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The Conventional nature of  
non-MHC-Restricted T Cells
Marco Lepore*†, Lucia Mori and Gennaro De Libero*

Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland

The definition “unconventional T  cells” identifies T  lymphocytes that recognize non- 
peptide antigens presented by monomorphic antigen-presenting molecules. Two cell 
populations recognize lipid antigens and small metabolites presented by CD1 and MR1 
molecules, respectively. A third cell population expressing the TCR Vγ9Vδ2 is stimulated 
by small phosphorylated metabolites. In the recent past, we have learnt a lot about 
the selection, tissue distribution, gene transcription programs, mode of expansion after 
antigen recognition, and persistence of these cells. These studies depict their functions 
in immune homeostasis and diseases. Current investigations are revealing that uncon-
ventional T cells include distinct sub-populations, which display unexpected similarities 
to classical MHC-restricted T cells in terms of TCR repertoire diversity, antigen specificity 
variety, functional heterogeneity, and naïve-to-memory differentiation dynamic. This 
review discusses the latest findings with a particular emphasis on these T cells, which 
appear to be more conventional than previously appreciated, and with the perspective of 
using CD1 and MR1-restricted T cells in vaccination and immunotherapy.
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inTRODUCTiOn

T  lymphocytes recognize complexes made by antigen-presenting molecules and small antigenic 
molecules. Small peptides generated after digestion of large proteins can form stable complexes with 
MHC molecules. Their generation may occur in different intracellular compartments, which are the 
stations where cellular protein degradation occurs. Short peptides usually associate with the MHC 
molecules that co-localize in the same cellular organelles.

T cells may also recognize non-peptide antigens, which are bound and presented by diverse non-
polymorphic antigen-presenting molecules.

One group of T  cells reacts to lipids, which form complexes with CD1 molecules. The four 
CD1 proteins with antigen presentation capability (CD1a, CD1b, CD1c, and CD1d) have different 
antigen-binding pockets and traffic alongside diverse intracellular routes. These features confer 
unique lipid-binding capacities to individual CD1 isoforms and allow them presenting a large variety 
of lipid molecules derived from microbes and plants or of self-origin.

Invariant natural killer T (iNKT) cells are the best-characterized CD1-restricted T cells. They are 
stimulated by the prototype lipid α-galactosylceramide (α-GalCer), by a variety of CD1d-presented 
lipid antigens made by several bacteria and also by peroxisome-derived self-lipids. Because they 
recognize conserved lipids shared among different microbes, they represent a large fraction of total 
T cells.

A second group of T  cells recognizes small metabolites from the mevalonate pathway syn-
thesized by APCs or of microbial origin. Human T cells expressing the TCR Vγ9/Vδ2 recognize 
APC accumulating endogenous isopentenyl-diphosphate or in the presence of microbial 
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Table 1 | MR1-restricted human T cells.

TCRα TCRvβ Transcription factors Phenotype MR1 tetramer

Mucosal-associated 
invariant T (MAIT)

TRAV1-2/ TRAJ33, TRAJ20, 
TRAJ12

TRBV6a, TRBV20-1a PLZF, RORγt, T-bet CD4 or CD8αα or CD8αβ, 
CD161hi, IL18Rα, CD26

5-OP-RU

Atypical MAIT TRAV1-2 Polyclonal 5-OP-RU, 6-FP, Ac-6-FP

MR1T Polyclonal Polyclonal PLZF, RORγt, T-bet CD8 or CD4-CD8 Not doneb

aPreferential usage.
bAgs not identified.
5-OP-RU, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil; 6-FP, 6-formylpterin; Ac-6-FP, acetyl 6-formylpterin.
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(E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (1) and require 
the expression of butyrophilin 3A1 (2).

A population named mucosal-associated invariant T (MAIT) 
cells recognize transient metabolites generated during the micro-
bial synthesis of riboflavin (vitamin B2) when associated with 
MHC-I-related molecule 1 (MR1) (3). MAIT cells react to a wide 
range of riboflavin-producing microbes and are abundant in 
human blood, liver, intestine, skin, and other organs (4). Table 1 
summarizes some of their characteristics.

An important feature of all these T cells is their capacity to 
promptly mediate diverse effector functions without the need 
for previous expansion after antigen recognition. Because of this 
ability, they are also defined as being innate-like T cells, as their 
immediate response mimics that of cells belonging to the innate 
immune compartment.

