggattgactttgctgtcaaaactactgacagggagcagcccccgggccgctggctggtgggcccccaattgacacccatgccagagaggtggggatcctgcctaaggttgtctacgggggcacttggaggacctggcgtgctcagacccaacagcaaaggaactagaaagaaggacccagaaggcttgctttcctgcatctctgtgaagcctctctccttggccacagactgaactcgcagggagtgcagcaggaaggaacaaagacaggcaaacggcaacgtagcctgggctcactgtgctggggcatggcgggatcctccacagagaggaggggaccaattctggacagacagatgttgggaggatacagaggagatgccacttctcactcaccactaccagccagcctccagaaggccccagagagaccctgcaagaccacggagggagccgacacttgaatgtagtaataggcagggggccctgccaccccatccagccagaccccagctgaaccatgegtcaggggcctagaggtggagttcttagctatccttggctttctgtgccagcctggctctgcccetcccccatgggctgtgtcctaaggcccatttgagaagctgaggctagttccaaaaacctctcctgacccctgcctgttggcagcccactccccagccccagccccttccatggtactgtagcaggggaattccctccccctccttgtgccttctttgtatataggcttctcaccgcgaccaataaalcagctcccagtttgtaaaaaaaaaaaaaa3780
encoded an NH_{2}-terminal sequence (FNLDTRFLVVKEAG) which exactly corresponds to the NH_{2}-terminal sequence of the mature α_{3} subunit (48). The clone 3.410 also contained a putative ATG start site and a region of 5^{\prime} noncoding sequence.

Fluorescence Intensity
Figure 5. Transient expression of human α_{3} subunit in CHO cells. Human α_{3} subunit cDNA expression plasmid was constructed as described in Materials and Methods. $10 \mu \mathrm{~g}$ of the plasmid was transfected into $10^{7} \mathrm{CHO}$ cells by electroporation. After 72 h in medium with 10% FCS, cells were harvested, stained with mAb J143 followed by FITC-labeled goat anti-mouse IgG antibody and subjected to FACS analysis. Also a FACS profile of a typical negative control is shown (e.g., cells transfected with CDM-8 vector only and stained with mAb J143).

Nucleotide and Amino Acid Sequence for Human $\alpha_{3} c D N A$

From the various overlapping cDNA clones (Fig. 3), the complete sequence for the α_{3} coding region, and some of the 3^{\prime} and 5^{\prime} untranslated regions was obtained (Fig. 4). The 3^{\prime} untranslated region contained the poly A addition signal AATAAA. Translation of the α_{3} cDNA yielded 1,051 amino acids including a signal sequence (32 residues). The predicted mass of mature α_{3} subunit peptide is calculated as 113,505. The α_{3} subunit sequence has 13 potential N -glycosylation sites (Asn-X-Ser/Thr, where X is not Pro). If carbohydrate chains with an average molecular weight of 2,500 are assumed to attach to all 13 putative glycosylation sites, the total molecular weight of the mature α_{3} subunit would be 146,000 . This value is consistent with the estimated size from the relative mobility on SDS-PAGE ($M_{\mathrm{r}} 145,000-$ 150,000). The α_{3} subunit has been reported to be cleaved to heavy and light chains upon reduction ($M_{\mathrm{r}} 110,000$ and 30,000 , respectively). Consistent with this, there are two potential cleavage sites (QRRRR) and (AKKAK), characterized by dibasic residues, which are located in the same region (residues 839-864) as cleavage sites predicted for the integrin $\alpha_{5}, \alpha_{\mathrm{v}}, \alpha_{\mathrm{mb}}$ subunits. As noted for other published integrin α subunits (3-5, $9,10,15,29,32,38,39,45-47,51$), the $\mathrm{NH}_{2}-$ terminal portion of the α_{3} sequence contains seven similar repeating units (I, residue 18-60; II, 99-131; III, 165-193; IV, 295-329; V, 352-390; VI, 415-447; VII, 475-512), which are each 28-42 amino acids in length, and are 20-30\% similar. Repeating domains V, VI, and VII each contain a putative divalent cation binding region, of the general structure of $D X(D / N) X(D / N) G X X D$. This sequence is found among a variety of Ca^{2+} and Mg^{2+} binding proteins including integrins

