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Identification and characterization of constrained
non-exonic bases lacking predictive epigenomic
and transcription factor binding annotations
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Annotations of evolutionary sequence constraint based on multi-species genome alignments

and genome-wide maps of epigenomic marks and transcription factor binding provide

important complementary information for understanding the human genome and genetic

variation. Here we developed the Constrained Non-Exonic Predictor (CNEP) to quantify the

evidence of each base in the genome being in an evolutionarily constrained non-exonic

element from an input of over 60,000 epigenomic and transcription factor binding features.

We find that the CNEP score outperforms baseline and related existing scores at predicting

evolutionarily constrained non-exonic bases from such data. However, a subset of them are

still not well predicted by CNEP. We developed a complementary Conservation Signature

Score by CNEP (CSS-CNEP) that is predictive of those bases. We further characterize the

nature of constrained non-exonic bases with low CNEP scores using additional types of

information. CNEP and CSS-CNEP are resources for analyzing constrained non-exonic bases

in the genome.
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A large majority of genetic variation associated with com-
mon disease falls into non-exonic regions of the human
genome1 motivating in part the need to better annotate

and understand such regions. Annotations of evolutionary con-
straint based on multiple-sequence alignments2–5 and maps of
epigenomic marks and transcription factor (TF) binding repre-
sent two complementary types of information to annotate the
non-exonic genome6–9. Supporting the importance of evolu-
tionary constraint annotations, heritability analyses have sug-
gested they are heavily enriched for disease-associated variants10

and they have been important features to integrative methods for
prioritizing potentially deleterious non-exonic mutations11,12.

While useful, evolutionary constraint annotations do not
directly provide information on the type of genomic element or
the cell or tissue types of activity. Genome-wide maps of histone
modifications and variants, chromatin accessibility, chromatin
state annotations, and TF binding can give such insights6,7,13–15.
However, such data is specific to the condition and cell or
tissue type of the experiments. Previous analyses have shown that
while there is an enrichment for evolutionarily constrained
bases in regulatory-associated epigenomic or TF-binding anno-
tations, some evolutionarily constrained bases lack informative
annotations4,14,16–21.

Thus, when investigating the role of constrained non-exonic
(CNE) elements, or variants within such elements, with a com-
pendium of epigenomic and TF-binding data, an initial question
is whether it is possible to even explain the constraint with data in
the compendium. However, with tens of thousands epigenomic
and TF-binding datasets available, answering this question is not
straightforward. Integrative scores such as CADD12 that combine
epigenomic and TF features with conservation features cannot be
directly applied to answer such a question, since a base could
receive a high score based on conservation features even without
informative epigenomic or TF-binding features.

A few scores have been proposed that quantify information or
activity in epigenomic or TF-binding annotations where evolu-
tionary information is used to learn a mapping from epigenomic
or TF-binding features to a score, but not as features for pre-
dictions. FitCons and FitCons222,23 quantified information in
epigenomic annotations using probabilistic evolutionary models
to provide cell type-specific estimates of fitness. The ‘conserva-
tion-associated activity score’ used evolutionary constraint
information to map Segway genome annotations to cell type-
specific scores24. Additionally, for these approaches a single
summary score was derived from the cell type-specific scores.
While informative, an approach that summarizes information in
a compendium of epigenomic and TF data in a single score
without going through cell type-specific scores would have greater
flexibility on what datasets are used and how they are combined.
Methods also exist to computationally predict epigenomic marks,
TF-binding data, and constrained elements from sequence25–28,
but do not directly provide information on whether experimental
data in a compendium can explain constraint.

Here we develop the constrained non-exonic predictor (CNEP)
to produce a single probabilistic score per base, without respect to
cell type, that reflects the evidence within a large-scale compen-
dium of epigenomic and TF-binding data that the base is in a
non-exonic evolutionarily constrained element, as defined by
prior methods for calling them2–5. The CNEP score thus quan-
tifies for a researcher interested in specific CNE elements, or
variants within them, the extent to which existing data in the
compendium can explain the constraint. Furthermore, the CNEP
score enables investigating more general scientific questions about
the extent to which information in current epigenomic and TF-
binding annotations can explain non-exonic constraint, and the
nature of constrained bases that cannot be explained by available

data. We focus specifically on non-exonic bases since they com-
prise the vast majority of the genome, are less well annotated
compared to exons, and constraint in such bases is expected to be
largely associated with distinct patterns of epigenomic marks and
TF binding relative to that found in exons.

We apply CNEP with a compendium of over 60,000 human
epigenomic and TF-binding features. We show that while the
CNEP score is able to effectively predict many bases in CNE
elements, outperforming baseline and related existing scores, a
substantial portion are still not well predicted by CNEP. Using
human genetic variation data, we show that a portion of those
bases truly appear to be under constraint, and using regulatory
sequence motif annotations, experimental data from mouse, and
retrospectively considered additional human experimental data
we provide insights into their potential role. We also analyze
bases that receive a high CNEP score, but are not in a constrained
element, a portion of which may correspond to adaptive evolu-
tion or changing selective effects over time. In addition, we
develop a complementary conservation signature score by CNEP
(CSS-CNEP), which we use to identify CNE bases with low CNEP
scores that are more likely due to false constraint calls. CNEP and
CSS-CNEP are resources for analyzing the genome and variants
in terms of large-scale epigenomic and TF-binding data, evolu-
tionary constraint annotations, and their relationship.

Results
CNEP method. We developed the CNEP to make a probabilistic
prediction using features defined from large-scale epigenomics
and TF-binding data as to whether a base in the human genome
is in a CNE element previously called from comparative genomics
sequence analysis2–5 (Fig. 1). We applied CNEP jointly with
63,741 features derived from overlap of peak calls in experiments
mapping histone modifications, chromatin accessibility, and TF
binding, including general factor binding that is not necessarily
sequence specific, as well as TF-binding footprint calls from
Digital Genomic Footprinting, and ChromHMM chromatin state
annotations (Supplementary Data 1; see “Methods” section). The
features are based on data from the Roadmap Epigenomics and
ENCODE consortia, or public data from the Gene Expression
Omnibus, ArrayExpress, or Sequence Read Archive data curated
and reprocessed in the ReMap or ChIP-Atlas databases6–9,29,30.

The median number of features that overlap a base in the
genome is 532, of which at most 263 are chromatin state features.
In total 75% of genomic bases were in a peak in at least one
DNase I hypersensitivity experiment, which measures chromatin
accessibility, and 51% were when restricting to the 350 such
experiments from Roadmap Epigenomics (Supplementary Fig. 1).
This highlights the limited specificity of such criteria for
predicting constraint.

CNEP trains an ensemble of logistic regression classifiers to
discriminate between bases overlapping evolutionarily con-
strained elements outside of annotated exons and those bases in
the rest of the genome (see “Methods” section). We trained CNEP
with multiple different constrained element sets by applying
CNEP separately with each, and then averaging the resulting
predictions producing what we termed the CNEP score (Fig. 2a,
Supplementary Fig. 2). We applied CNEP with constrained
element sets previously produced by four methods:
PhastCons5,31, GERP++2, SiPhy-pi, and SiPhy-omega3,4. These
constrained element sets highly enrich for non-exonic bases
prioritized by a number of scores used to predict the relative
phenotypic impact of genetic variants, including scores that
integrate diverse annotations (Supplementary Fig. 3). While
CNEP uses constrained element annotations as labels for training,
we emphasize that CNEP does not use comparative genomics
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data as features for predictions. By using an ensemble of logistic
regression classifiers, CNEP provides a robust probabilistic
output. For each chromosome, CNEP trains a separate set of
classifiers based on subsamples of positions from all chromo-
somes except the target chromosome. CNEP then makes a
probabilistic prediction for each base on the target chromosome
as to whether it is in a CNE element.

