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Abstract: The sludge-derived biochar is considered an effective emerging contaminants adsorbent for
wastewater treatment. In this paper, red mud and steel slag (RMSS) was used for improving sludge
dewaterability and enhancing the sludge-derived biochar adsorption capacity. X-ray diffraction
(XRD), Fourier transform infrared spectroscopy (FTIR), and a scanning electron microscope (SEM)
were employed to comprehensively characterize the mineral composition, functional group, and
morphology of the adsorbent. RMSS was able to improve the sludge dewatering performance by
providing a skeleton structure to promote drainage and Fe(IIl) to decrease the Zeta potential. The
dosage of 20 mg/g RMSS was able to reduce the specific resistance to filtration (SRF) and the Zeta
potential of sludge from 1.57 x 10'® m/kg and —19.56 mV to 0.79 x 103 m/kg and —9.10 mV,
respectively. The co-pyrolysis of RMSS and sludge (2:8) induced the formation of biochar containing
FeAl,O4 (PS80). The PS80 exhibited a large surface area (46.40 m?2/ g) and high tetracycline (TC)
removal capacity (98.87 mg/g) when combined with H,O, (PS80-H,0O,). The adsorption process
of TC onto PS80 and PS80-H,O, was well described by the pseudo-first-order and pseudo-second-
order kinetic model, indicating physisorption and chemisorption behavior. The results indicated
that co-pyrolysis of RMSS sludge PS80-H,O, could enhance the biochar adsorption capacity of
TC, attributable to the degradation by -OH generated by the heterogeneous Fenton reaction of
FeAl,O4 and H,O,, the release of adsorbed sites, and the improvement of the biochar pore structure.
This study proposed a novel method for the use of RMSS to dewater sludge as well as to induce
the formation of FeAl,Oy in biochar with effective TC removal by providing a Fe and Al source,
achieving a waste-to-resource strategy for the integrated management of industrial solid waste and
sewage sludge.

Keywords: FeAl,Oy; biochar; dewaterability; tetracycline; adsorption

1. Introduction

As the end-of-life product of the domestic sewage treatment process, sewage sludge
has had an increase in production year by year and contains a variety of pollution com-
ponents, which have attracted much attention [1]. At present, the disposal methods of
sludge are mainly landfilling, incineration, and pyrolysis [2]. Among them, landfilling
and incineration have a high risk of producing secondary pollution and cannot acquire
resource utilization [3]. Sludge pyrolysis can eliminate pollution components such as
pathogens and obtain biochar materials at the same time, so it is considered to have good
application prospects [4,5]. Sludge dewatering, as a treatment method before sludge is
transported out of the treatment plant, determines the water content of the sludge cake.
The water content of sludge cake treated by traditional dewatering methods is as high as
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approximately 80% [6], which is not conducive to subsequent pyrolysis disposal. In recent
years, scholars have studied various means, such as the use of microwave, hydrothermal,
and chemical conditioning, to achieve the deep dewatering of sludge [7-9]. Previous
studies have confirmed that steel slag and red mud can help improve sludge dewatering
performance [10-12], but there are few studies on the pyrolysis of sludge cake containing
large amounts of iron—-aluminum oxides.

The conversion of biomass to carbonaceous materials is being considered as an alterna-
tive to solid waste management [13]. Pyrolysis sludge biochar is often used to adsorb heavy
metals or organic pollutants, and it has also been acknowledged that iron-rich biochar can
catalyze H,O,, which triggers the Fenton or Fenton-like catalytic oxidative degradation
of various organic pollutants, especially antibiotics [14-16]. The iron-containing phase of
sludge-derived biochar is complicated. Apart from the generation of iron oxides with dif-
ferent valence states, iron forms ferrites with other elements during the thermal treatment
process [17,18]. Therefore, scholars have proposed that the catalytic effect of Fe-rich biochar
is mainly realized by heterogeneous Fenton induced by iron-bonded and homogeneous
Fenton-induced leached Fe?* from Fe-rich biochar [19,20]. The phase transformations of
Fe and Al compounds in sludge-derived biochar during sludge pyrolysis after adding
both Fe,O3 and Al,O3 were studied by Tao et al. [21], confirming that the FeAl,O4 phase
was formed in sludge biochar with a good level of catalytic performance. Heterogeneous
catalytic activities were also demonstrated in phenol degradation [22]. Red mud and steel
slag (RMSS) is rich in iron and aluminum and has the potential for being used in the
preparation of biochar containing FeAl,O,4 phase sludge, but there is little research on this.
Therefore, the objective of this experimental study was to characterize the effect of the blend
ratio of the RMSS and sewage sludge on the co-pyrolysis products and the adsorption
performance and mechanism of the hercynite-biochar.

