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Abstract: The maximum entropy principle consists of two steps: The first step is to find the dis-
tribution which maximizes entropy under given constraints. The second step is to calculate the
corresponding thermodynamic quantities. The second part is determined by Lagrange multipliers’
relation to the measurable physical quantities as temperature or Helmholtz free energy/free entropy.
We show that for a given MaxEnt distribution, the whole class of entropies and constraints leads
to the same distribution but generally different thermodynamics. Two simple classes of transfor-
mations that preserve the MaxEnt distributions are studied: The first case is a transform of the
entropy to an arbitrary increasing function of that entropy. The second case is the transform of the
energetic constraint to a combination of the normalization and energetic constraints. We derive group
transformations of the Lagrange multipliers corresponding to these transformations and determine
their connections to thermodynamic quantities. For each case, we provide a simple example of
this transformation.

Keywords: maximum entropy principle; MaxEnt distribution; calibration invariance; Lagrange multipliers

1. Introduction

The maximum entropy principle (MEP) is one of the most fundamental concepts in
equilibrium statistical mechanics. It was originally proposed by Jaynes [1,2] in order to con-
nect information entropy introduced by Shannon and thermodynamic entropy introduced
by Clausius, Boltzmann, and Gibbs. Although the MEP was originally introduced for the
case of Shannon entropy, with the advent of generalized entropies [3–17] the natural effort
was to apply the maximum entropy principle beyond the case of Shannon entropy. Another
question that arose naturally is whether the MEP can be applied to other than ordinary
linear constraints. Examples of the constraints that might be considered in connection
with the MEP are escort constraints [18–20], Kolmogorov–Nagumo means [21,22], or more
exotic types of constraints [23]. It brought some discussion about the applicability of the
principle for the case of generalized entropies [24,25] and nonlinear constraints and its
thermodynamic interpretation [26–30]. Indeed, MEP is not the only one extremal principle
in statistical physics, let us mention, e.g., the principle of maximum caliber [31] which is
useful in non-equilibrium physics. In this paper, we stick, however, to MEP, as it is the
most widespread principle and the theory of generalized thermostatistics has been mainly
focused on MEP. For a recent review of other principles, see also in [32]. For the discussion
between entropy arising from information theory and thermodynamics, see in [33]. For the
sake of simplicity, let us consider canonical ensemble, i.e., fluctuations in internal energy.
For the case of the grand-canonical ensemble, one can obtain similar results to the ones
presented in this paper for the case of a chemical potential µ.

In order to grasp the debate about the applicability of the MEP, let us emphasize that
the MEP consists of two main parts:
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(I) Finding a distribution (MaxEnt distribution) that maximizes entropy under given con-
straints.

(II) Plugging the distribution into the entropic functional and calculating physical quanti-
ties as thermodynamic potentials, temperature, or response coefficients (specific heat,
compressibility, etc.).

The first part is rather a mathematical procedure of finding a maximum subject to
constraints. This is done by the method of Lagrange multipliers, by defining a Lagrange
function in the form

Lagrange f unction = entropy− (Lagrange multiplier) · (constraint)

The Lagrange multipliers’ role at this stage is to ensure fulfillment of constraints as
they are determined from the set of equations obtained from the maximization of the
Lagrange function. This procedure is known in statistics as Softmax, a method used to
infer distribution from given data. Shore and Johnson [34,35] therefore studied MEP as a
statistical inference procedure and established a set of consistency axioms. Shore and
Johnson’s work heated a debate about whether MEP for generalized entropies can
be also understood as a statistical inference method satisfying the consistency
requirements [24,36–41]. In [42], it was shown that the class of entropies satisfying the
original Shore–Johnson axioms is wider than previously thought. Moreover, in [43], the
connection between Shore–Johnson axioms and Shannon–Khinchin axioms was inves-
tigated and the equivalence of information theory and statistical inference axiomatics
was established.

In the second part, the physical interpretation of entropy starts to arise. Similar to
the case of Lagrangian mechanics, where the Lagrangian is the difference between kinetic
and potential energy and the Lagrange multipliers play the role of the normal force to
the constraints, here the entropy becomes a thermodynamic state variable. For Shannon
entropy and linear constraints, the Lagrange multipliers become inverse temperature and
free entropy, respectively.

The main aim of this paper is to discuss the relation between points (I) and (II). In the
first part, it is possible to find a class of entropic functionals and constraints leading to
the same MaxEnt distribution. However, in the second part, different entropy and/or
constraints lead to different thermodynamics and different relations between physical
quantities and Lagrange multipliers. The two main messages of this paper are listed below.