Figure 6. RNA hybridization analysis. From the leukemic cell lines MOLT-4 and HSB and from the fibroblast cell line MRC, total RNA ($5 \mu \mathrm{~g}$ per lane) was electrophoretically separated on 1% agaroseformaldehyde gels, transferred to nylon membrane (Nytran; Schleicher \& Schuell, Inc., Keene, NH), and then probed with ${ }^{32}$ P-labeled α_{3} cDNA clone 3.24. In a control experiment (below), the same RNA samples were probed with actin cDNA.
(3-5, 9, 10, 15, 29, 32, 38, 39, 45, 46, 50, 51, 53). Whereas several other integrin α subunits contain a 180-200 amino acid insert (called I domain) between repeating domains II and III $(4,9,10,29,32,39,47), \alpha_{3}$ subunit has no such domain.

Transient Expression of Human α_{3} Subunit in CHO Cells

The α_{3} expression plasmid was constructed as described in Materials and Methods and was transfected into CHO cells by electroporation. After 72 h , the human α_{3} subunit was expressed on the surface of 20% of the transfected cells as detected by α_{3}-specific mAb J143 (Fig. 5), further indicating that the α_{3} cDNA is authentic. Because integrin α subunit expression at the cell surface is known to require an associated β subunit, and because human α_{3} has previously been found to associate with rodent $\beta_{1}(30)$, it is presumed that transfected α_{3} in this experiment is associated with hamster β_{1} at the cell surface.

Northern Blotting Analysis

Upon probing of total RNA with α_{β} clone 3.24 , a single band (5 kb) was obtained from the fibroblast cell line MRC (Fig. 6, lane c). In contrast, only a faint band was seen from the leukemic T cell lines Molt-4 and HSB. These results are consistent with the relative levels of surface expression of
nGWATLFLRTSIPTINMENKTTWFSVDIDSELVEELPAEIELWLVLVAVg 1000 dGWATLFLRTSYPTINMENKTTWFSVDIDSELVEELPAEIELWLVLVAVS dGtATLFLRThIPTINMFNhT. . FSVDVDSELTEEqPpqvaLWLVLVAaa

AGLLLLGLIIILLWKCGFFKRARTRALYEAKRQKAEMKSQPSETERLTDDY 1051 AGLLLLGLIIILLWKCGFFKRARTRALYEAKRQKAEMKSQPSETERLTDDY AGLLLLGLIIvLLWKCGFFrRAsTgAmYEAKgQKAEMriQPSETERLTDDY

Figure 7. Alignment of human α_{3}, hamster Gapb3 and chicken CSAT antigen band 2 sequences. CSAT band 2 (43) partial amino acid sequence (170 residues) was aligned with the corresponding part of the human α_{3} and hamster Gap b3 (52) sequences by using the GAP program of UWGCG (12).
α_{3} protein on these cells (23). Hybridization of the same blot with cDNA probe for the human actin gene gave comparable signals in all lanes.

Discussion

This paper describes the cloning, sequencing, and expression in eukaryotic cells of cDNA for the human integrin α_{3} subunit of the VLA-3 ($\alpha_{3} \beta_{1}$) heterodimer. The α_{3} CDNA is authentic because (a) the NH_{2}-terminal amino acid sequence deduced from the nucleotide sequence is identical to that from purified α_{3} peptides (48), (b) α_{3} fusion proteins were immunologically cross-reactive with purified α_{3} protein, (c) rabbit antiserum against a predicted $\alpha_{3} \mathrm{COOH}-$ terminal synthetic peptide recognized the α_{3} subunit, and (d) the anti α_{3} mAb J143 recognized CHO cells transfected with α_{3} cDNA in CDM8 vector.

This paper shows that hamster galactoprotein b3 (Gapb3) is 89% homologous to the human α_{3} subunit with uniform similarity throughout the two molecules. There is high conservation (100%) of the 40 COOH -terminal residues (52). Also a partial amino acid sequence of chicken CSAT band 2 protein (28) is 70% similar to the corresponding region (COOH-terminal 170 residues) of the human α_{3} sequence (Fig. 7). Thus, it is proposed that Gapb3 and CSAT antigen band 2 are homologues of the human α_{3} subunit. In this regard, CSAT protein and $\alpha_{3} \beta_{1}$ were previously shown to be immunologically cross-reactive (48), and CSAT band 2 cDNA cross-hybridized with α_{3} cDNA in Southern blots (not shown).