Innate-like T  cells recognize almost ubiquitous and evolu-
tionary conserved antigens, which are frequently encountered 
in the body, such as the aforementioned lipids and small metabo-
lites. In addition, as is the case for iNKT and MAIT cells, they 
express a semi-invariant and oligoclonal TCR, in which a highly 
conserved TCR Vα chain is associated with a small number Vβ 
chains. In some cases, restricted amino acid use also occurs in 
the CDR3 regions of the α and β or γ and δ chains and it appears 
to be selected by antigen stimulation (4). Therefore, these cells 
evolved the capacity to recognize conserved microbial products, 
in some instances necessary for microbial survival and thus 
representing permanent microbial signatures.

The discovery of T cells reactive to non-protein antigens pre-
sented by non-polymorphic molecules, has prompted their defi-
nition as “unconventional,” with the aim of differentiating them 
from “conventional” peptide-specific T cells restricted to MHC 
molecules. This appellative, although helpful in distinguishing the 
two populations, may generate some confusion as the adjective 
“unconventional” is often used as synonym for innate-like T cells. 
Indeed, it is now clear that additional T cell populations exist in 
humans, which are unconventional in their capacity to recognize 
non-peptide antigens presented by non-polymorphic proteins, 
but nevertheless are conventional in their close similarity to 
adaptive MHC-restricted T cells. Non-peptidic-specific T cells, 
which are not iNKT, MAIT, or Vγ9Vδ2 cells, display a polyclonal 
TCR repertoire and recognize diverse antigens. In addition, they 
expand from a naïve pool upon antigen encounter, acquire diverse 
specialized functions after a few days of maturation, and give 
rise to memory responses, thus displaying a naïve-to-effector/
memory differentiation dynamic. All of these characteristics are 
common to conventional peptide-specific T cells.

Heterogeneous non-innate-like T  cells restricted to CD1 
and recognizing diverse microbial and self-lipid antigens have 
been reported in many studies. TCR γδ cells reacting to lipids 
presented by group 1 CD1 molecules have been also identified. 
Finally, a new population of MR1-restricted T  cells, which do 
not recognize riboflavin-related metabolites, has recently been 
isolated. These non-peptide-specific T cells, which are adaptive-
like and MHC-unrestricted, remain poorly characterized and 
represent large populations of T cells not previously appreciated. 
This review will focus on the current knowledge of their features, 
role in immunity and diseases, and their potential applications in 
immunotherapy.

aDaPTive-liKe T CellS ReSTRiCTeD 
TO CD1

CD1 proteins display some unique structural characteristics, 
which make them specialized in presenting lipids rather than 
peptides to T  cells (5, 6). The CD1 antigen-binding groove is 
bulky, with a volume ranging between 1,280 and 2,200 Å3 across 
individual CD1 isoforms (CD1b  >  CD1c  >  CD1d  >  CD1a) 
(7–10). The grove commonly contains two pockets, called A′ and 
F′ in analogy to the A and F pockets found in MHC-I. These 
pockets extend deeply within the molecules and allocate the acyl 
chains of lipid antigens (11). Indeed, they are almost entirely 
unexposed to the solvent surface and are lined with non-polar 
amino acids, which mediate hydrophobic interactions with the 
aliphatic tails of the antigens. The connection between this highly 
hydrophobic antigen-binding groove and the hydrophilic exter-
nal environment is generally provided by a single surface portal 
(F′ portal) that allocates the polar head-group of the bound lipids, 
thereby making it available for TCR interaction, and allows lipid 
loading/exchange (4, 12–14).

Individual CD1 isoforms display substantial differences in the 
dimension and shape of their antigen-binding clefts (11). CD1a 
has the smallest groove, with the F′ pocket partially exposed 
to the external surface, probably to allow rapid lipid exchange 
(10, 15–17). CD1b shows an additional pocket (C′) and a tunnel 
(T′), which connects A′ and F′ clefts (7, 18–22). This conforma-
tion permits CD1b to bind lipids with very long acyl chains (23). 
In CD1c, two more portals are present (D′ and C′ portals), which 
allow additional access points for lipid molecules to the antigen-
binding cavity (9, 24–26) and are likely to be responsible for the 
high flexibility and versatility of this CD1 isoform in presenting a 
wide range of lipid structures (27).