CNEP’s predictions from training using any two different
individual constrained element sets were all highly correlated
([0.88,0.93]), and greater than the correlations directly between
different constrained element sets (Supplementary Fig. 4). As the
CNEP score is based on the average of predictions based on
training separately with four different constrained element sets,
this is expected to reduce biases associated with the choice of one
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Fig. 1 Overview and example predictions of CNEP and CSS-CNEP. a A flow chart giving an overview of the approach to learn the CNEP score and the CSS-
CNEP, which are shown in shaded boxes. The input to learn the CNEP score were a set of 63,741 epigenomic and TF-binding features such as ChIP-seq and
DNase-seq peaks and ChromHMM annotations. These features were integrated using an ensemble of logistic regression classifiers that were trained based
on annotations of constrained non-exonic elements from four methods. The CSS-CNEP was derived based on the CNEP score along with the four
constrained element sets and ConsHMM annotations32. b An example genomic locus containing the PTF1A gene illustrating the CNEP score and the CSS-
CNEP. The top line is the GENCODE gene annotation track. The next line shows the location of five variants in close proximity that were previously
identified to be associated with isolated pancreatic agenesis and fell into constrained non-exonic elements, but had limited prior informative epigenomic
and TF-binding annotations21. A vertical box goes through these variants. The following tracks show the CNEP score, CSS-CNEP, and the PhastCons score.
This is followed by tracks for the PhastCons, GERP++, SiPhy-omega, and SiPhy-pi2,3,5 constrained element sets and the ConsHMM annotations32 in dense
view. Along the bottom is a color legend for the groups of ConsHMM conservation states as defined in ref. 32. For segments in red, species through fish
have high aligning and matching to the human reference genome, while those in orange have that through some non-mammalian vertebrates. The next sets
of tracks show baseline scores of counts of total features, DNase-seq features, and DNase-seq features from Roadmap Epigenomics overlapping a base
followed by the FitCons2 cell type integrated score22 and the Segway Encyclopedia conservation-associated activity score24. The final set of tracks show
peak calls for PDX1 and FoxA1 in hESC-derived pancreatic progenitors21,49 that overlapped the SNP. These datasets were ranked using the CNEP software
to be the top three datasets in terms of their overlap with constrained non-exonic elements as defined by the expected CNEP score statistic.
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specific constrained element set. Consistent with this, the CNEP
score correlation with CNEP’s predictions based on training on a
single constrained element set were even higher ([0.96,0.98]).

As an example of the CNEP score, we consider the PTF1A gene
locus, which a previous study identified variants causal for
isolated pancreatic agenesis in distal CNE bases21 (Fig. 1b). The

study noted that the variants lacked informative annotations from
the ENCODE or Roadmap Epigenomics projects21, but obtained
them by mapping epigenome marks and TF binding in human
embryonic-derived pancreatic progenitor cells. The CNEP score
is relatively high for those variant positions, conveying that there
now exists epigenomic or TF datasets that explains the constraint,
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though this would not be apparent from several baseline or
related existing scores. For example the initial discovered
associated variant (chr10:23508437) was in the top 5.4% by
CNEP, while at the top 22.8% for the Segway Encyclopedia
‘conservation-associated activity score’24 and at the top
46.8–49.4% for the FitCons2 ‘cell-type integrated score’22 and
three baseline scores (see “Methods” section).

CNEP score associates with signatures of regulatory activity.
We next investigated the relationship between the CNEP score
and input features to CNEP. We compared statistics of the
observed genome-wide average CNEP score of bases overlapped
by each feature and the expected average CNEP score defined as
the proportion of the feature’s bases overlapping with CNE ele-
ments on average for the four element sets (see the “Methods”
section, Supplementary Data 2, Fig. 2b). These statistics were
highly correlated (0.99 pearson correlation for features covering
at least 200 kb). We also confirmed that the average genome-wide
observed value of the CNEP score, 0.0419, was close to its
expected value, 0.0415, defined based on the proportion of the
genome in a CNE element on average for the four-element sets.

We investigated whether bases that received a higher CNEP
score were more likely to show signatures of regulatory activity in
more datasets. We computed as a function of the CNEP score the
average number of experiment in which a base would be covered
by a peak from a set of 350 DNase I hypersensitivity experiments
from Roadmap Epigenomics (Fig. 2c), which showed that bases
with a higher CNEP score tended to be in a peak for more
experiments. For example, bases with a CNEP score of 0.500 were
in a peak in 18.0% of the experiments on average compared to the
genome-wide average of 1.9%. We saw a similar pattern when
considering as a function of the CNEP score the frequency of
enhancer and promoter chromatin states from a chromatin state
model defined across 127 reference epigenomes (Fig. 2d).

CNEP performance at predicting CNE bases. We next analyzed
the performance of the CNEP score at predicting bases in CNE
elements in the genome separately for each element set (Fig. 2e, f,
Supplementary Fig. 5). CNEP’s area under receiver operator
characteristic (ROC) curves (AUC) were in the range [0.79,0.86]
with the AUC values for PhastCons elements lower than the other
three constrained element sets. The lower AUC for PhastCons
might be partly related to this being the only element set defined
using non-mammalian vertebrates, which can make it more
vulnerable to possible alignment errors, or due to the higher
resolution at which the method calls constrained elements32.

To place CNEP’s predictive performance in perspective, we
made a number of comparisons (Fig. 2e, f, Supplementary Fig. 5,
Supplementary Table 1). The CNEP score had a better true

positive rate at the same false positive rate than any individual
input feature and likewise for precision at the same recall. The
AUC values for CNEP ([0.79,0.86]) were greater than for the
baselines of the number of input features ([0.62,0.69]) and the
number of DNase I hypersensitivity experiment features overall
([0.67,0.74]) and from Roadmap Epigenomics ([0.67,0.74])
overlapping a base. Two related existing scores, Segway
Encyclopedia ‘conservation-associated activity score’24 and Fit-
Cons2 ‘cell-type integrated score’22, had even lower AUC values,
in the ranges [0.57,0.66] and [0.57,0.62], respectively. AUC values
for sequence-based predictions of 919 chromatin features25 were
also lower (maximums in the range [0.64,0.66]). We saw similar
results when excluding any base overlapping an exon from the
negative set. Using CNEP’s predictions trained using only the
constrained element set being evaluated also gave similar results.
Applying CNEP with a random forest in place of a logistic
regression classifier decreased predictive performance a small
amount. We note these evaluations were specifically comparing
predictions of CNE bases and not predictions of adaptive and
recently evolved bases.

Subset of CNE bases not predicted by CNEP. To better
understand CNEP predictions that disagreed with the annotation
of whether a base was in a CNE element, we first defined six sets
of bases for each constrained element set. We defined the set CNE
as bases covered by a constrained element and not in an exon and
the set notCNE as bases not in CNE and also not in an exon. We
partitioned CNE bases into the Low_CNE and High_CNE subsets
depending on whether its CNEP score was below or above the
genome-wide average, respectively, and similarly partitioned
notCNE into the Low_notCNE and High_notCNE subsets
(Fig. 2a, Supplementary Fig. 2, Supplementary Table 2). For
different constrained element sets, Low_CNE bases covered
between 0.6% and 1.3% of the genome corresponding to
20.9–34.6% of CNE bases. A substantial fraction of CNE bases
thus had a low CNEP score. High_notCNE bases covered
19.6–21.3% of the genome, and had a higher CNEP score than all
Low_CNE bases, despite the former not overlapping a base in a
constrained element.

To investigate the extent to which limitations in the resolution
of the epigenomic and TF-binding data relative to the resolution
at which CNE bases are defined can explain High_notCNE bases,
we computed their cumulative prevalence as a function of
distance to the nearest CNE base and the enrichment relative to
notCNE bases (Supplementary Fig. 6). For example, for
PhastCons, High_notCNE bases, had a 2.7-fold enrichment
immediately next to a CNE base, decreasing to 1.8-fold within
200 bp. In total, 57% of High_notCNE bases were within 200 bp
of a CNE base while 43% were greater than that distance.