Whereas Tsuji et al. (1990) (52) showed the homology of Gapb3 to human α_{3} subunit from only a very limited $\mathrm{NH}_{2}-$ terminal amino acid sequence comparison (14 residues), this work provides compelling evidence of the homology of human and hamster protein.

Alignment of α_{3} with $\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{v}$ shows that the essential features of integrin α subunits are conserved in the α_{3} subunit (Fig. 8). From the alignment of these α subunits, along with the other integrin α subunits $\alpha_{\mathrm{Ib}}, \alpha_{\mathrm{L}}, \alpha_{\mathrm{M}}$, $\alpha_{\mathrm{x}}, \operatorname{PS} 2 \alpha$, an α subunit similarity tree was constructed (Fig. 9). Overall, the α_{3} amino acid sequence was $25-37 \%$ similar to the other integrin α subunits that are cleaved into disulfide-linked fragments, and less similar to those α subunits that have I domains ($15-20 \%$, excluding the I domain sequence itself). The similarity of the α_{3} subunit


```
\mp@subsup{\alpha}{1}{1}
\mp@subsup{\alpha}{2}{r}r FNVDVKNSMSFS--GPVEDMFGYTVQQYENEEGK.--WVLIGSPLVGQPKART-..-GDVYKCPVGRERAMPCVKLDLPVNTSIPNVT-...........-...EIKENMTFGS
\mp@subsup{\alpha}{4}{2}
\mp@subsup{\alpha}{6}{\prime}}\mathrm{ FNLDAEAPAVLS--GPPGSFFGFSVEFYRPGTDGVS--VLVGAPKANTS-QPGVLQGGAVYLCPNGASPTQ-CTP1-EFDSKGSRLLESSLSSSEGEEPVEYKSLQWFGA
F
llon
```



```
a
4 DILMLGAVGAFGWSGTIV--QKTSHGHLIFP--KQAFDQ---ILQDRNHS-..--SYLGYSVAAIST-GE--STHFVAGAPRANYT-GQIVLYSVNENGNITVIQAHRLD
    LIVH-GAPGSSYWTGSLFVY--NITTNKY---K-AFL--.---DKQNQ-VKFGSYLGYSVGAGHFRSQ-HTTEVVGGAPQHEQ-IGKAYIFSIDEKE-LNILHEMKGK
```



```
    DRVLLGGPGSFYHOGOLISDQVAEIVSKYDPNVYSIKYNNQ--LATRTAQAIFODSYLGYSVAVGDFNGD-GIDDFVSGYPRAARTLGMYYIYDGKNMSSLYHF---TGE
```



```
    \ QIGSYFGSVLTTIDIDKDSYTDLLLVGAPMYMGT---EKEEQ-GKYYVYAVNQTRFEYQMS----LE-PIRQTCCSSLKDNSCTKENKNEPCGARFGTAIAAVKDLNVDG
```