https://www.frontiersin.org/Immunology/
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FigURe 1 | Modes of CD1-restricted TCR binding to CD1–lipid antigen complexes. (a) The TCR directly interacts with both the CD1 α1 and α2 domains and the bound 
lipid antigens. Key residues of the CDR3α and CDR3β loops directly contact the lipid antigens, allowing discrimination of small structural variations of their polar heads 
exposed to the solvent. (b) The TCR directly interacts with CD1 only and does not contact the lipid antigens. The antigens are often, but not always, headless lipids, 
which do not protrude out of the CD1 portals and probably induce small conformational changes favoring TCR binding. Lipid antigens that do not directly contact the 
TCR have been defined as “permissive.” (C) TCR binding is prevented by CD1 ligands that display large polar heads or contain solvent-exposed chemical groups that 
mediate repulsion with key residues of the TCR CDR3α and/or CDR3β loops. Ligands in this category have been defined as “non permissive.” (D) TCR binding occurs 
despite the presence of large and complex ligand polar heads, consisting of multiple sugar subunits. The TCR interacts with both CD1 and only a portion of the exposed 
lipid antigen head, which probably remains partially excluded from the binding surface area. This mode has not been supported by crystallographic studies, yet.
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A large variety of structurally different self-, microbe-, and 
plant-derived lipids stimulate specific adaptive-like T cells when 
presented by CD1 proteins (4, 12, 14, 17, 24, 26, 28, 29). Generally, 
each of them preferentially binds one of the four CD1 isoforms 
equipped with antigen presentation capacity (CD1a, b, c, and d), 
although promiscuity is also observed (4, 12, 14, 17, 24, 26, 28–30). 
Several factors such as the unique variations in the architecture 
of individual CD1 isoforms, their diverse intracellular trafficking 
routes, their differential pH requirements for optimal loading and 
their co-localization with distinct lipid-remodeling enzymes and 
chaperon proteins, dictate the type and the size of lipid antigens 
they present to T cells (13, 31–34).

More than two decades ago, pioneer studies described human 
T  cells reacting to CD1-expressing cell lines in the absence of 
foreign antigens (35, 36). At the same time, the novel T  cell 
reactivity mediated by CD1 was attributed to the recognition of 
lipid rather than peptide antigens (37, 38). These early discoveries 
triggered incredibly intense and prolific research activity aimed 
at enumerating, characterizing, and classifying CD1-restricted 
lipid-specific T  cells as well as understanding their immuno-
logical roles. The exclusive expression in mice and rats of the 
CD1d isoform, due to the lack of group 1 CD1 genes in these 
laboratory animals, focalized these studies on CD1d-restricted 
T  cells, whose most abundant subset is innate-like iNKT  cells 
(39). Invariant NKT  cell antigen specificities, developmental 
programs, functional capacities, and impact in immunity have 
been extensively characterized in in vitro studies and in animal 
models and these findings currently feed clinical research aiming 
to assess their therapeutic potential [reviewed in Ref. (40–42)].

Additional T  cells restricted to group 1 CD1 isoforms have 
been identified (28, 43–46), and they resemble conventional 

MHC-restricted T  cells specific for peptide antigens in several 
aspects. For this reason, we define them here as adaptive-like.

CD1-restricted adaptive-like T cells can be divided into two 
groups, based on the source of their antigens. The first group 
includes T cells restricted to group 1 CD1 (CD1a, CD1b, and CD1c) 
and recognizing exogenous lipids derived from the cell wall of M. 
tuberculosis (43, 46). These T cells comprise diverse subsets that 
might be classified according to their TCR usage. The expression 
of a germline-encoded TRAV1-2/TRAJ9 TCR chain, conserved 
among individuals and preferentially paired with TRBV6-2, 
defines a population of mycolate-specific CD1b-restricted T cells 
called germline-encoded mycolyl-reactive (GEM), which is 
contained in the CD4+ T cell compartment (20, 47, 48). A second 
subset recognize glucose-monomycolates (GMM), also presented 
by CD1b, and has been named LDN5-TCR like, because the 
TCR Vα/Vβ pair found in the prototypic cell clone LDN5 (49) 
is frequent in this subset (48, 50). These cells display TCRs rep-
ertoire biased toward TRAV17 and TRBV4-1 chains, and diverse 
expression of the CD4 and CD8 co-receptors (48, 50). Additional 
Mycobacterium-reactive T  cells include other CD1b-restricted 
T  cells specific for mycolic acid (MA) (48) glycerol monomy-
colates (51), diacylated sulfoglycolipids (52, 53) and lipoglycans 
(54–56), CD1c-restricted T cells recognizing mycoketides (57, 58),  
and T  cells stimulated by the lipopeptide dideoxymycobactin 
presented by CD1a (59). These T  cells preferentially express 
the CD4 co-receptor and display a polyclonal TCR repertoire. 
Interestingly, they also include a small population of TCR γδ cells  
displaying the Vδ1 chain (46).