In this study, steel slag modified by salicylic acid and red mud modified by citric
acid were used as conditioners to obtain sludge cake rich in iron-aluminum oxides after
dewatering. The influence of the proportion of steel slag and red mud in sludge cake on the
formation of the FeAl,O,4 phase was studied, and the formation mechanism was revealed
by combining the XRD quantitative analysis. In addition, the degradation of tetracycline by
H,0O; catalyzed by sludge biochar was studied, and the catalytic performance of FeAl,Oy
was confirmed. It is hoped that this study can provide guidance for the resource utilization
of sludge cake conditioned by steel slag and red mud.

2. Materials and Methods
2.1. Materials

The raw sludge (RS) was collected from the secondary sedimentation tank of the
municipal wastewater treatment plant in Anqing, China. The RS was subsequently stored
in a refrigerator at 4 °C before testing, and all the dewatering tests were completed within
one week. The following were the main characteristics of the sludge: moisture content (Mc),
96.33%, total solid (TS), 35,366.7 = 89.7 mg/L; volatile solid (VS), 11,575.0 & 45.1 mg/L;
pH value, 7.03 &+ 0.09; SRF, 1.57 + 0.0 9 x 1013 m/kg; Wc of dewatered sludge cake,
81.64 £ 0.71%. The steel slag (SS) was obtained from the Wuhan Iron and Steel Corporation
in China. The red mud (RM) originated from the Shan Dong branch of the Aluminum
Corporation of China and was a residue of bauxite treated using the Bayer process. The
chemical and mineral compositions of SS, RS, and RM were analyzed by X-ray fluorescence,
as shown in Table 1. C7H603 (AR, 99.50/0), C6H807-H20 (AR, 99.50/0), H202 (AR, 30 Wto/o),
and HCI (AR, 37%) were obtained from the Sinopharm Chemical Reagent Company, China.
Tetracycline standard compound (>95% purity) was obtained from the Aladdin Chemical
Company (Shanghai, China).
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Table 1. Main inorganic chemical compositions of RS, SS, and RM (wt %).
Constituents CaO MgO SiO; Fe, O3 Al,O3 MnO P,Os5
SS 41.09 19.40 15.68 12.21 6.36 2.36 1.10
RS 2.69 1.48 55.74 5.86 23.62 - 5.13
RM 0.96 0.17 15.33 36.21 25.21 0.03 0.16

2.2. Sludge Conditioning with Red Mud and Steel Slag

After drying and crushing, the red mud and steel slag were pretreated and screened
through 200 mesh to obtain the products under the sieve. The modified red mud was
obtained by adding 0.5 kg red mud powder into 1.5 L salicylic acid solution (0.034 mol/L)
and soaking for 10h; the modified steel slag was obtained by adding 0.8kg steel slag powder
into 1.5 L citric acid solution (0.034 mol/L) and soaking for 12 h. The modified red mud
and steel slag were freeze-dried in a vacuum and then mixed according to the mass ratio of
1:1 to obtain the conditioner RMSS. The sludge conditioning process refers to our previous
study [12], The dosage amounts of RMSS are 10, 20, 30, 40, and 50 mg/g of dry sludge (DS).
The specific resistance to filtration (SRF) and the water content of sludge cakes (Wc) were
used to evaluate the dewatering performance of the sludge. The Zeta potential and the
SEM analysis were used to further explain the conditioning mechanism, in which the zeta
potential was tested using a Malvern Zetasizer Nano ZS (Malvern Instruments Ltd., UK)
by collecting the supernatant of the sludge after centrifugation at 4500 rpm for 5 min before
the supernatant was collected and mixed with the sludge at a ratio of 9:1.

2.3. Preparation of Biochar Co-Pyrolysis of Sludge and Solid Wastes

The dewatering sludge cake was dried at 105 °C for 12 h. Then, the cake was ground
into a powder using a YXOM-0.4L planetary ball mill and screened through a 0.075 mm
screen. Then, RMSS was added to the five powder samples, the proportion of sludge mass
(DS) in the mixtures were 100%, 80%, 60%, 33%, and 0, respectively. The mixture was
ground again in a planetary ball mill at 400r/min for 1 h before pyrolysis. Pyrolysis was
performed in an SGL-1400C vacuum tube furnace; 2.0 g from the samples were placed in a
quartz boat with nitrogen as the carrier gas. The temperature was gradually increased to
900 °C at a rate of 10 °C/min and maintained for 2 h. Post cooling, the biochar products
(PS100, PS80, PS60, PS33, and PS0) were stored in a desiccator for further experiments.