r NTRTVVQHSPNLIF--S-GIEEIQ-KDSCES--NQ~-NITCRVGYPFLRAGETVTFKIIF-OF-NTSHLSENAIIHLSATSDSEEPLESLMDEVNISIPVKYEVGL
NTGIVVDFSENLFFASFSLPVDGTE--VTCQV-AASQ--KSVACDVGYPALKREQQVTFTINF--DF-NLQNLQNQASLSFQALSESQEENKA-DNLVNLKIPLLYDAEI
ETTLHVKLPVGLFYIKI -LELEEKQ--INCEV-TDNSGYYQLDCSIGYI -YYDHLSRID-ISFLLDVSSLSRAEEDLSITVHATCENEEEM--DNLKHSRVTVAIPLKY
EAELRVTAPPEAEYSGLVRHPGNFS-SLSCDYFAVNQSRLLV-CDLGNP-MKAGASLUGGLRF--TVPHLRDTKKTI--QFDFQILSKNLNNSQSDVVSFRLSVEAQADV
EAKLIATFPDTLTYSAYRELRAFPEKQLSCVA---NQNGSQADCELGNPFKRNSNVTFYLVLSTTEV--TFDTPYL--DINLKLETTSN---QDNLAPITAKAKVVIEL
EAKLIATFPDTLTYSAYRELRAFPEKQLSCVA---NQNGSQADCELGNPFKRNSNVTFYLVLSTTEV---TFDIPYL--DINLKLETTSN---QONLAPITAKAKVVIEL
EAELIVSIPLQADFIGVVRNNEALA-RLSCAFKTENQTRQVV-CDLGNP-MKAGTQLLAGLRF--SVHQQSEMDTSV--KFDLQIQSSNLFDKVSPVYSHKVDLAVLAAV
QTSL SMVNHRLQSFFGGTVMGESGMK-TVEDUGSPLKYEFQVGPMGEGLVGLGTLVLGL EWPYEVSNGKWLLYPTEITVHGNGSWPCRPPGDL INPLNLTLSDPGDRPSS
QFYSSASEHHISVA---ANETIPEF INSTEDIGNEINVFYTIRKRGHFPMPELQ--LSISFPNLTADGYPVLYPIGWSSSDN-VNCRP-RSLEDPFGINSGKKNTISKS
HLTRSTNINFYEIS---SOGNVPSIVHSFEDVGPKF IFSLKVT-TGSVPVSMAT--VI IHIPQYTKEKNPLMYLIGVQTDKAGDISC---NADINPLKIGQTSSSVSFKS
EVKLTVHGFVNPTSFV-YGSNDENEPETCMVEKMNLTFH--VINTGNSMAPNVS--VE IMVPNSFSPQTDKLFNILDVQTTTGE--CHFENYQRVCALEQQKSAMQTLKG
TLN--GVSKPEAVLFPVSCWHPRDQPQKEEDLGPAVHHVYELINQGPSSISOGV--LELSCPQALEGQQ-LLYVTRVT--.-G-LNCTT-NHPINP-KGLELDPEGSLHH
LLSVSGVAKPSQVYFGGTVVGEQAMK-SEDEVGSLIEYEFRVINLGKPLTNLGTATLNIQWPKEISNGKWLLYLVKVESKGLEKVTCEP-QKEINSLNLTESHN-...-S
EIR--GVSSPDHIFLPIPNWEHKENPETEEDVGPVVQHIYELRNNGPSSFSKAM--LHLQWPYKY-NNNTLLYILHYDID-GPNNCTS-DME INPLRIKISSLQTTEKN
* 1
PQRRRRQLDPGGGQGPPPVTLAAAKKAKSETVLTCATGRAHCVW--LECPIPDAPVVTNVTVKAR - VWNSTFIEDYRDFORVRVNGWATLFLRTSI -..-PTINMENKT

QQKREAPSRSSASSGP-........-.-QILKCPEAE-CFR--LRCELGPLHQQESQSLQLHFRVWAKTFLQREHQPFS--LQCEAVYKALKMPYRILPRQLPQKER
-RKKREITEKQIDDNRKFSLFAERKY--QTLNCSVNVN-CVN- IRCPLRGLDSKASLILRSR--LWNSTFLEEYSKLLYY-LDILMRAFIDVTAAAE-NIRLPNAGR
DTVAGQGERDHLITKRDLALSEGDI-..--HTLGCGVAQ--CLK-IVCQVGRLDRGKSAILYVKSLLWTETFMNKENQNHSYSLKSSASFNVIEFPYKNLP-IEDIY-.
TWFSVDIDSELVEELPA-EIELWLVLVAVGAGLLLLGL I ILLLLKKCGFFKRAR-TRALYEAKROKAEMKSQPSETERLTODY
SNRKRELAIQISKDGLPGRVPLWVILLSAFAGLLLLMLLILALWKIGFFKR --PLKKKM-EK
DNTVTIPLMIMKPDEKAE-VPTGVIIGSIIAGILLLLLALVAILWKLGFFKRK - - YEKMT-KNPDEIDETTELSS
ENVAHVLLEGLHHQRPKRYFTIVIISSSLLLGLIVLLL [SYVMWKAGFFKRQ--YKSILLQEENRRDSWSYINSKSNDD
QVATAVQWTKAEGSYG- VPLWIIILAIL GFLLLLGLLIYILYKLGFFKRSLPYGTAM-EKAQLKPPA-...-.--TSDA
OVRVTVFPSKTVAQYSG-VPWHI ILVAILAGILMLALLVFILWKCGFFKRNK--KDHYDATYHKAEIHAQPSDKERLTSDA
-QVRVTVFPSKTVAQYSG-VPWHIILVAILAGILMLALLVFILWKCGFFKRNK--KOHYDATYHKAEIHAQPSDKERLSDA
NSTLVTTNVTWGIQPAPMPVPVWVI ILAVLAGLLLLAVLVFVMYRMGFFFKRVRPPQ-.-EEQEREQLQPH-ENGEGNSET