CD1-mediated T  cell recognition of mycobacterial antigens 
occurs via direct and specific interaction of the TCR with the 
polar head of CD1-bound lipids (Figure 1A). Importantly, small 
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variations in the structure or the stereochemistry of the lipid 
head-groups abrogate T cell recognition, thus supporting the fine 
antigen specificity of these T cells. For example, structural stud-
ies have demonstrated that a GEM TCR grasps the glucose ring 
of the GMM, acting like molecular tweezers (20). Interestingly, 
this TCR did not react to the same scaffold lipids displaying a 
mannose or a galactose instead of the glucose, suggesting that 
even small variations in the orientation of hydroxyl groups on the 
antigen head moiety, can strongly impact T cell reactivity (20). 
Similarly, CD1b-restricted T cells specific for the sulfoglycolipid 
Ac2SGL failed to recognize a version of this molecule devoid 
of the sulfate-group linked to sugar head-group, indicating an 
important role of this small moiety in mediating a direct interac-
tion with the TCR (52). The size of the hydrophilic head is also 
important. A T  cell clone specific for ganglioside GM1, which 
is made of four linear sugars and a branched sialic acid, did not 
recognize GM2 or GM3, which lack the terminal galactose of 
GM1 and the lateral sialic acid, respectively (Figure  1D) (60). 
Diverse mycoketide-specific T cells restricted to CD1c were also 
able to discriminate stereochemistry and structure alterations 
of their cognate antigens bound to CD1c (57, 58), thus further 
highlighting a remarkable fine specificity of these T cells.

A second group of adaptive-like CD1-restricted T cells rec-
ognizes target cells expressing CD1 isoforms in the absence of 
foreign antigens (28, 61). The autoreactivity of these T cells is due 
to the recognition of complexes formed by CD1 proteins and lipid 
molecules synthesized within APCs (28, 61). Diverse endogenous 
lipids including phospholipids, sphyngolipids, terpenes, and oils, 
stimulate group 1 CD1- and CD1d-restricted cells distinct from 
iNKT cells (17, 24, 28, 61).

The expression of CD4 and CD8 co-receptors and TCR rep-
ertoire are heterogeneous among these T cells (28, 61), although 
recent studies suggested that they might preferentially use recur-
rent TCR β chains. An example is provided by CD1c-autoreatcive 
T cells, which have recently been shown to be enriched in T cells 
expressing the TRBV4-1 or TRBV5-1 genes (26, 62). It is note-
worthy that self-reactive CD1-restricted T cells include not only 
TCRαβ cells but also a small population of TCR γδ cells display-
ing the Vδ1 or Vδ3 chains (63–65).

Two general mechanisms of antigen recognition have been 
described for these T cells. The first one relies on cognate interac-
tion of TCR with the polar head of lipid antigens (Figures 1A,D). 
This has been observed for CD1a, CD1b, and CD1c-restricted 
T cell clones reacting to sulfatide (66) and CD1b-restricted clones 
responding to gangliosides (60). A second mechanism has been 
recently elucidated by crystallographic studies, which showed 
direct interaction between the TCR and the CD1 molecule but not 
with bound lipid antigens (Figures 1B,C). This mode of recogni-
tion was described for CD1a and CD1c-autoreactive T cells (16, 
26), and implies that CD1 proteins bind “permissive” lipids. The 
presence in the CD1-binding pockets of such lipids might explain 
the observed frequent cross-reactivity toward diverse self-lipids, 
including headless molecules such as triglycerides, squalene, and 
cholesteryl esters. These important structural studies are uncover-
ing key aspects of the interaction between TCRs and CD1-lipid 
complexes. However, a crystal structure is a snapshot of this inter-
action and is one of the many events required for T cell activation. 

Two aspects remain to be investigated: (i) whether recognition 
of permissive lipids requires additional signals provided by non-
TCR molecules and (ii) whether different permissive lipids show 
a hierarchy of T cell-stimulatory potencies when APCs expressing 
physiological levels of CD1 molecules are tested. In addition, it will 
be very interesting to compare different autoreactive T cells and 
investigate whether unique endogenous lipids play major roles in 
the stimulation of these T cells in physiological and pathological 
settings. An example is provided by CD1c-restricted T cells rec-
ognizing methyl lysophosphatidic acids (mLPA), a newly defined 
lipid species accumulating in leukemia cells (67) (Figure 2). mLPA 
induced potent activation of specific CD1c-restricted T cells when 
exogenously added to CD1c+ B cells, which are not recognized 
in the absence of mLPA due to the scarce endogenous amounts 
of this lipid (67). Importantly, the same CD1c-restricted T cells 
strongly recognized and killed CD1c+ leukemia cells, which 
already have high mLPA quantities (67). These findings suggested 
that, at least in this case, mLPA, and not other permissive lipids, is 
the physiological antigen responsible for this reactivity (Figure 2).