(i) For each MaxEnt distribution, there exists the whole class of entropies and constraints
leading to generally different thermodynamics.

(ii) It is possible to establish transformation relations of Lagrange parameters (and subse-
quently the thermodynamic quantities) for classes of entropies and constraints giving
the same MaxEnt distribution.

We call the latter transformation relation calibration invariance of the MaxEnt distri-
bution. A straightforward consequence is that in order to fully determine the statistical
properties of a thermal system in equilibrium, it is not enough to measure the statistical
distribution of energies.

The rest of the paper is organized as follows. In the next section, we briefly discuss
the main aspects of MEP for the case of general entropic functional and general constraints.
In the following two sections, we introduce two simple transformations of entropic func-
tional (Section 3) and constraints (Section 4) that lead to the same MaxEnt distribution and
derive transformations between the Lagrange multipliers. These transformations form
a group. After the general derivation, we provide a few simple examples for each case.
The last section is devoted to conclusions.

2. Maximum Entropy Principle in Statistical Physics

Maximum entropy principle is the way of obtaining the representing probability
distribution from the limited amount of information. Our aim is to find the probability
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distribution of the system P = {pi}n
i=1 under the set of given constraints. In the simplest

case, the principle can be formulated as follows.

Maximum entropy principle: Maximize entropy S(P) under the normalization constraint
f0(P) = 0, and energy constraint fE(P) = 0.

The normalization condition is considered in the regular form, i.e., f0(P) = ∑i pi− 1 =
〈1〉 − 1. Moreover, we have a class of constraints, which originally described the average
energy of the system. Therefore, we call them energy constraints. We consider only one
energy constraint, for simplicity, although there can be more constraints, and they do not
have to consider only internal energy but also other thermodynamic quantities. In the
original formulation, the energy constraint is linear in probabilities, i.e.,

fE(P) = ∑
i

piEi − E = 〈E〉 − E, (1)

but it can be generally any nonlinear function of probabilities—escort means provide an
example. A large class of energy constraints can be written in a separable form, which
means that fE(P) = E(P)− E, i.e., in the form expressing the “expected” internal energy
(macroscopic variable) as a function of probability distribution (microscopic variable). This
class of constraints plays a dominant role in the thermodynamic systems.

In order to find a solution of the Maximum entropy principle, we use a common method
of Lagrange multipliers, which can be done through maximization of Lagrange function:

L(P; α, β) = S(P)− α f0(P)− β fE(P) (2)

The maximization procedure leads to the set of equations

∂L(P; α, β)

∂pi
= 0 ∀ i ∈ {1, . . . , n}

∂L(P; α, β)

∂α
= f0(P) = 0 (3)

∂L(P; α, β)

∂β
= fE(P) = 0

from which we determine the resulting MaxEnt distribution. In order to obtain a unique
solution, we require that the entropic functional should be a Schur-concave symmetric
function [42].

As a consequence, we obtain the values of Lagrange multipliers α and β. From the
strictly mathematical point of view, Lagrange multipliers are just auxiliary parameters to
be solved from the set of Equation (3). However, in physics, Lagrange parameters also
have a physical interpretation. In Lagrangian mechanics, Lagrange parameters play the
role of normal force to the constraints. Similarly, in ordinary statistical mechanics based on
Shannon entropy H(P) = −∑i pi log pi and linear constraints (1), the Lagrange multipliers
have the particular physical interpretation:

β =
1
T

(inverse temperature), (4)

α = S− 1
T

E (free entropy). (5)

Note that the free entropy is, similarly to Helmholtz free energy, a Legendre transform of
entropy w.r.t. internal energy. For the case of ordinary thermodynamics (Shannon entropy
and linear constraints), it is equal to the logarithm of the partition function.

This interpretation is valid only in this case. In the case, when we use different
entropy functional or different constraints, these relation between Lagrange multipliers
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and thermodynamic quantities are no longer valid. This is even the case, when the resulting
MaxEnt distribution is the same.