Figure 8. Alignment of α_{3} protein sequence with other integrin α subunits that associate with the β_{1} subunit. Amino acid sequences for human $\alpha_{3}, \alpha_{2},(46), \alpha_{4}(50)$, $\alpha_{5}(3,15), \alpha_{6}(51), \alpha_{v}(45)$, and rat $\alpha_{1}(29)$ are aligned, and residues conserved in at least six of the sequences are marked with "*", and conserved cysteines are marked with "ل" Regions corresponding to the seven repeating domains are underlined, and regions corresponding to the I-domains in α_{1} and $\alpha_{2}(201$ and 190 amino acids, respectively) have been omitted. Initial alignments were carried out using the computer program of Smith and Smith (42), and then minor adjustments were made by eye to improve the alignment, with emphasis on maintaining conserved cysteines.

Integrin Alpha Subunit Similarities

Figure 9. Integrin α subunit similarity tree. Amino acid sequences for the human subunits $\alpha_{\mathrm{v}}(45), \alpha_{5}(3,15), \alpha_{\mathrm{mb}}$ (38), α_{3}, α_{6} (51), $\alpha_{4}(46), \alpha_{2}(47), \alpha_{\mathrm{L}}(32), \alpha_{\mathrm{M}}(4,9), \alpha_{\mathrm{X}}(10)$, the Drosophila PS 2α (5), hamster Gapb3 (52), rat $\alpha_{1} \mathrm{r}$ (29), and mouse $\alpha_{\mathrm{M}} \mathrm{m}$ (39) were aligned using the program of Smith and Smith (42), and similarity scores were generated, and then averaged similarity scores were used to construct the similarity tree.
(37%) to the α_{6} subunit is much higher than the average similarity ($\sim 25 \%$) between α_{3} and other integrin α subunits, suggesting that α_{3} is evolutionarily closer to α_{6} than the others. This pair of α subunits also has an unusually high degree of similarity within their short cytoplasmic domains $(13 / 30=43 \%$ identity $)$. No other pair of α subunits is that similar in their cytoplasmic domains. For example, even though α_{M} and α_{X} are 60% similar overall, and α_{V} and α_{S} are 43% similar overall, these pairs are only 25 and 24% similar, respectively, in their cytoplasmic domains. Recently, both $\alpha_{3} \beta_{1}$ and $\alpha_{6} \beta_{1}$ have been shown to recognize the E8 fragment of laminin, which is located COOH-terminal of the laminin cross $(17,20,44)$. It is possible, based on the evolutionary similarity of the two subunits, that they recognize the same site of laminin by a similar mechanism.

The present human α_{3} subunit cDNA clone will be useful in future studies (a) to directly evaluate the role of $\alpha_{3} \beta_{1}$ in migration, invasion and metastasis and (b) to study the mechanism of recognition of multiple ligands by $\alpha_{3} \beta_{1}$. For example, it will be particularly interesting to examine the behavior in vitro and in vivo of the transfected CHO cells or other cells overproducing human $\alpha_{3} \beta_{1}$.

We wish to thank David Mandelman for help in transfection and FACS analysis.

Supported by National Institutes of Health grants HL-28235 (M. H. Ginsberg), GM47157 (Y. Takada), and GM38903 (M. E. Hemler). This is publication no. CVB-6624 from the Research Institute of Scripps Clinic.
Received for publication 18 April 1991 and in revised form 14 June 1991.