A third type of CD1-restricted T cells shows characteristics of 
both groups described above. Indeed, they display dual reactiv-
ity toward self- and exogenous lipids derived from bacteria or 
plants (22, 30, 68). The basis of this cross-reactivity might rely on 
molecular mimicry or structural similarity between exogenous 
and endogenous stimulatory antigens.

The lack of group 1 CD1 genes in rodents limited the study of 
adaptive-like CD1-restricted T cell physiological functions and 
roles in diseases. Ex vivo data obtained with antigen-loaded CD1 
tetramers and in vivo experiments in guinea pigs (that express 
several group 1 CD1 molecules) or in humanized mice, indicate 
that lipid-specific adaptive-like T  cells participate in immunity 
against bacterial infections and that they might also be involved 
in autoimmunity and cancer (4) (Figure 2).

CD1-retricted T cells recognizing mycobacterial antigens were 
found expanded in M. tuberculosis-infected patients and in BCG-
vaccinated individuals, supporting their adaptive-like properties 
and their role in protection (47, 51, 52, 59, 69, 70) (Figure  2). 
Furthermore, MA-specific T cells identified in the blood and lungs 
of tuberculosis (TB) patients displayed markers of effector and 
central memory cells, and persisted several months after success-
ful treatment, indicating generation of a persistent memory T cell 
compartment (70). Lipoglycan-reactive T  cells obtained from 
bronchoalveolar lavage of TB patients showed potent cytotoxic 
properties, and inhibited growth of intracellular mycobacteria 
(71). The recent detection of CD1b+ macrophages within lung 
granulomas of TB patients further suggests the importance of 
CD1-mediated immunity in this infection (72). In mice transgenic 
for the full human CD1 locus, both infection with mycobacteria 
or immunization with mycobacterial lipids elicited a slow pri-
mary CD1-restricted T  cell response and very rapid secondary 
responses (73), similar to what was observed for peptide-specific 
T cells. Finally, studies in guinea pigs indicated that immunization 
with mycobacterial lipids or purified Ac2SGL conferred protec-
tions when challenged with M. tuberculosis (74–77).

The frequency of group 1 CD1-restricted T  cells remains a 
poorly investigated issue. Two independent studies revealed that, 
in the blood of healthy donors, a surprisingly high frequency of 
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FigURe 2 | Heterogeneity of “adaptive like” CD1-restricted T cells. The sub-populations of CD1-restricted T cells reported so far as displaying close similarities to 
adaptive T cells are captured here in relation to their CD1 restriction, antigen sources, functions, and proposed immunological role. Invariant natural killer T cells have 
not been included because of their innate-like nature.
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T  cells reacted to CD1-overexpressing targets in the absence of 
foreign antigens. A major fraction of these T cells were restricted 
to CD1a and CD1c molecules (78, 79). In one study, it was found 
that CD1-autoreactive T cells at birth were mainly contained in 
the naïve CD45RA+ compartment, while in adult blood their 
frequency among CD45RO+ effector/memory cells increased (78). 
These phenotypes are consistent with a progressive transition from 
naïve to effector/memory, typical of adaptive peptide-specific 
T cells. In addition, CD1a-restricted T cells expressed the skin-
homing receptors CCR4 and CCR10 and could be isolated from 
skin biopsies (79). Their capacity to release IL-22 further suggested 
an immunological role in the skin (79, 80) (Figure 2). In addi-
tion, these autoreactive T cells could promote monocyte-derived 
dendritic maturation in a CD1c- or CD1d-dependent manner 
(81), thus attributing them a helper-like function (Figure 2). Self-
reactive T cells might also act as sentinels for cell stress and inflam-
mation. Indeed, APC may accumulate antigenic endogenous 
lipid antigens after microbial stimulation, and thus become very 
efficient in stimulating self-lipid-specific T cells (82) (Figure 2).