The main aim of this paper is to show how the invariance of MaxEnt distribution
affects the Lagrange multipliers and their relations to thermodynamic quantities. Let us
now solve Equation (3). The first set of equations leads to

∂S(P)
∂pi

− α
∂ f0(P)

∂pi
− β

∂ fE(P)
∂pi

= 0. (6)

Let us assume the normalization in the usual way which leads to ∂ f0(P)
∂pi

= 1. Moreover,

let us consider separable energy constraint, so ∂ fE(P)
∂pi

= ∂E(P)
∂pi

. The resulting probability
distribution can be expressed as

p?i =
∂S
∂pi

(−1)[
α + β

∂E(P)
∂pi

]
. (7)

where (−1) denotes inverse function of ∂S/∂pi (provided it exists and is unique). We can
express α by multiplying the equation by pi and summing over i, which leads to

α = 〈∇PS(P)〉 − β〈∇PE(P)〉 (8)

where 〈X〉 = ∑i xi pi and ∇P = ( ∂
∂p1

, . . . , ∂
∂pn

). By plugging back to the previous equation,
we can get β as

β =
∆i(∇S(P))
∆i(∇E(P))

(9)

where ∆i(X) = xi − 〈X〉 is the difference from the average.
The solution of Equation (3) depends on the internal energy E. However, in thermo-

dynamics it is natural to invert the relation β = β(E) and express the relevant quantities in
terms of β, so E = E(β). With that, we can calculate dependence of entropy on β:

∂S
∂β

= ∑
i

∂S
∂pi

∂pi
∂β

= ∑
i

(
α + β

∂E(P)
∂pi

)
∂pi
∂β

= β ∑
i

∂ fE
∂pi

∂pi
∂β

= β

(
−∂ fE

∂E
∂E
∂β

)
(10)

For separable energy constraints, ∂ fE
∂E = −1, so we obtain the well-known relation

∂S
∂β

= β
∂E
∂β
⇒ β =

∂S
∂E

. (11)

Let us now define the Legendre conjugate of entropy called free entropy (also called
Jaynes parameter [44] or Massieu function [45]):

ψ = S− ∂S
∂E

E = S− βE (12)

Free entropy is connected to Helmholtz free energy as ψ = −βF. The difference between α
and ψ can be expressed as

ψ− α = (S− 〈∇PS〉)− β(E− 〈∇PE〉) (13)

Therefore, we can understand the difference ψ− α as the Legendre transform of ψ with
respect to P. From this, we see that the difference between ψ and α is a constant (not
depending on thermodynamic quantities), if two independent conditions are fulfilled,
i.e., E = 〈∇PE(P)〉 and S = 〈∇PS〉 + a. The former constraint leads to linear energy
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constraints, while the latter one leads to the the conclusion that the entropy must be in
trace form S(P) = ∑i g(pi). Moreover, the function g has to fulfill the following equation,

g(x)− ax = xg′(x) (14)

leading to g(x) = −ax log(x) + bx which is equivalent to Shannon entropy.
In the next sections, we will explore how the transformation of the entropy and

the energy constraint that leaves the MaxEnt distribution invariant affects the Lagrange
multipliers and their relation to thermodynamic quantities.

3. Calibration Invariance of MaxEnt Distribution with Entropy Transformation

The simplest transformation of Lagrange functional that leaves the MaxEnt distribu-
tion invariant is to consider an arbitrary increasing function of entropy, i.e., we replace
S(P) by c(S(P)), where c′(x) > 0. Let us note that this transform preserves the uniqueness
of the MEP because it is easy to show that if S(P) is Schur-concave, c(S(P)) is also Schur-
concave [42] which is a sufficient condition for uniqueness of the MaxEnt distribution.

In this case, the Lagrange equations are adjusted as follows,

c′(S(P))
∂S(P)

∂pi
− αc

∂ f0(P)
∂pi

− βc
∂E(P)

∂pi
= 0 (15)

leading to
αc = c′(S(P))〈∇PS(P)〉 − βc〈∇PE(P)〉 (16)

and

βc = c′(S(P))
∆i(∇PS(P))
∆i(∇PE(P))

(17)

so we get that the function c causes rescaling of α and β, so

αc = c′(S(P)) α (18)

βc = c′(S(P)) β (19)

while its ratio remains unchanged, i.e., αc/βc = α/β. Actually, the set of increasing
functions conform a group of Lagrange multipliers, because it is easy to show that the
Lagrange parameters related to the entropy c1(c2(S(P))