References

1. Akiyama, S. K., K. Nagata, and K. M. Yamada. 1990. Cell surface recep-
tors for extracellular matrix components. Biochim. Biophys. Acta Rev. Biomembr. 1031:91-110.
2. Albelda, S. M., M. Daise, E. M. Levine, and C. A. Buck. 1989. Identification and characterization of cell-substrate adhesion receptors on cultured human endothelial cells. J. Clin. Invest. 83:1992-2002.
3. Argraves, W. S., S. Suzuki, H. Arai, K. Thompson, M. D. Pierschbacher, and E. Ruoslahti. 1987. Amino acid sequence of the human fibronectin receptor. J. Cell Biol. 105:1183-1190.
4. Arnaout, M. A., S. K. Gupta, M. W. Pierce, and D. G. Tenen. 1988. Amino acid sequence of the alpha subunit of human leukocyte adhesion receptor Mol (complement receptor type 3). J. Cell Biol. 106:21532158.
5. Brown, N. H., D. L. King, M. Wilcox, and F. C. Kafatos. 1989. Developmentally regulated alternative splicing of drosophila integrin PS2 alpha transcripts. Cell. 59:185-195.
6. Buck, C. A., and A. F. Horwitz. 1987. Cell surface receptors for extracellular matrix molecules. Annu. Rev. Cell Biol. 3:179-205.
7. Carter, W. G., E. A. Wayner, T. S. Bouchard, and P. Kaur. 1990. The role of integrins alpha 2 beta 1 and alpha 3 beta 1 in cell-cell and cellsubstrate adhesion of human epidermal cells. J. Cell Biol. 110:13871404.
8. Chu, G., H. Hayakawa, and P. Berg. 1987. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15:1311-1326.
9. Corbi, A. L., L. J. Miller, K. O'Connor, R. S. Larson, and T. A. Springer. 1987. cDNA cloning and complete primary structure of the alpha subunit of a leukocyte adhesion glycoprotein, p150,95. EMBO (Eur. Mol. Biol. Organ.) J. 6:4023-4028.
10. Corbi, A. L., T. K. Kishimoto, L. J. Miller, and T. A. Springer. 1988. The human leukocyte adhesion glycoprotein Mac-1 (Complement receptor type 3, CD1lb) a subunit: Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B. J. Biol. Chem. 263:12403-12411.
11. Dedhar, S., and R Saulnier. 1990. Alterations in integrin receptor expression on chemically transformed human cells: Specific enhancement of laminin and collagen receptor complexes. J. Cell Biol. 110:481-489.
12. Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387395.
13. Elices, M. J., L. A. Urry, and M. E. Hemler. 1991. Receptor functions for the integrin VLA-3: Fibonectin, collagen, and laminin binding are differentially influenced by ARG-GLY-ASP peptide and by divalent cations. J. Cell Biol. 112:169-181.
14. Fingerman, E., and M. E. Hemler. 1988. Regulation of proteins in the VLA cell substrate adhesion family: Influence of cell growth conditions on VLA-1, VLA-2, and VLA-3 expression. Exp. Cell Res. 177:132-142.
15. Fitzgerald, L. A., M. Poncz, B. Steiner, S. C. Rall, J. S. Bennett, and D. R. Phillips. 1987. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha subunits and platelet glycoprotein IIb. Biochemistry. 26:8158-8165.
16. Fradet, Y., C. Cordon-Cardo, T. Thompson, M. E. Daly, W. F. Whitmore, Jr., K. O. Lloyd, M. R. Melamed, and L. J. Old. 1984. Cell surface antigens of human bladder cancer defined by mouse monoclonal antibodies. Proc. Natl. Acad. Sci. USA. 81:224-228.
17. Gehlsen, K. R., K. Dickerson, W. S. Argraves, E. Engvall, and E. Ruoslahti. 1990. Subunit structure of a laminin-binding integrin and localization of its binding site on laminin. J. Biol. Chem. 264:19034-19038.
18. Gehlsen, K. R., L. Dillner, E. Engvall, and E. Ruoslahti. 1988. The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science (Wash. DC). 241:1228-1229.
19. Ginsberg, M. H., J. Loftus, and E. F. Plow. 1988. Platelets and the adhesion receptor superfamily. In Platelet Membrane Receptors: Molecular Biology, Immunology, Biochemistry, and Pathology. (Progress in Clinical and Biological Research). G. A. Jamieson, editor. Alan R. Liss, Inc., NY. 171-195.