In individuals affected by Grave’s disease or Hashimoto 
thyroiditis, two autoimmune diseases of the thyroid, CD1a and 
CD1c self-reactive T  cells infiltrated thyroid glands and were 
capable of lysing thyroid cells in vitro (83), possibly contributing 
to gland destruction. CD1c-autoreactive T  cell clones isolated 
from systemic lupus erythematous (SLE) patients were able to 
provide pathogenic CD1c-dependent help to B cells in vitro (84). 
This study also showed that clones from healthy donors promoted 
IgM response in B cells, whereas cells isolated from SLE patients 
also elicited IgG production by the same B cells (84). These data 
suggested a role of CD1c self-reactive T  cells in the genesis of 
the detrimental autoantibody responses that characterize this 

autoimmune disease. High frequency of circulating CD1-
restricted T  cells recognizing diverse self-glycosphingolipids 
were detected in multiple sclerosis patients (60, 66). Such clones 
preferentially recognized sulfatides made of long acyl chains, 
which are highly enriched in brain plaque lesions, thus showing 
a correlation between antigen specificity and lipid accumulation 
at sites of disease. Together these findings suggested that CD1-
autoreactive T cells might participate in the pathologic process 
of myelin disruption.

CD1a-self-reactive T cells, which preferentially home to skin 
in healthy donors (79, 80), have been indicated as being capable of 
promoting inflammatory and autoimmune reactions of the skin 
(Figure 2). These cells accumulated in individuals with psoriasis 
and atopic dermatitis (85, 86). In both cases, the reactivity of 
these T cells depended on PLA2 secreted by mast cells in psoriatic 
lesions (85) or released by house dust mites in atopic dermatitis 
(86). PLA2 activity probably participates in generating CD1a-
presented neoantigens, most likely lysophospholipids and free fatty 
acids, from the pool of skin phospholipids (85, 86). PLA2 is also 
a component of bee venom, and when injected sub-cutaneously 
induced local activation of CD1a-restricted polyclonal T  cells  
(87, 88). In another study, urushiol, a molecule found in poison 
ivy and able to bind CD1a, induced CD1a-restricted T cells, which 
in a mouse model and in psoriasis patients amplified the local 
inflammation (17). Furthermore, contact sensitizers, including 
common cosmetic compounds, could unleash or potentiate the 
capacity of APCs to induce self-lipid-specific autoreactivity of 
skin-associated CD1a-restricted and CD1d-restricted T  cells 
(89). All these data indicated CD1a, expressed at high levels on 
skin-resident Langerhans cells, as potential therapeutic target for 
skin inflammatory diseases.
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FigURe 3 | Functional diversity of MR1T cells. The heterogeneity of MR1T cells is illustrated in relation to the recognized antigen (yet unknown) and the functional 
phenotype of the clones isolated so far.
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T CellS ReSTRiCTeD TO MR1

A second population of T  cells, which recognize non-peptidic 
antigens, is constituted by MR1-restricted T  cells. The MR1 
antigen-presenting molecule is also non-polymorphic and has 
structural similarities to MHC class I molecules as it is displayed 
on the cell surface as an heterodimer composed of a heavy chain 
non-covalently associated with β2 microglobulin (90). MR1 tis-
sue distribution also resembles that of MHC class I molecules, 
as is almost ubiquitous (91), thus indicating that specific T cells 
might be activated by many different cell types.

MR1, like CD1 genes, is non-polymorphic. In addition and 
in contrast to CD1, the MR1 protein sequence is very conserved 
among species (91), which is not the case for CD1 genes. Both  
these features raise the question, what are the selection mecha-
nisms that keep the MR1 structure conserved? Among the various 
possibilities, requirements for binding unique categories of anti-
gens and/or a mandatory interaction with conserved molecules 
different from TCR might occur.

An intriguing MR1 feature is its antigen-binding pocket. This 
is formed by two interconnected cavities decorated by hydro-
philic and hydrophobic aminoacids (92). The cavities are large 
enough to allocate molecules larger than the ones identified so 
far. Variability in ligand sizes might suggest that MR1 evolved the 
capacity of presenting antigens of different origins and chemical 
structure. This latter possibility is supported by the nature of 
the MR1-binding molecules that have been identified, so far. 
Among them are those formed by non-enzymatic condensation 
of 5-ribityl amino uracil, a precursor of riboflavin which is a typi-
cal bacterial molecule, with methylglyoxal or glyoxal carbonyls 
(3). Importantly, the resulting molecules activate MAIT cells in 
a very efficient manner. While recognition of microbial antigens 
by MAIT cells was anticipated by previous studies (93, 94), it was 
a surprise that the stimulatory antigens were neither peptides 

nor  lipids. Structural studies also showed that formation of a 
covalent bond with MR1 is mandatory for stable binding and 
MAIT  cell stimulation (3). Whether this bond has additional 
implications, such as a prolonged persistence of the MR1–anti-
gen complex within APC and a reduced possibility of antigen 
exchange during MR1 recycling need further studies.