Fig. 2 Properties of the CNEP score. a The graph shows the cumulative distribution of the CNEP score genome-wide (Genome), in PhastCons constrained
non-exonic (CNE) bases, and bases that are not in PhastCons-constrained elements and also not in exons (notCNE). b A scatter plot with each point
corresponding to one feature that CNEP uses. The x-axis shows the average CNEP score in bases that have the feature present, while the y-axis shows the
expected CNEP score based on the feature’s overlap with constrained non-exonic bases. Only 48,364 features that cover at least 200 kb are shown. The
full set of values can be found in Supplementary Data 2. The diagonal line is the y= x line. The vertical line corresponds to the genome-wide average CNEP
score. The horizontal line corresponds to the genome-wide expected average CNEP score. c A plot showing the average fraction of the 350 Roadmap
DNase I experiments in which the base overlaps a called peak for each CNEP score value, rounded to the nearest 0.001, covering at least 1000 bases. In
total, there was 1000 such values. d A plot showing the average fraction of bases annotated across the 127 epigenomes to each of 14-groups defined based
on 25 ChromHMM chromatin states previously assigned the same color40 for each CNEP score value, rounded to the nearest 0.001. A color legend with
the state mnemonics from ref. 40 is displayed at the bottom of the panel. e A plot of the ROC curve for the CNEP score predicting PhastCons non-exonic
bases. Also shown is the performance of individual features and several baseline or existing scores (see “Methods” section). Area under the curve values
are shown in parentheses. f A similar plot as e except for precision-recall as opposed to ROC curves. ROC and precision-recall curves for other constrained
element sets can be found in Supplementary Fig. 5. Source data are provided as a Source Data file.
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We also verified proximity to exons provides a limited
explanation of Low_CNE bases. Specifically, for Low_CNE bases,
we computed the cumulative prevalence as a function of distance
to nearest exon and the enrichment relative to CNE bases
(Supplementary Fig. 7). For example, for PhastCons, only 10.2%
of Low_CNE bases were within 200 bp from an exon at a 1.3-fold
enrichment, a decrease from 1.8-fold enrichment immediately
next to an exon.

We further analyzed High_notCNE and Low_CNE bases for
spatial enrichments relative to genes, transcription start sites
(TSS), and exons, and enrichments for chromatin states and
repeat elements (Supplementary Figs. 7–11). This highlighted the
enrichment of High_notCNE bases relative to notCNE bases
proximal to TSS and exons, in enhancers and promoter
chromatin states, and in the DNA class of repeats. Among
chromatin states, Low_CNE bases relative to CNE bases showed
the strongest enrichment for the heterochromatin and zinc finger
gene states.

Evidence of purifying selection in humans for Low_CNE bases.
To test whether Low_CNE bases are still enriched for bases under
purifying selection in humans despite the low CNEP score, we
turned to human genetic variation data. Specifically, we con-
sidered a set of 105 unrelated individuals of the Yoruba in Ibadan
(YRI) population from the 1000 Genomes Project33 and first
examined the proportional site frequency spectrum (SFS) (see
“Methods” section). Comparing Low_CNE bases to High_-
notCNE bases, we observed that there is a significant difference in
the distribution (p < 10−15), with a greater proportion of low-
frequency variants for Low_CNE bases, especially singletons and
doubletons, and a lower proportion of common variants (Fig. 3a,
Supplementary Fig. 12a, c, e, comparing orange and purple bars).
The skew towards low-frequency variants and the deficit in high-
frequency variants suggest stronger purifying selection in Low_-
CNE bases relative to High_notCNE bases. As an additional

evaluation of whether purifying selection has been stronger in
Low_CNE bases as compared to High_notCNE bases, we exam-
ined the absolute SFS normalized by the number of base pairs and
an estimated average mutation rate34. There were fewer SNPs in
Low_CNE bases relative to High_notCNE bases across all bins of
allele frequencies (Fig. 3b, Supplementary Fig. 12b, d, f, com-
paring orange and purple bars). These results further suggest that
Low_CNE bases have experienced stronger purifying selection
than High_notCNE bases. We obtained similar results when
controlling for estimated background selection35 (Supplementary
Fig. 13).

High_CNE relative to Low_CNE bases and High_notCNE
relative to Low_notCNE bases had reduced common variation
(Fig. 3, Supplementary Fig. 12). However, these differences were
generally smaller than the differences of CNE to notCNE bases.
Additionally, we compared SFS of Low_CNE bases to subsets of
High_notCNE bases that satisfied more stringent CNEP score
thresholds (Supplementary Fig. 14), which suggested that Low_-
CNE are under stronger purifying selection in humans than
notCNE bases with substantially higher CNEP scores.

Low_CNE bases show enrichments for TF-binding motifs.
Since human population genetics data still supported the
importance of Low_CNE bases despite the low CNEP score, we
investigated whether regulatory sequence motif analysis, which is
cell type and condition invariant, provides evidence of a reg-
ulatory role for them. For Low_CNE bases and the other five sets
defined above, we computed the distribution of 1646 regulatory
motif enrichments relative to control motifs and normalized the
distribution relative to that obtained when randomizing motif
instances, separately for each constrained element set (Fig. 4a,
Supplementary Fig. 15, see “Methods” section). Both Low_CNE
and High_notCNE bases had motif enrichments that were above
background, though less than High_CNE bases. The Low_CNE
enrichments were substantially stronger than the High_notCNE

a Proportional SFS (PhastCons) Absolute SFS normalized (PhastCons)b
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Fig. 3 CNEP score’s relationship to human variation. a The plot shows for PhastCons High_CNE, CNE, Low_CNE, High_notCNE, notCNE, and Low_notCNE
bases, the proportional site frequency spectrum based on a set of 105 unrelated individuals in the YRI population in terms of number of SNPs per base pair
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19962-9

6 NATURE COMMUNICATIONS |         (2020) 11:6168 | https://doi.org/10.1038/s41467-020-19962-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and notCNE enrichments. Low_CNE enrichments were also
greater than enrichments for High_notCNE bases defined at
more stringent thresholds of the CNEP score (Supplementary
Fig. 16), consistent with the SFS analysis results.

We also analyzed individual motif enrichments for Low_CNE
and High_CNE bases (Fig. 4b, Supplementary Fig. 17, Supple-
mentary Data 3). While globally High_CNE bases had stronger
motif enrichments than Low_CNE bases, some motifs did have

stronger enrichments for Low_CNE bases. We analyzed Gene
Ontology (GO) enrichments for TFs corresponding to three
subsets of motifs enriched in High_CNE or Low_CNE bases
(Fig. 4b, Supplementary Data 4, see “Methods” section). TFs
associated with ‘High_CNE strongly preferred’ motifs enriched
for protein dimerization activity and core-promoter GO terms.
TFs associated with ‘High_CNE moderately preferred’ motifs
enriched for development-related GO terms. Finally, TFs
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Supplementary Data 5. Source data are provided as a Source Data file.
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associated with ‘Low_CNE preferred’ motifs enriched for lipid
binding, signaling, and response to stimulus-related GO-terms
(corrected p-values < 0.05). These results suggest that some
Low_CNE bases are associated with motifs of TFs that might
only be active in specific developmental stages or under specific
stimuli.

Low_CNE bases enrichments for mapped mouse DNase data.
As mouse experiments relative to human may have coverage of
additional tissue types and developmental stages, for each con-
strained element set, we investigated the enrichments for the six
sets defined above for mouse DNase I hypersensitive sites (DHS)
from 156 experiments36,37. For each experiment, we mapped the
mouse DHS to the human genome and did the same for a ran-
domized version (see “Methods” section). We computed enrich-
ments based on the observed dataset overlap relative to the
randomized one.

For all constrained element sets, Low_CNE bases enriched at
least for some experiments (Fig. 4c, Supplementary Fig. 18).
These enrichments were modest, not exceeding two-fold, and
lower than for High_CNE bases. However, they were greater than
for Low_notCNE and notCNE bases and comparable to High_-
notCNE bases for at least the most enriched experiments. We
observed that the DHS experiments that tended to have the
greatest enrichment for Low_CNE bases were for whole brain or
cerebrum (Fig. 4d, Supplementary Fig. 19, Supplementary Data 5).
For example, for PhastCons, the 21 experiments with the greatest
enrichment included 20 of the 25 whole brain and cerebrum
experiments. The only other experiment in the top 21 was of
mesoderm in day 11.5 embryos. These results suggest that some
Low_CNE bases may correspond to DHS, particularly related to
the brain.

Retrospective analysis of information in additional datasets.
We conducted a retrospective analysis to gain insight into the
extent to which additional datasets improve the predictive per-
formance of CNEP and the nature of individual datasets that
provide additional marginal information predictive of CNE bases
even after thousands of datasets are considered. Specifically, we
generated another CNEP score using 10,836 features that were
available and accessible by 2015 (see “Methods” section). The
AUC for this score for predicting CNE bases was in the range
[0.75,0.82], a reduction from [0.79,0.86] when using all features
(Supplementary Table 1).