20. Hall, D. E., L. F. Reichardt, E. Crowley, B. Holley, H. Moezzi, A. Sonnenberg, and C. H. Damsky. 1990. The alpha 1/beta 1 and alpha 6 /beta 1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J. Cell Biol. 110:2175-2184.
21. Heino, J., R. A. Ignotz, M. E. Hemler, C. Crouse, and J. Massague. 1989. Regulation of cell adhesion receptors by transforming growth factor- β. Concomitant regulation of integrins that share a common β_{1} subunit. J. Biol. Chem. 264:380-388.
22. Heino, J., and J. Massague. 1989. Transforming growth factor- β switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J. Biol. Chem. 264:21806-21811.
23. Hemler, M. E. 1990. VLA proteins in the integrin family: Structures, functions, and their role on leukocytes. Annu. Rev. Immunol. 8:365-400.
24. Hemler, M. E., C. Huang, and L. Schwarz. 1987. The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J. Biol. Chem. 262: 3300-3309.
25. Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene (Amst.). 28:351-359.
26. Huynh, T. V., R. A. Young, and R. W. Davis. 1985. Construction and screening cDNA libraries in λ gt10 and λ gt11. In DNA Clönîing. Vol. 1. D. M. Glover, editor. IRL Press, Oxford/Wáshington DC. 49-78.
27. Hynes, R. O. 1987. Integrins: A family of cell surface receptors. Cell. 48:549-554.
28. Hynes, R. O., E. E. Marcantonio, M. A. Stepp, L.' A. Urry, and G. H. Yee. 1989. Integrin heterodimer and receptor complexity in avian and mammalian cells. J. Cell Biol. 109:409-420.
29. Ignatius, M. J., T. H. Large, M. Houde, J. W. Tawil, A. Barton, S. Esch, S. Carbonetto, and L. F. Reichardt. 1990. Molecular cloning of the rat integrin $\alpha 1$ subunit: a receptor for laminin and collagen. J. Cell Biol. 111:709-720.
30. Kantor, R. R. S., N. H. Bander, C. L. Finstad, L. H. Graf, Jr., K. O. Lloyd, L. J. Old, and A. P. Albino. 1987. DNA-mediated gene transfer of a human cell surface 170-kilodalton glycoprotein. J. Biol. Chem. 262:15166-15171.
31. Kaufmann, R., D. Frösch, C. Westphal, L. Weber, and C. E. Klein. 1989. Integrin VLA-3: Ultrastructural localization at cell-cell contact sites of human cell cultures. J. Cell Biol. 109:1807-1815.
32. Larson, R. S., A. L. Corbi, L. Berman, and T. A. Springer. 1989. Primary structure of the leukocyte function-associated molecule-1 α subunit: An integrin with an embedded domain defining a protein superfamily. J. Cell Biol. 108:703-712.
33. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 545 pp .
34. Morhenn, V. B., A. B. Schreiber, O. Soriero, W. McMillan, and A. C. Allison. 1985. A monoclonal antibody against basal cells of human epidermis. J. Clin. Invest. 76:1978-1983.
35. Peltonen, J., S. Larjava, S. Jaakkola, H. Gralnick, S. K. Akiyama, K. M. Yamada, and J. Uitto. 1989. Localization of integrin receptors for fibronectin, collagen and laminin in human skin. J. Clin. Invest. 84:1916-1923.
36. Pignatelli, M., M. E. F. Smith, and W. F. Bodmer. 1990. Low expression of collagen receptors in moderate and poorly differentiated colorectal adenocarcinoma. Br. J. Cancer. 61:636-638.
37. Plantefaber, L. C., and R. O. Hynes. 1989. Changes in integrin receptors on oncogenically transformed cells. Cell. 56:281-290.
38. Poncz, M., R. Eisman, R. Heidenreich, S. M. Silver, G. Vilaire, S. Surrey, E. Schwartz, and J. S. Bennett. 1987. Structure of the platelet membrane glycoprotein IIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J. Biol. Chem. 262:8476-8482.
39. Pytela, R. 1988. Amino acid sequence of the murine Mac-1 alpha chain reveals homology with the integrin family and an additional domain related to von Willebrand factor. EMBO (Eur. Mol. Biol. Organ.) J. 7:13711378.