βc1◦c2 = c′1(c2(S(P)) · c′2(S(P)) β = c′1(c2(S(P))βc2 (20)

which can be described as the group operation (c1 ◦ c2) 7→ c′1(c2) · c′2.
An important property of this transformation is that it changes the extensive–intensive

duality of the conjugated pair of thermodynamic variables and the respective forces while
it maintains the distribution. Notably, by changing the entropic functional from extensive
(i.e., S(n) ∼ U(n)) to non-extensive, it changes β from intensive (i.e., size-independent,
at least in the thermodynamic limit) to non-intensive, i.e., explicitly size-dependent. This
point has been discussed in connection with q-non-extensive statistical physics of [29,30]
and the relation to the zeroth law of thermodynamics was shown in [46]. As one can
see from the example below, although Rényi entropy and Tsallis entropy have the same
maximizer, the corresponding thermodynamics is different. While Rényi entropy is additive
(and therefore extensive for systems where U(n) ∼ n) and the temperature is intensive,
Tsallis entropy is non-extensive, and the corresponding temperature explicitly depends on
the size of the system.

Let us finally mention that the difference between free entropy and Lagrange parame-
ter α transforms as

ψc − αc = (c(S)− c′(S)〈∇PS(P)〉 − c′(S)β(E− 〈∇PE(P)〉) = c′(S)(ψ− α) + (c(S)− c′(S) · S). (21)
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While free entropy and other thermodynamic potentials are transformed, the heat change
remains invariant under this transformation:

d̄Qc = Tcd c(S) =
T

c′(S)
c′(S)dS = TdS = d̄Q. (22)

Example 1. We exemplify the calibration invariance on two popular examples of closely related
entropies.

• Rényi entropy and Tsallis entropy: Two most famous examples of generalized entropies

are Rényi entropy Rq(P) = 1
1−q ln

(
∑i pq

i

)
and Tsallis entropy Sq(P) = 1

1−q

(
∑i pq

i − 1
)

.
Their relation can be expressed as

Rq(P) = cq(Sq(P)) =
1

1− q
ln
[
(1− q)Sq(P) + 1

]
(23)

and therefore we obtain that

c′q(Sq(P)) =
1

1 + (1− q)Sq
=

1

∑i pq
i

. (24)

The difference between free entropy and α can be obtained as

ψR − αR =
1

∑i pq
i
(ψS − αS) +

(
Rq(P)−

Sq(P)

∑i pq
i

)
. (25)

One can therefore see that even though Rényi and Tsallis entropy lead to the same MaxEnt
distribution, their thermodynamic quantities, such as temperature or free entropy, are different.
Whether the system follows Rényi or Tsallis entropy depends on additional facts, as e.g.,
(non)-extensitivity and (non)-intensivity of thermodynamic quantities.

• Shannon entropy and Entropy power: A similar example is provided with Shannon
entropy H(P) = ∑i pi ln 1/pi and entropy power P(P) = ∏i(1/pi)

pi . The relation between
them is simply

H(P) = c(P(P)) = log(P(P)), (26)

so we obtain that
c′(P(P)) = 1/(P(P)) = exp(−H(P)). (27)

For the difference between free entropy and α, we obtain that

0 = ψH − αH =
1
P(P)

(ψP − αP ) + (H(P)− 1) (28)

from which we get that
ψP − αP = P(P)(1− logP(P)). (29)

Therefore, we see that even that the MaxEnt distribution remains unchanged, the relation
between α and free energy is different.

4. Calibration Invariance of MaxEnt Distribution with Constraints Transformation

Similarly, one can uncover the invariance of the MaxEnt distribution when the con-
straints are transformed in a certain way. Generally, if two sets of constraints define the
same domain, the resulting Maximum entropy principle should lead to equivalent results.
We will not be so general, but we focus on a specific situation, which might be quite inter-
esting for thermodynamic applications. Let us remind two conditions, which we assume:
normalization f0(P) = 0 and energy constraint fE(P) = 0. Let us investigate the latter. Sim-
ilarly to the previous case, it is possible to take any function g of fE(P), for which g(y) = 0
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if y = 0. More generally, we can also take into account the normalization constraint and
replace the original energy condition by

g( f0(P), fE(P)) = 0 (30)

for any g(x, y), for which g(x, y) = 0⇒ y = 0. Let us investigate the Maximum entropy
principle for this case. We can express the Lagrange function as

L(P) = S(P)− αg f0(P)− βgg( f0(P), fE(P)) (31)

which leads to a set of equations

∂S(P)
∂pi

− αg
∂ f0(P)

∂pi
− βg

[
G(1,0) ∂ f0(P)

∂pi
+ G(0,1) ∂E(P)