This suggests that some individual datasets provide additional
marginal information predictive of CNE bases even after
conditioning on the information in the 10,836 features. To
identify such datasets we defined the CNEP underestimation
value of a dataset as the difference between the statistics of the
expected average CNEP score based on the dataset overlap with
CNE bases and the observed average value of the CNEP score for
bases the dataset covers (see “Methods” section). High CNEP
underestimation values identify datasets that provide among
bases the dataset covers particularly informative annotations of
CNE bases beyond the information already in the 10,836 features.
We note that datasets with CNEP underestimation values close to
zero can still be highly informative of CNE bases when
considered in isolation, and those with a negative CNEP
underestimation values had observed average CNEP score
statistics greater than the expected. We analyzed the CNEP
underestimation values as a function of the dataset base coverage.

For most datasets the CNEP underestimation value was
relatively small (<~0.01) or the dataset covered few bases,
indicating that the additional marginal information for annotat-
ing CNE bases in those datasets is limited (Fig. 5, Supplementary

Figs. 20 and 21, Supplementary Data 6). Among the exceptions
was a dataset for a DNase I hypersensitivity experiment in spinal
cord of a 59-day embryo that covered 71.6 million bases and had
an underestimation value of 0.066. For comparison, the under-
estimation value of the 12.3 million new exon bases added to
GENCODE between v19 and v28 was 0.038. Other exceptions
included DNase I hypersensitivity of embryonic brain, eye, and
retina. Some TF-binding datasets had even greater underestima-
tion values than these DNase I experiments, though covered a
smaller fraction of the genome. Datasets for the TFs TEAD4 and
ONECUT1 still had both greater genome coverage and under-
estimation values than new exons. We used the ChIP-Atlas9

metadata to determine if datasets that covered at least 200 kb and
had CNEP underestimation values >0.02 enriched for specific cell
type classes revealing significant enrichments for pluripotent stem
cell, pancreas, and neural classes (corrected p-value < 0.03;
Supplementary Table 3).

Conservation states and CNEP predictions. Even with addi-
tional datasets, CNEP would not be expected to predict CNE
bases that are in false-positive constraint calls. We investigated if
we could identify CNE bases that are difficult for CNEP to predict
using additional signals present within a multiple-sequence
alignment not captured by the original unsupervised model
used to call CNE bases. Establishing this, would suggest it is
possible to identify CNE bases with low CNEP scores that more
likely represent false constraint calls. Specifically for this analysis
we used ConsHMM conservation states annotations based on the
combinatorial and spatial patterns of which species match and
align the human genome in a 100-way vertebrate sequence
alignment, defined in an analogous way to ChromHMM chro-
matin states32,38.

We observed large variation in CNEP scores’ ability to predict
CNE bases depending on the ConsHMM conservation state they
overlap (Fig. 6, Supplementary Figs. 22–24). For example, for
PhastCons, which was defined on the same alignment as
ConsHMM, while CNEP’s overall AUC for predicting CNE
bases was 0.79, the AUC reached 0.92 for CNE bases in
ConsHMM state 2, which is associated with high frequency of
all vertebrates except fish aligning to and matching human. In
contrast, the AUC was <0.650 for 56 states, generally having low
align frequencies for many mammals, and comprising 17.4% of
all CNE bases. After excluding bases within 200 bp of exons, the
AUC reached 0.95 for state 1, associated with high frequency for
all vertebrates aligning and matching. We saw similar trends in
the conservation state enrichments of High_notCNE and
depletions of Low_CNE bases relative to notCNE and CNE
bases, respectively (Fig. 6a, b, Supplementary Fig. 22).

CSS by CNEP. We defined the CSS by CNEP (CSS-CNEP)
corresponding to the expected CNEP score of a base given a set of
comparative genomic annotations for the base (see “Methods”
section, Figs. 1, 7a, Supplementary Fig. 25). CSS-CNEP can score
among Low_CNE bases those that more likely represent false
constraint calls as opposed to the compendium lacking infor-
mative experimental data for the bases. Specifically, the CSS-
CNEP for a base on one chromosome was computed as the
average CNEP score in non-exonic bases on other chromosomes
that had the same conservation state and combination of over-
lapping constrained elements among the four sets.

The average CSS-CNEP score in CNE bases showed a large
variation across conservation states (Fig. 6, Supplementary
Fig. 22). For example, for PhastCons, CNE bases in states 1 and
2 had average CSS-CNEP values of 0.32 and 0.30, respectively,
while CNE bases in state 100, associated with putative alignment
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artifacts32, had an average CSS-CNEP value of 0.03. We evaluated
regulatory sequence motifs and mouse DHS enrichments of
subsets of CNE bases that had CSS-CNEP values less than specific
thresholds (Fig. 7c, d, Supplementary Figs. 26 and 27). This
showed substantially reduced enrichments for CNE bases that
had lower CSS-CNEP values. These results suggest that CSS-
CNEP can be used to identify CNE bases that more likely
correspond to false-positive constraint calls.

We confirmed that CSS-CNEP was more predictive of
Low_CNE bases among CNE bases than any existing constraint
score (Fig. 7b, Supplementary Fig. 28). Additionally, in most cases
compared to individual constrained element sets, CSS-CNEP had
greater precision at their single recall rate. However, some
Low_CNE bases were not well predicted by CSS-CNEP.
Consistent with this even for CNE bases in ConsHMM states
for which CNEP was most predictive, there was still a substantial
subset of bases receiving low CNEP scores (Fig. 6, Supplementary
Fig. 22). For example, for PhastCons, 19% of Low_CNE bases
were in states 2, 4, and 5, which all had greater than four-fold
enrichment for Low_CNE bases. Many of these bases may
correspond to true constraint calls, but are not active in
experiments provided to CNEP.

Discussion
In this work, we developed and applied the CNEP to provide a
score for each base of the human genome that reflects the
probability that the base overlaps a CNE from information in
large-scale collections of epigenomic and TF-binding data. We
used information from an input of more than 60,000 features
derived from epigenomic and TF-binding data spanning a wide
range of cell and tissue types. We showed that CNEP out-
performed baseline and related existing scores at predicting CNE
bases using epigenomic and TF-binding data, but that there was
still a substantial portion of CNE bases that were not well pre-
dicted. For example, for PhastCons, 35% of CNE bases had a
CNEP score below the genome-wide average, while 23% of
notCNE bases had a score above that average.

We conducted a number of analyses to better understand CNE
bases that received a low CNEP score, as well as notCNE bases
that received a high CNEP score. Using human population
genetic variation data and regulatory sequence motifs, we pro-
vided evidence to suggest that Low_CNE bases are under con-
straint in humans and enrich for having a regulatory role, though
to a lesser extent than High_CNE bases. High_notCNE bases had
greater enrichments for regulatory motifs and less genetic
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variation compared to Low_notCNE bases, though less than the
reduction seen for Low_CNE bases. A subset of High_notCNE
bases might correspond to bases that are under evolutionary
constraint in humans, but not actually in a constrained element
call, which was supported by the conservation state enrichments
for High_notCNE bases. Another subset of High_notCNE bases
may correspond to adaptive and recently evolved bases with a
potentially important regulatory role that share epigenomic
marks and TF-binding patterns associated with CNE bases,

though we note that some adaptive and recently evolved bases
might have distinct epigenomic mark and TF-binding patterns
that CNEP is not optimized to detect. A direction for future work
could be to investigate training CNEP so it is optimized to detect
other types of conservation annotations.