In another series of experiments, it was found that the MR1 
antigen-binding pocket can also allocate small molecules, such 
as drugs, including salicylates and diclofenac, drug metabolites, 
and drug-like molecules (95). These compounds bound in differ-
ent orientations, outlining the adaptability of the MR1-binding 
pocket. Intriguingly, all these molecules appeared to occupy only 
the A′ pocket of MR1, thus suggesting that bigger molecules 
might also occupy the F′ pocket.

Recently, a second type of MR1-restricted T cells was identified. 
These cells, defined as MR1T cells, express polyclonal TCR chains, 
are CD8+ or CD4/CD8 double negative and can be isolated from cir-
culating pool of healthy donors (96) (Table 1). MR1T cells showed 
preferential recognition of tumor cells and not of normal cells, 
even when the levels of expressed MR1 were physiologically very 
low. In addition, the presence of multiple antigens was suggested 
by differential recognition of tumor cells and by chromatographic 
separation of at least two antigens. Although the stimulatory mol-
ecules remain unknown, they are shared with mouse and hamster 
tumors. Upon antigen recognition, MR1T cells showed a variety 
of functions, including release of Th1 or Th2 cytokines, of vascular 
endothelial growth factor or platelet-derived growth factor AA, 
and expressed different transcriptional programs (96). These 
findings indicate that MR1T cells represent a novel population of 
functionally different T lymphocytes recognizing non-microbial 
antigens accumulating in tumor cells and showing characteristic 
of adaptive T cells (Figure 3).

As MR1T cells have been identified very recently, there is no 
literature concerning their role in diseases. The fact that these 
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cells preferentially recognize tumor cells will promote new stud-
ies in patients harboring tumors expressing MR1 molecules.

In contrast, MAIT cells have been recognized for a decade and 
several studies have addressed their potential role in diseases. We 
briefly describe these findings below.

The identification of the bacterial antigens stimulating 
MAIT  cells complemented a series of studies indicating a role 
of MAIT  cells during bacterial infections. Both human and 
MAIT  cells showed anti-mycobacterial effects (97, 98), and 
released a variety of cytokines upon recognition of bacteria-
infected APC (97). MAIT  cells accumulated in the lungs of 
mice infected with Salmonella typhimurium, upon stimulation 
with antigen and a toll-like receptor agonist and participated in 
local inflammation by secreting IL-17 and IFNγ (99). Studies in 
patients with severe bacterial infections showed an early decrease 
in MAIT cell count (100) and a significant positive correlation 
among non-streptococcal bacterial infections and MAIT deple-
tion. Patients with persistent decreased MAIT  cell numbers 
showed increased susceptibility to intensive care unit-acquired 
infections. A reduced number of circulating MAIT  cells and 
their parallel increase in the lung were reported in patients with 
TB (93, 94). Reduced numbers of circulating MAIT  cells were 
described in cystic fibrosis patients with Pseudomonas aeruginosa 
infection (101). In donors infected with Plasmodium falciparum 
sporozoites MAIT cells increased up to 6 months after infection 
clearance (102). A role of MAIT cell in protection during bacterial 
infection was also indicated by impaired protection during infec-
tion with Francisella tularensis in MAIT-depleted mice (103) and 
a positive effect in mice transgenic for a TRAV1-TRAJ33 TCR 
chain (93). However, in chronic infections MAIT cells might also 
participate in tissue lesions, as found in a mouse model of gastric 
infection with Helicobacter pylori (104). Their secretion of IL-17 
and cytotoxic activity were considered important in establishing 
tissue lesions in this model.

Mucosal-associated invariant T cells might also contribute to 
immune response during viral infections. In patients with HIV 
infection the number of circulating MAIT cells varies to different 
extents (105–107). These effects might be ascribed to concurrent 
bacterial infections and migration to peripheral tissues.

A recent study also outlined a role of MAIT  cells in graft 
versus host disease (GVHD) (108). MAIT cells accumulated in 
different GVHD target organs, contributed to intestinal mucosal 
integrity, released large amounts of IL-17, and limited the expan-
sion of alloreactive T cells in the graft. As MAIT cells are much 
more abundant in humans than in rodents, it will be important 
to perform detailed studies in patients receiving bone marrow 
transplantation.