∂pi

]
= 0 (32)

where G(1,0) = ∂g(x,y)
∂x |(0,0) and G(0,1) = ∂g(y,x)

∂x |(0,0). We take again into account that
∂ f0(P)

∂pi
= 1, multiply the equations by pi and some over i. This gives us

αg = 〈∇PS(P)〉 − βg

[
G(1,0) + G(0,1)〈∇PE(P)〉

]
. (33)

By plugging αg back, we end with relation for βg:

βg =
1

G(0,1)
∆i(∇PS(P))
∆i(∇PE(P))

. (34)

For αg we end with

αg = 〈∇PS(P)〉 − ∆i(∇PS(P))
∆i(∇PE(P))

〈∇ fE(P)〉
[

1 +
G(1,0)

G(0,1)
1

〈∇PE(P)〉

]
. (35)

Thus, we end again with rescaling of αg and βg, which reads

αg(α, β) = α− G(1,0)

G(0,1)
β , (36)

βg(β) =
β

G(0,1)
. (37)

The ratio of Lagrange multipliers is also transformed, so we get

αg

βg
= G(0,1) α

β
− G(1,0). (38)

Again, the set of all functions fulfilling the aforementioned condition conform a group.
The group operation can be described by the relation between coefficients G(1,0) and G(0,1)

for the composite function g(x, y) = g1(x, g2(x, y)). We obtain that

G(1,0) = G(1,0)
1 + G(0,1)

1 G(1,0)
2 (39)

G(0,1) = G(0,1)
1 G(0,1)

2 (40)

which leads to group relations

αg(α, β) = αg1(αg2(α, β), βg2(β))−
G(1,0)

1

G(0,1)
1

βg2(β) (41)

βg(β) =
βg2(β)

G(0,1)
1

. (42)
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Example 2. Here we mention two simple examples of the aforementioned transformation.

• Energy shift: Under this scheme, we can assume the constant shift in the energy spectrum.
Let us rewrite the constraint f (P) in the following form,

fE(P) = ∑ piEi − E = ∑ pi(Ei − E′)− (E− E′) (43)

which allows us to identify the function g(x, y) as

g(x, y) = y− E′x + E′ (44)

We obtain G(1,0) = −E′ and G(0,1) = 1, which means that α′ = α− βE′.
• Latent escort means: Apart from linear means, it is possible to use some generalized ap-

proaches. One of these examples is provided by so-called escort mean:

Eq = 〈E〉q =
∑i pq

i Ei

∑i pq
i

(45)

which for q = 1 becomes an ordinary linear mean, when P = {pi}n
i=1 are normalized to one.

When we use this class of means in the Maximum entropy principle, the normalization is
enforced by the normalization condition f0(P) = 0, therefore for q = 1 we obtain the same
results. Nevertheless, by taking q = 1 for the results with escort distribution, the energy
constraint is actually expressed as

∑ piEi

∑ pi
− E (46)

can be understood in the same way as considered before in this section, i.e., as a combination
of a normalization constraint and energy constraint. In this case the function g has the
following form,

g(x, y) =
y + E
x + 1

− E. (47)

Therefore, we obtain that G(1,0) = −E and G(0,1) = 1, which correspond to the previous
example for E′ = E. Therefore, the latent energy mean can be understood in terms of MaxEnt
procedure as the shift of the energy spectrum by its average energy.

5. Conclusions

In this paper, we have discussed the calibration invariance of MEP, which means that
for a given MaxEnt distribution, there exists a whole class of entropies and constraints that
lead to different thermodynamics (Thermodynamic quantities and response coefficients
generally have different behavior. For example, from intensive temperature we can obtain
temperature that explicitly depends on the size of the system). We have stressed that
the MEP procedure consists of two parts, where the first part, consisting of determining
the MaxEnt distribution, is rather a mathematical tool, while the second part, making
connection between Lagrange multipliers and thermodynamic quantities, is a specific for
application of MEP in statistical physics. Indeed, the paper does not cover all possible
transformations leading to the same MaxEnt distribution (let us mention, at least, the
additive duality of Tsallis entropy, where maximizing S2−q with linear constraint leads
to the same result as maximizing Sq with escort constraints [47]). The main lesson of this
paper is that in order to fully determine a thermal system in equilibrium, we need to mea-
sure not only probability distribution, but also all relevant thermodynamic quantities (as
entropy). Moreover, the transformation between Lagrange parameters and its connection
to thermodynamic potentials can be useful in situations when one is not certain about the
exact form of entropy.
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