A retrospective analysis showed additional datasets led to
modest overall improvements in the CNEP predictions. Datasets
with substantial additional information were limited and enriched
for pluripotent stem cell, pancreas, or neural cell type classes. It is
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Fig. 7 Conservation signature score by CNEP (CSS-CNEP). a Cumulative distribution of the CSS-CNEP score genome-wide and specifically in CNE and
notCNE defined by PhastCons. b Precision-recall analysis for predicting PhastCons Low_CNE bases among CNE bases using additional comparative
genomics information. In this analysis, Low_CNE bases are positive bases and High_CNE bases are negative bases. The predictions based on the CSS-CNEP
score as well as the PhastCons, PhyloP, and GERP++ constraint scores are shown based on ranking from lowest to highest value. Also shown for the
PhastCons, PhyloP, and GERP++ scores are precision-recall curves, based on dividing a score into 400 bins and ordering the bins in decreasing order of
enrichment for Low_CNE bases on a training set containing separate positions than used for the evaluation (see “Methods” section). The plot also shows
the cumulative precision-recall of the conservation states when ordered based on decreasing enrichment for Low_CNE bases in the training data.
Additionally, a single point is shown for each of the other three constrained element sets corresponding to predictions based on bases not covered by them.
c Similar plot to Fig. 4a, but showing the difference of the distribution of motif enrichments relative to the distribution for a randomized set of the motifs for
PhastCons CNE bases and the subsets that had CSS-CNEP scores≤ 0.05, 0.10, and 0.20. d Similar plot to Fig. 4c, but showing enrichments for DNase I
Hypersensitive Sites (DHS) from 156 experiments in mouse, for PhastCons CNE bases and the subsets that had CSS-CNEP scores≤ .05, 0.10, and 0.20.
Similar plots for additional constrained elements can be found in Supplementary Figs. 25–28. Source data are provided as a Source Data file.
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possible different types of assays or cell types and conditions
distinct from those considered here would further improve pre-
diction of CNE bases.

For a researcher interested in a CNE base, the CNEP score
provides information as to whether data in a compendium is
sufficient to explain the constraint. To facilitate follow-up on a
base with a high CNEP score, the CNEP software can generate a
list of features that overlap the base ranked by their expected
CNEP score statistic (Fig. 1b). We do not recommend trying to
interpret the weights of CNEP’s classifiers due to multicollinearity
expected when using many features. To determine whether a
subset of features are sufficient to explain the constraint, such as
from the same cell type, CNEP could be run with the subset of
features. If a CNE base receives a low CNEP score, two possible
reasons are either a false constraint call or informative experi-
ments were not in the input compendium, which the com-
plementary CSS-CNEP that we developed can be used to help
differentiate between. We note that CNEP and CSS-CNEP are not
specifically designed to be used directly for the task of prioritizing
phenotypic-associated genetic variants, and would not be expec-
ted to be competitive with scores designed for this task that use
more diverse sets of features. A possible direction of future work
is to evaluate incorporating the CNEP and CSS-CNEP scores with
other features for the task of prioritizing variants.

While the CNEP score was a relatively effective predictor of
CNE bases from epigenomic and TF binding data compared to
other approaches, a portion of CNE bases remains difficult to
predict from such compendiums. The functional importance of a
subset of such bases is supported by orthogonal evidence, thus
also highlighting the remaining challenge to a comprehensive
understanding of the non-exonic genome.

Methods
Genome assembly and gene annotations. All predictions and analyses were done
on human genome assembly hg19 and were restricted to chr1-22 and chrX. For
gene annotations we used the GENCODE v19 annotations obtained from ftp://ftp.
sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.
gtf.gz. Exon annotations include exon bases that are non-coding.

Constrained element sets. We used four different constrained element sets based
on the PhastCons5, GERP++2, SiPhy-omega, and SiPhy-pi3,4 methods. The
PhastCons-constrained elements were based on the human hg19 100-way verte-
brate alignment and obtained from the UCSC genome browser31. The SiPhy-
omega and SiPhy-pi elements were called based on a 29-way mammalian align-
ment and were the hg19 version obtained from https://www.broadinstitute.org/
mammals-models/29-mammals-project-supplementary-info. The GERP++ ele-
ments were called based on the mammalian subset of the UCSC genome browser
hg19 46-way vertebrate alignment obtained from http://mendel.stanford.edu/
SidowLab/downloads/gerp/.

Epigenomics and TF-binding features. We used 63,741 binary features defined
from epigenomics and TF-binding data. The sources and list of the features are
found in Supplementary Data 1. The features were derived from ChIP-seq data of
histone modifications, TFs including general factors, DNase I hypersensitivity data,
and FAIRE data. The data were from the ENCODE consortium6,39, Roadmap
Epigenomics consortium7, the ReMap public dataset8,29, or the ChIP-Atlas9.

In total 58,484 features were based on peak call datasets, where each dataset
corresponds to one feature. For these features, the data was encoded as a ‘1’ if the
corresponding base overlapped a peak and ‘0’ otherwise. The peak calls for the
Roadmap Epigenomics data was based on the unconsolidated datasets. For peak
calls from the ENCODE consortium, we used peak calls available from the second
phase of the ENCODE project6 and peak calls available from the ENCODE
portal39. For the ENCODE portal data we downloaded all files for the ChIP-seq or
DNase-seq assays available in narrowPeak or broadPeak format for hg19 on May
11, 2018 produced by the ENCODE project from https://www.encodeproject.org/.
For the ReMap database, which is a reprocessing of ChIP-seq data of TFs from the
Gene Expression Omnibus and ArrayExpress, we used the peaks in the hg19 files
restricted to the ‘Public’ data (non-ENCODE) and had features based on both the
2015 and 2018 versions of the database. For the ChIP-Atlas, which is a reprocessing
of Sequence Read Archive data, we used all peaks called at the 10−5 threshold for
hg19 available from http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/eachData/
bed05/ on May 11, 2018. We note that some of the ChIP-Atlas datasets were

generated by the ENCODE or Roadmap Epigenomics project, but processed
differently.

We also had 5215 features defined based on chromatin state calls from three
different ChromHMM models38. The three models were: (1) a 15-state model
defined across 9-ENCODE cell types based on eight histone modifications and
CTCF; (2) the 15-state ‘core’ model based on 5-histone modifications defined
across 127-reference epigenomes based on consolidated data processed by the
Roadmap Epigenomics consortium (111 reference epigenomes were derived from
data produced by the Roadmap Epigenomics project and 16 from the ENCODE
project); (3) a 25-state model based on imputed data for 12-chromatin marks (10
histone modifications, H2A.Z, and DNase I hypersensitivity) defined across the
same 127 reference epigenomes40. For each model, we had a separate feature for
each chromatin state and cell type or reference epigenome combination. A feature
value was encoded as a ‘1’ if a base overlapped the chromatin state in the cell type
or reference epigenome and a ‘0’ otherwise. We observed a small increase in
predictive performance of CNEP when including the ChromHMM features in
addition to the peak features (Supplementary Table 1).

Additionally, we had 42 features defined based on the position of Digital
Genomics Footprints7,41 each corresponding to an experiment in a different cell or
tissue types. For these features the data was encoded as a ‘1’ for those bases
overlapping a footprint and a ‘0’ otherwise.

CNEP method. The CNEP scores are generated by first training an ensemble of
logistic regression classifiers. CNEP jointly considers all 63,741 features described
above. For a given constrained element set and a set of binary epigenomics and TF-
binding features, CNEP trains logistic regression classifiers to discriminate between
bases in a constrained element that are outside of all exons as a positive set from all
other bases as a negative set. We note that bases in constrained elements within
exons, which corresponds to 1.3–1.7% of bases outside of non-exonic constrained
elements, were included in the negative set. The specific value in the range depends
on the specific constrained element set. We included such bases in the negative set
instead of excluding them from the training, since CNEP predictions were still
made in exons, and this way high prediction values within exons can be more
confidently interpreted as being associated with the exon also overlapping epige-
nomic marks and TF binding typical of non-exonic constrained elements (Sup-
plementary Fig. 2).

For generating CNEP scores on one chromosome based on one constrained
element set, CNEP-trained 10 logistic regression classifiers using 10 different sets of
1,000,000 randomly sampled positions from the other 22 chromosomes. The
overlap of positions of any one set of positions with another set was on average
0.034% of positions. We repeated this for each of the constrained element sets and
23 chromosomes thus training in total 920 logistic regression classifiers in parallel.
Across all classifiers, the number of positive examples per classifier was on average
4.1% and varied between 2.9% and 5.5%, and corresponded approximately to the
genome-wide percent of CNE base for the constrained element set (Supplementary
Fig. 2e). We verified that using 10 classifiers per constrained element set and
chromosome for predictions led to improved predictive performance compared to
a single classifier (Supplementary Table 1). We also verified that there was similar
predictive performance with five classifiers as with 10 classifiers (Supplementary
Table 1), thus increasing beyond 10 classifiers would be expected to give
diminishing returns, while increasing computational costs. For these analyses, we
computed AUC values based on using the same 10 classifiers, but the classifiers
were split into either two groups of 5 or 10 groups of one. We then averaged the
AUC values based on each group. Additionally, we observed that the average
pairwise correlation between predictions based on using a single classifier of the 10
per element set was 0.73, but when the 10 classifiers were split into two halves, the
correlation of predictions based on five classifiers per element set increased to 0.93.