Mucosal-associated invariant T  cells have also been studied 
in several autoimmune diseases. MR1-deficient mice develop 
severe experimental autoimmune encephalomyelitis (109) and 
also show loss of gut integrity and worsened diabetes (110). 
Several studies showed alterations in the number of circulating 
MAIT cells in patients with SLE (111), and in obese and type II 
diabetes patients (112). MAIT cells detected in psoriatic plaques 
(113) secreted large quantities of IL-17, thus implicating a pos-
sible role in local inflammation. In inflammatory bowel disease, 
circulating MAIT cells were diminished, while their number was 

increased in the inflamed versus healthy mucosal tissue (114). 
MAIT  cells from colon released large amounts of IL-17 and 
IL-22. Combined, these findings indicate that MAIT  cells may 
contribute to local inflammation in various diseases. They might 
become active upon TCR triggering or in response to local high 
levels if IL-12 or IL-18 (115, 116), thus behaving as amplifiers of 
inflammation also in the absence of antigen recognition.

eXPlOiTaTiOn OF nOn-PePTiDe-
SPeCiFiC T CellS in THeRaPY

Non-peptidic specific T cells are being used in different clinical 
settings. The recent explosion of T cell immunotherapy in cancer 
prompted exploitation of CD1-restricted T cells in tumor patients.

Invariant natural killer T cells were the first non-conventional 
T  cell population utilized. Several clinical trials are being per-
formed in cancer using α-GalCer, a strong agonist of iNKT cells 
[recently reviewed in Ref. (41, 42, 117)]. Other studies took 
advantage of the adjuvant capacity of iNKT cells and utilized sol-
uble CD1d-α-GalCer complexes conjugated with tumor-specific 
antibodies (118), or α-GalCer conjugated with tumor-associated 
peptides (119, 120) or administration of dendritic cells pulsed 
with both α-GalCer and long peptides from the melanoma-
associated NY-ESO-1 protein (121). These treatments induced 
significant amelioration both in animal models and in clinical 
settings.

An important therapeutic strategy is based on tumor-specific 
recognition by group 1 CD1-restricted T cells. As lipids and in 
particular glycosphingolipids, are altered in tumor cells (122), 
tumor-associated lipids are of immunotherapeutic interest. 
mLPA is an example as it is preferentially expressed in leukemic 
cells and is presented by CD1c (67). mLPA-specific T cells recog-
nized and killed CD1c+ leukemia targets and limited leukemia 
cell spread in a mouse model (67). Immunotherapeutic strate-
gies might be transfer of mLPA-specific TCR genes and vaccina-
tion with mLPA to expand specific T cells in leukemia patients. 
Important bonuses of these approaches, which are not applicable 
in case of peptide antigens, are (i) the non-polymorphic nature 
of CD1c, which allows application to the entire human popula-
tion, and (ii) the lipid structure preservation under selective 
pressure. Whether additional tumor-associated lipids stimulate 
other CD1-restricted T  cells remains a very important area  
of research.

MR1-restricted T  cells might also be considered in tumor 
immunotherapy. The adjuvant properties of MAIT  cells might 
be exploited similarly to iNKT  cells, although no studies are 
available at present. MR1T cells might offer an additional pos-
sibility based on specific recognition of tumor-associated anti-
gens (96). Transfer of MR1T TCR genes and vaccination with 
MR1T-stimulatory antigens might parallel the approaches using 
mLPA-specific T cells.

A large number of studies identified microbial lipids stimu-
lating group 1 CD1-restricted T cells [reviewed in Ref. (4)] and 
suggested their use in novel vaccines. Two studies showed that 
mouse (123) or guinea pig (77) vaccination with group 1 CD1-
binding lipids confers protection in M. tuberculosis infection 
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models. These promising results, together with the finding that 
lipid-specific T cells expand in TB patients (52, 69) will prompt 
investigations to formulate novel lipid-based TB vaccines.

COnClUDing ReMaRKS

Non-peptide-specific T cells are abundant in blood, have a fre-
quency similar to MHC-restricted T cells and can be considered 
important protagonists of adaptive immunity. Their functions, 
tissue distribution and capacity to generate memory populations 
are revealing unforeseen immunological roles. The identification 
of the antigenic repertoire stimulating both CD1- and MR1-
restricted T cells will be instrumental to depict their participation 
in immune homeostasis and in diseases.
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