40. Rettig, W. J., V. V. V. S. Murty, M. J. Mattes, R. S. K. Chaganti, and L. J. Old. 1986. Extracellular matrix-modulated expression of human cell surface glycoproteins A42 and J143: Intrinsic and extrinsic signals determine antigenic phenotypes. J. Exp. Med. 164:1581-1599.
41. Sanger, F., S. Nicklen, and R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5467.
42. Smith, R. F., and T. F. Smith. 1990. Automatic generation of primary sequence patterns from sets of related protein sequences. Proc. Natl. Acad. Sci. USA. 87:118-122.
43. Solowska, J., J.-L. Guan, E. E. Marcantonio, J. E. Trevithick, C. A. Buck, and R. O. Hynes. 1989. Expression of normal and mutant avian integrin subunits in rodent cells. J. Cell Biol. 109:853-861.
44. Sonnenberg, A., C. J. Linders, P. W. Modderman, C. H. Damsky, M. Aumailley, and R. Timpl. 1990. Integrin recognition of different cellbinding fragments of laminin (P1, E3, E8) and evidence that alpha 6 beta 1 but not alpha 6 beta 4 functions as a major receptor for fragment E8. J. Cell Biol. 110:2145-2155.
45. Suzuki, S., W. S. Argraves, H. Arai, L. R. Languino, M. D. Pierschbacher, and E. Ruoslahti. 1987. Amino acid sequence of the vitronectin receptor alpha subunit and comparative expression of adhesion receptor mRNAs. J. Biol. Chem. 262:14080-14085.
46. Takada, Y., and M. E. Hemler, 1989. The primary structure of the VLA-2/ collagen receptor α^{2} subunit (platelet GPIa): Homology to other integrins and the presence of a possible collagen-binding domain. J. Cell Biol. 109:397-407.
47. Takada, Y., C. Huang, and M. E. Hemler. 1987. Fibronectin receptor structures in the VLA family of heterodimers. Nature 326:607-609.
48. Takada, Y., J. L. Strominger, and M. E. Hemler. 1987. The very late antigen family of heterodimers is part of a superfamily of molecules involved in adhesion and embryogenesis. Proc. Natl. Acad. Sci. USA. 84:32393243.
49. Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J. Cell." Biochem. 37:385-393.
50. Takada, Y., M. J. Elices, C. Crouse, and M. E. Hemler. 1989. The primary structure of the α^{4} subunit of VLA-4: Homology to other integrins and a possible cell-cell adhesion function. EMBO (Eur., Mol. Biol. Organ.) J. 8:1361-1368.
51. Tamura, R. N., C. Rozzo, L. Starr, J. Chambers, L. F. Reichardt, H. M. Cooper, and V. Quaranta. 1990. Epithelial integrin alpha 6 beta 4: Complete primary structure of alpha 6 and variant forms of beta 4. J. Cell Biol. 111:1593-1604.
52. Tsuji, T., F. Yamamoto, Y. Miura, K. Takio, K. Titani, S. Pawar, T. Osawa, and S. Hakomori. 1990. Characterization through cDNA cloning of galactoprotein b3 (Gap b3), a cell surface membrane glycoprotein showing enhanced expression on oncogenic transformation. Identification of Gap b3 as a member of the integrin superfamily. J. Biol. Chem. 265:7016-7021.
53. Van Eldik, L. J., J. G. Zendegui, D. R. Marshak, and D. M. Watterson. 1982. Calcium binding proteins and the molecular basis of calcium action. Int. Rev. Cytol. 77:1-61.
54. Wayner, E. A., and W. G. Carter. 1987. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique a and b subunits. J. Cell Biol. 105:1873-1884.
55. Young, R. A., and R. W. Davis. 1983. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA. 80:1194-1198.

[^0]: 1. Abbreviations used in this paper: PBST, PBS plus 0.2% Tween-20.
[^1]: 2. FACS is a registered trademark of Becton Dickinson and Company.
[^2]: Figure 4. Complete nucleotide sequence of α_{3} subunit cDNA and deduced amino acid sequence. The initiation codon, stop codon, and potential metal binding domains are boxed. The NH_{2}-terminal amino acid sequence, putative transmembrane domain, and polyadenylation signal (AATAAA) are underlined. N^{*}, a potential N-glycosylation site. These sequence data are available from EMBL/GenBank/DDBJ under accession number M59911.