CNEP used the Liblinear v.2.142 software to train the logistic regression
classifiers using L1 regularization (−s 6) with a bias term (−B 1), with the default
regularization parameter value of 1 (−c 1). With this regularization on average
59.8% of the features per classifier had a non-zero coefficient, and 80.4% of features
had a non-zero coefficient in at least one classifier. The exclusive use of binary
features allowed us to make efficient use of the sparse representation of the data in
Liblinear.

For generating genome-wide predictions based on one constrained element for
each chromosome, CNEP computed and averaged the probabilistic predictions,
between 0 and 1, from its 10 corresponding logistic regression classifiers and then
outputted the predictions to the nearest 0.001 value. To generate the CNEP score
we then averaged the outputted predictions based on each of the four constrained
element sets.

Computing observed and expected CNEP score statistics. For computing the
observed average CNEP score statistic for a feature, we computed the average
CNEP score in all bases in the genome where the feature was defined as being
present. For computing the expected average CNEP score statistic for a feature, we
computed the average over the four constrained element sets of the number of
bases for which the feature was present and overlapped a CNE element divided by
the total number of bases in which the feature was present. We computed the
genome-wide observed and expected CNEP score statistics the same way except all
bases in the genome were included.
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CNEP score’s relationship to Roadmap Epigenomics DNase data. For com-
puting the relationship between the CNEP score and the average fraction of
Roadmap Epigenomics DNase I hypersensitivity experiments a base is in a peak
(Fig. 2c), we used 350 narrowPeak call files with ‘ChromatinAccessibility’ in the file
name available from http://egg2.wustl.edu/roadmap/data/byFileType/peaks/
unconsolidated/narrowPeak/. For each value of the CNEP score computed to the
nearest 0.001 and covering at least 1000 bases, we took all bases in the genome
having that score and determined the average fraction of the 350 experiments in
which the bases are overlapped by a peak call.

Baseline and related score comparisons. For comparing the predictive perfor-
mance of the CNEP score, we computed the baseline score based on Roadmap
Epigenomics DNase I hypersensitivity data as the number of times a base was
overlapped by a peak in the set of 350 experiments described above. For the all
DNase I baseline evaluation, we expanded the counts to be based on a set of 4522
DNase I hypersensitivity experiments. We also generated a baseline based on the
number of times any of the 63,741 features overlap a base. We also compared to
each of those features individually. In addition we compared to two other existing
related scores, the Segway Encyclopedia ‘Position-wise aggregated conservation-
associated activity scores’24, that we obtained from https://noble.gs.washington.
edu/proj/encyclopedia/caas.bed.gz and the FitCons2 cell-type integrated score22

that we obtained from http://compgen.cshl.edu/fitCons2/hg19/H1/E999-sco.bw.
We conducted these comparisons genome-wide. Since CNEP predictions were
made for each chromosome by leaving that chromosome out when training, there
was no need to create additional training and test sets for these comparisons.

For comparing to the version of the CNEP score that used a random forest in
place of a logistic regression classifier, we used the RandomForestClassifier from
scikit-learn43. We used the same procedure for training and prediction as with
CNEP when using logistic regression classifiers, but generated predictions for only
a million randomly sampled positions on chr10. We also evaluated CNEP
predictions using logistic regression classifiers for those same million randomly
sampled positions.

For evaluating DeepSea sequence predictions25, we obtained predictions for 919
chromatin features available from the DeepSea web-server (http://deepsea.
princeton.edu/job/analysis/create/) for 50,000 randomly sampled positions in the
genome. The maximum and average AUC over the 919 features was computed.

Defining sets of bases for analyses. For each of the four constrained element sets
considered, we defined the following six sets of bases: (1) CNE—bases in a con-
strained element that do not overlap a GENCODE exon; (2) Low_CNE—bases in a
constrained element that do not overlap a GENCODE exon and have a CNEP score
less than or equal to the CNEP mean, 0.0419; (3) High_CNE—bases in a con-
strained element that do not overlap a GENCODE exon and have a CNEP score
>0.0419; (4) notCNE—bases not in a constrained element and do not overlap a
GENCODE exon; (5) Low_notCNE—bases not in a constrained element and do
not overlap a GENCODE exon and have a CNEP score ≤0.0419; (6) High_notCNE
—bases not in a constrained element and do not overlap a GENCODE exon and
have a CNEP score >0.0419 (Supplementary Table 2).

Analysis of CNEP score’s relationship to chromatin states. For the analysis of
the relationship between the CNEP score and chromatin state annotations
(Fig. 2d), we used the 25-state ChromHMM chromatin state annotations defined
across 127 epigenomes based on imputed data for 12-chromatin marks40. For each
value of the CNEP score, which were computed to the nearest 0.001, we took all
bases in the genome having that value. We then determined for those bases and
each of the 25-states on average what fraction of the 127 epigenomes were assigned
to that state. We then stacked bar graphs with the fractions starting from the state
with the greatest state number (25_Quies) to the lowest state number (1_TssA)
with the state numbers and colors from ref. 40. In the plot, we did not differentiate
between different states that were previously given the same color and thus the plot
provides information on the 14-state groups that were colored differently. We also
computed the fold enrichments of CNE, Low_CNE, High_CNE, notCNE, Low_-
notCNE, and High_notCNE bases for each of the four constrained element sets
using the OverlapEnrichment command of ChromHMM v1.1338 for each state in
each of the 127 epigenomes, and then reported the median enrichments (Sup-
plementary Fig. 10).

Positional-enrichment analysis. The enrichment of Low_CNE relative to CNE
bases at a specific distance to the nearest exon was defined as the ratio of the
fraction of Low_CNE bases whose nearest exon base was at that distance to the
fraction of all CNE bases in the genome whose nearest exon base was at that
distance. Enrichments for High_CNE bases relative to CNE bases were similarly
defined as were the enrichments of High_notCNE and Low_notCNE bases relative
to notCNE bases. A similar set of enrichments were computed for nearest TSS and
genes. For genes, a base within the boundaries of the transcription start and end
site had a distance of zero. Similar enrichments for nearest CNE bases were also
computed for High_notCNE and Low_notCNE bases relative to notCNE bases.

Repeat-enrichment analysis. We computed the fold enrichment for CNE,
Low_CNE, High_CNE, notCNE, Low_notCNE, and High_notCNE bases for
overlapping a base in a repeat element called by RepeatMasker44. We also com-
puted enrichments restricted to RepeatMasker classes and families that covered at
least a million bases of the genome. Fold enrichments were defined as the ratio of
the fraction of bases in the target set overlapping the RepeatMasker called bases to
the fraction of bases in the genome overlapping the RepeatMasker called bases. The
RepeatMasker calls were those we previously obtained from the UCSC genome
browser RepeatMasker track31,32,44.

Conservation state analysis. The ConsHMM conservation state annotations were
the 100-conservation state annotations for hg19 from ref. 32. These conservation
state annotations were defined on the same 100-way vertebrate alignment for
which the PhastCons-constrained elements we used were defined. Fold enrich-
ments for CNE, Low_CNE, notCNE, and High_notCNE bases in the conservation
states were computed using the OverlapEnrichment command of ChromHMM
v1.13 with the options ‘-b 1 -lowmem’ specified. Conservation state assignments to
chrY were excluded from the background in this analysis, as the CNEP scores were
not defined on this chromosome. The per state ROC and AUC values for the CNEP
score were computed by considering a positive base a CNE in a specific con-
servation state and a negative base any base in the genome that was not in a CNE.
Bases in the CNE set that were in a different conservation state were excluded when
generating the ROC and computing the AUC. The ROC and AUC based on
extending exons 200 bp in each direction was computed in the same way, except
first adjusting the exon start and end positions.

CSS by CNEP (CSS-CNEP). To compute the CSS by CNEP (CSS-CNEP), for each
chromosome we first computed the average CNEP score for each of the 1600
combinations of the 100 conservation states and four constrained elements within
non-exonic bases on all other chromosomes. We then for each base on the target
chromosome, including exons, used the average corresponding to the combination
of conservation state and constrained element sets overlapping the base to define
the CSS-CNEP value for the base. For over 99.98% of base predictions, the com-
bination average used was derived from more than 1000 bases.

Evaluation of predictions of Low_CNE bases among CNE bases. We evaluated
the ability of CSS-CNEP and other comparative genomic scores and annotations to
predict among CNE bases those that received a low CNEP score. Specifically for
this evaluation, we split the CNE bases into two sets, the Low_CNE and High_CNE
bases, and treated the Low_CNE bases as positives and High_CNE bases as
negatives. We followed a previous evaluation approach where we randomly split
200 kb genome-segments into two halves, one used for training and the other used
for testing32. We computed the precision-recall for ConsHMM states by first based
on the training data ordering the ConsHMM states in decreasing order of
enrichment for Low_CNE bases with a background of all CNE bases. We then used
that order to evaluate the cumulative precision-recall on the test data of predicting
CNE bases from ConsHMM annotations. We formed predictions for the CSS-
CNEP, PhyloP45, GERP++2, and PhastCons5 scores by ordering bases from lowest
to highest value according to the score. For the PhyloP, GERP++, and PhastCons
scores we also followed the procedure of ref. 32 and formed 400 equal-sized bins of
the score and then repeated the procedure used for the ConsHMM conservation
states treating a bin as if it was a state. PhyloP and PhastCons scores were based on
the same alignment as used for calling ConsHMM states and PhastCons con-
strained elements. GERP++ scores were based on the same alignment as used for
calling GERP++ constrained elements. For each constrained element set other
than the one used to define the CNE bases in the evaluation, we computed the
precision and recall for a prediction based on bases not overlapping the constrained
element set.

Human variation analysis. The human variation analysis was conducted on a set
of 105 unrelated individuals from the YRI population part of the 1000 Genomes
Project phase 333. We focused on this population for analyzing the effects of
selection, since it is associated with greater genetic diversity and has a simpler
demographic history than non-African populations46. We selected high-quality
sites by applying a mask from the 1000 Genomes Project where a site was defined
as high quality if its depth (DP) is within 1.5× the mean DP across all sites33. For
this analysis, we restricted it to the autosomes and variant calls that were bi-allelic.
For each set of coordinates analyzed, we computed a count cn of how many of the
variants occurred in exactly n individuals for each value of n= 1,…,10 (low and
intermediate frequency variants) and also a count c>10 of how many occurred in
>10 individuals (common variants). We then computed the proportional SFS as
each of these individual counts divided by the sum of all of the counts. We assessed
the statistical significance between pairs of coordinate sets by applying a chi-square
test to the 11 count values.

The absolute SFS contains the numbers (rather than proportions) of SNPs at
particular minor allele counts. Because the count of SNPs is affected by the number
of base pairs analyzed (more base pairs would lead to more SNPs) as well the
mutation rate (higher mutation rates lead to more SNPs), we normalized for
both of these factors. To do this, first we obtained mutation rate estimates from
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http://mutation.sph.umich.edu/hg19/34. We associated each base with a single
mutation rate by averaging its three mutation rates, each corresponding to a
mutation from the reference nucleotide to an alternative nucleotide. For a
coordinate set, we computed the sum of the mutation rates at all bases that were
high-quality sites as defined above and had a mutation rate available. This sum is
equivalent to the number of base pairs analyzed in a coordinate set times their
average mutation rate. We computed the unnormalized count values as described
above for the proportional SFS except excluded positions that did not have
mutation rates available. We then divided these counts by the sum of the
mutation rates.

To compute SFS controlled for background selection we used the version of B-
values in hg19 as part of the CADD annotation set12, which are based on the B-
values from ref. 35. For the proportional SFS, we reweighted variant calls in each
coordinate set so that the B-value distribution was effectively the same as the
distribution of B-values at all non-exonic bases with a variant call. This analysis was
restricted to non-exonic variants that had an estimated B-value available. The
weighting for a variant with a B-value, x, was pa(x)/ps(x) where pa(x) and ps(x) are
the proportions of variants with the B-value x among all variants considered and
the subset in the coordinate set, respectively. For the absolute SFS density
normalized by its average mutation rate, we reweighted bases in each coordinate set
so the B-value distribution was effectively the same as the distribution of B-values
at all non-exonic bases. This analysis was restricted to non-exonic bases that were
in a high-quality site and had both estimated mutation rates and B-values available.
The weighting for a base with a B-value, x, was pc(x)/ps(x) where pc(x) and ps(x) are
the proportions of variants with the B-value x among all bases considered and the
subset in the coordinate set, respectively. The weighting was used in both counting
variants and the sum of the mutation rates.

Motif-enrichment analysis. For the motif enrichment analysis (Fig. 4a, b, Sup-
plementary Figs. 15–17, Supplementary Data 3), we used motif instances from
http://compbio.mit.edu/encode-motifs/matches-with-controls.txt.gz28. We used
motif instances from a set of 1646 motifs that excluded motifs that were in the
compendium based on being discovered from ENCODE ChIP-seq data, so that the
set of motifs we analyzed were independent of the features provided to CNEP. The
motif instances were called outside of coding, 3′ UTR, and repetitive regions and
called independent of conservation. For each motif, there were also a set of cor-
responding control motif instances called28, which control for biases from sequence
composition or background. To compute the enrichment of a specific motif in a
target set of bases, we computed the ratio of the fraction of motif instance bases
that also overlapped the target set to the fraction of corresponding control motif
instance bases that also overlapped the target set. For each of the four constrained
element sets, these enrichments for individual motifs were reported for High_CNE
and Low_CNE bases (Fig. 4b, Supplementary Fig. 17, Supplementary Data 3). For
the analyses of the distribution of motif enrichments for a target set, we generated
three randomized versions of the motif instance calls with controls. To generate a
randomized version for each chromosome we performed column-wise random
permutations where one column is the motif identifier and the other column
contains the motif coordinates. For each target set considered, we computed the
distribution of motif enrichments for each of the randomized motif instances, using
the same procedure as the actual motif instances. We then ordered the enrichments
separately for the actual and three randomized datasets. At each ranked position in
the ordering, we took the difference between the log2 value of the actual enrich-
ment and the log2 value of the median enrichment from the three randomized
datasets. We also followed the above procedures for subsets of CNE bases with
CSS-CNEP values at or below specific thresholds (Fig. 7c, Supplementary Fig. 26).

Motif set GO analysis. We conducted a GO-enrichment analysis for the TFs
corresponding to three subsets of motifs that had at least a log2 fold enrichment of
0.5 in High_CNE or Low_CNE bases. The three subsets were: (i) ‘High_CNE
strongly preferred’—those motifs for which the difference in the log2 fold enrich-
ment for High_CNE and Low_CNE bases was >0.75; (ii) ‘High_CNE moderately
preferred’—the difference was between 0.75 and 0; (iii) ‘Low_CNE preferred’—
which had a greater enrichment for Low_CNE bases than High_CNE bases. GO
enrichment was conducted using the STEM software v.1.3.11 with default settings
(Supplementary Data 4)47. STEM uses the hypergeometric distribution to compute
p-values for a one-sided test. The GO and human gene annotations were down-
loaded using the STEM software on September 17, 2017. We used as a base set all
TFs corresponding to a motif in the compendium. The corresponding TF for a
motif was taken to be the portion before the ‘_’ in the motif ID.

Mouse DNase I hypersensitive site enrichment analysis. For the mouse DNase
I hypersensitivity site (DHS) analysis (Fig. 4c, d, Supplementary Figs. 18 and 19,
Supplementary Data 5), we used the 156 narrowPeak files from the University of
Washington Mouse ENCODE group available from http://hgdownload.soe.ucsc.
edu/goldenPath/mm9/encodeDCC/wgEncodeUwDnase/ and http://hgdownload.
soe.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDgf/36,37. We also gen-
erated a randomized version of each set of DHS by randomly selecting a different
position for each DHS in the original file on the same chromosome. We lifted over
both the real and randomized versions of the DHS files from mm9 to hg19 using

the liftOver tool from the UCSC genome browser with the options ‘-bedPlus=3
-minMatch= 0.00000001’. The lower value for the minMatch parameter enables a
more permissive mapping of peaks from mouse to human and thus an enrichment
estimate that is more reflective of a background that includes all mouse DHS. For
both the real and randomized version of each set of DHS, for each of the four
constrained element sets considered, we computed enrichments for the six target
sets: CNE, High_CNE, Low_CNE, notCNE, High_notCNE, and Low_notCNE.
Enrichments for each set of DHS were computed by taking the ratio between the
fraction of bases in human covered by a DHS that are in the target set to the
fraction of bases in the genome that are in the target set. The reported enrichment
for an experiment is the ratio of this enrichment for the real DHS compared to the
corresponding enrichment for the randomized DHS. We also followed the above
procedures for computing enrichments for subsets of CNE bases with CSS-CNEP
values at or below specific thresholds (Fig. 7d, Supplementary Fig. 27).

Retrospective analysis on information in additional datasets. For the retro-
spective analysis of additional information in human datasets, we held out from
training all features from ChIP-Atlas9, ReMap 20188, the ENCODE portal6,39. The
version of the CNEP score we used for this analysis was generated with data that
was available and accessible by 2015. Specifically we used a 10,836 feature subset,
which included data from the ENCODE consortium during its second phase6,
Roadmap Epigenomics consortium7, and the ReMap 2015 public dataset29 (Sup-
plementary Data 1). We did not exclude any dataset from the analysis for being
based on the same experiment as used to generate the CNEP predictions. We
excluded files that did not have any peaks called on the chromosomes we con-
sidered. For the analysis with updated GENCODE exon annotations we used
release 28 mapped to hg19/GRCh37 available from ftp://ftp.ebi.ac.uk/pub/data-
bases/gencode/Gencode_human/release_28/GRCh37_mapping/gencode.v28lift37.
annotation.gtf We excluded any base in an exon from release 19. For generating the
shuffled data we used the shuffleBed command of BEDTools (v.2.17)48.

The CNEP underestimation value for a dataset was defined as the difference of
its expected average CNEP score and its observed average CNEP score statistic,
where the observed CNEP score is computed based on the subset of features
available in 2015 as described above. The CNEP underestimation value of a dataset
reflects its marginal additional information for annotating CNE bases conditioned
on the 2015 feature subset within bases the dataset covers. This value was analyzed
relative to the number of bases the dataset covers, where coverage of a dataset is the
number of bases for which the feature for the dataset is encoded as a ‘1’. A property
of a logistic regression classifier is that the sum of a feature’s values for the positive
instances equals the weighted sum of the feature’s values weighted by the
prediction probabilities for the positive class on the training data without
regularization. This leads to the expectation that including a dataset as a feature to
the classifier would cause its CNEP underestimation to be close to zero. We verified
this holds approximately for those features used to generate the CNEP score for its
actual predictions (Supplementary Fig. 20g, h).

We note that a dataset with a CNEP underestimation of zero can still be
informative on constraint in isolation, but here we are evaluating the marginal
additional information conditioned on the 2015 subset. Higher positive values
correspond to datasets that have greater overlap with CNE bases than expected
based on the CNEP score derived from information in the 2015 subset, while more
negative values correspond to fewer overlaps and an overestimate of the CNEP
score for the dataset. We primarily focused on positive CNEP underestimation
scores since this can highlight datasets that annotate CNE bases that previously had
few if any informative annotations. Additionally, we observed more datasets that
had relatively large CNEP underestimation values than overestimate values
(Supplementary Fig. 20).

The CNEP underestimation values has two advantages compared to directly
analyzing the correlations of CNEP predictions with and without each additional
feature. One advantage is it allows identifying datasets that might provide a highly
informative annotation, but for only a relatively small number of CNE bases. The
other advantage is that it is practical to compute for a large number of features
since it does not require retraining the CNEP score for each additional feature.

For computing the cell type class enrichments, we used STEM software v.1.3.11
with user provided annotations treating each dataset as if it was a gene and the cell
type class as the annotation category47. The foreground for the enrichment were
those ChIP-Atlas datasets covering at least 200 kb and having an underestimation
value >0.02. The background set for the enrichment analysis was all ChIP-Atlas
datasets that covered at least 200 kb. We used default settings except changed the
minimum number of genes parameter to 1 and multiple hypothesis testing
correction to ‘Bonferroni’. STEM computed p-values for a one-sided test using the
hypergeometric distribution.

Overlap of constrained element sets with prioritized variants. We obtained a
curation of annotations of top 1% prioritized non-coding bases from 14-different
scores used for prioritizing genetic variants from ref. 32. Separately for each
combination of score and four constrained element sets, we computed the per-
centage of bases prioritized by the score that overlap a constrained element when
restricting to non-exonic bases in the genome. We also computed the corre-
sponding fold enrichment by dividing that percent overlap by the percentage of the
non-exonic genome the constrained element set covers.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The CNEP score and the CSS-CNEP are available from https://github.com/ernstlab/
CNEP. All input data used to generate the scores are publicly available. Identifiers for the
features are provided in the Supplementary Data 1. SiPhy-pi and SiPhy-omega
constrained elements were from https://www.broadinstitute.org/mammals-models/29-
mammals-project-supplementary-info. GERP++ constrained elements and scores were
from http://mendel.stanford.edu/SidowLab/downloads/gerp/. PhastCons constrained
elements and scores, PhyloP scores, and RepeatMasker annotations were from the UCSC
genome browser (https://genome.ucsc.edu/). The main exon annotations were from ftp://
ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz
and exon annotations from the retrospective analyses were from ftp://ftp.ebi.ac.uk/pub/
databases/gencode/Gencode_human/release_28/GRCh37_mapping/gencode.v28lift37.
annotation.gtf. ChIP-Atlas data were from http://dbarchive.biosciencedbc.jp/kyushu-u/
hg19/eachData/bed05. ReMap data were from http://remap.univ-amu.fr/. Roadmap
Epigenomics data were from http://compbio.mit.edu. ENCODE consortium data were
from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC and http://www.
broadinstitute.org/~anshul/projects/encode/rawdata/peaks_histone/mar2012/narrow/
combrep_and_ppr/ and for the ENCODE portal portion from https://www.
encodeproject.org/. 1000 Genomes Phase 3 data is available at ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/release/20130502/. Regulatory motif data is from http://compbio.mit.edu/
encode-motifs/matches-with-controls.txt.gz. Mouse ENCODE data were from http://
hgdownload.soe.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDnase/ and
http://hgdownload.soe.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDgf/.
Mutation rate estimates were from http://mutation.sph.umich.edu/hg19/. B-values were
from http://krishna.gs.washington.edu/download/CADD/v1.4/GRCh37/
annotationsGRCh37.tar.gz. Conservation state annotations and bases prioritized by
various variant prioritization scores were from https://github.com/ernstlab/ConsHMM/.
Segway Encyclopedia and FitCons2 scores used were from https://noble.gs.washington.
edu/proj/encyclopedia/caas.bed.gz and http://compgen.cshl.edu/fitCons2/hg19/H1/E999-
sco.bw, respectively. All other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files or from the
corresponding author upon reasonable request. Source data are provided with this paper.
A reporting summary for this Article is available as a Supplementary Information
file. Source data are provided with this paper.

Code availability
The CNEP software (v1.0) is available at https://github.com/ernstlab/CNEP. Liblinear
v.2.1, which is used by CNEP is available https://www.csie.ntu.edu.tw/~cjlin/liblinear/.
The STEM software (v1.3.11) used for GO enrichment analysis is available at http://sb.cs.
cmu.edu/stem/. The ChromHMM software (v1.13) used for computing state enrichments
is available from https://ernstlab.biolchem.ucla.edu/ChromHMM/. Scikit-learn (v.0.19)
used for the Random Forest comparison is available from https://scikit-learn.org/.
BEDTools (v.2.17) used for shuffling bed files is available from https://github.com/arq5x/
bedtools2. DeepSea was run through its web interface available at http://deepsea.
princeton.edu/job/analysis/create/.
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