2.4. Removal of Tetracycline

The degradation capacities of PS100, PS80, PS60, PS33, and PSO were characterized
by their removal efficiency for tetracycline. Each experiment was conducted by placing
0.08 g biochar at a mass ratio of 1:1 combined with H,O, in a glass bottle containing
200 mL tetracycline solution, with an initial concentration of 20 mg/L at 298 K on a shaker
at 200 rpm for 24h. Tetracycline removal was determined using an ultraviolet-visible
spectrometer at 356 nm [23]. The removal rate was calculated as follows:

11 =(Co — C)/Co, (1)

where C; and Cy (mg/L) represent the concentrations for tetracycline at time f and initially,
respectively.

2.5. Analysis Method
2.5.1. XRD Rietveld Refinement
The biochar powder extracted in inner fragments and blended with 50% CaF, by mass

was characterized by an XRD fine scan (D8 Advance, Karlsruhe, Germany) with a speed of
0.5° per 1 min. The crystal phases in biochar were calculated by MAUD software.
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2.5.2. FTIR Analysis

The surface functional groups of biochar before and after the sorption of TC were
tested with a Fourier transform infrared (FTIR) spectrometer in the 400-4000 cm™! range
(Spectrum 100, PerkinElmer Ltd., Bucks, UK).

2.5.3. Microstructure of Biochar

The microstructure of biochar was observed by scanning electron microscopy (SEM,
JSM-5610LYV, Electron Optics Laboratory, Tokyo, Japan) after coating with Au for 2 min at
15 mA and 1 mbar. The specific surface areas of the specimens were determined by the
Brunauer-Emmett-Teller (BET, BELSORP-mini, Osaka, Japan) method.

3. Results and Discussion
3.1. Sludge Dewatering Performance
3.1.1. Sludge Dewatering Performance after Conditioning with Solid Wastes

The dewatering performance values for the sludge samples conditioned with different
RMSS dosages are shown in Figure 1. Compared with RS, the SRF values for the five sludge
samples after RMSS conditioning decreased from 1.57 x 10" m/kg to 1.11 x 10'3 m/kg,
0.79 x 1013 m/kg, 0.75 x 10'3 m/kg, 0.68 x 10'> m/kg, and 0.63 x 10! m/kg, respectively.
This implies that the dewatering performance of the sludge was effectively improved.
When the RMSS dosage increased from 0 mg/g DS to 20 mg/g DS, the sludge dewatering
performance decreased significantly. With an increase in the dosage, the decreasing trend
becomes insignificant, indicating that excessive RMSS has little effect on the improvement
of the sludge dewatering performance. The change in the tendency of the Wc was similar to
that for the SRE. The water content values for the five sludge samples conditioned by RMSS
were 76.55 wt%, 71.01 wt%, 70.37 wt%, 69.59 wt%, and 67.27 wt%, respectively. When the
dosage was more than 20 mg/g DS, the decreasing trend for Wc became slow. When the
dosage level for the mud cake reached 50 mg/g DS, the Wc of the sludge cake reached
its lowest value, which may be caused by an increase in inorganic content in mud cake.
Therefore, in consideration of these findings and of the actual cost, the RMSS dosage of
20 mg/g DS was selected as the best choice.

Extracellular polymer is the most important factor affecting sludge dewatering perfor-
mance, and zeta potential is significantly related to extracellular polymer [24,25]. Moreover,
there is a strong correlation between SRF and zeta potential, which means that zeta potential
can better explain the change in sludge dewaterability [26]. The effects of the RMSS dosage
on the zeta potential are shown in Figure 1b. The Zeta potential of raw mud is -19.56 mV,
which is because there are numerous negatively charged substances in sludge flocs [27].
The existence of a negative charge in the sludge floc was a disadvantage to the flow of water,
resulting in poor sludge dewatering performance [28]. After RMSS conditioning with a
different dosage, the Zeta potential for each of the five samples decreased to —15.21 mV,
—9.10 mV, —8.35 mV, —7.22 mV, and —7.13 mV respectively. The results show that the
modified red mud and steel slag was able to effectively reduce the negative charge on the
surface of the sludge flocs. This is mainly because there are many iron oxides in red mud
and steel slag, which form Fe®" in the conditioning process and play a role in flocculation
and charge neutralization. In addition, the modified steel slag can bond with the O-H,
C=0, C=C, and N-H in the protein and polyaccharide of the sludge flocs, which reduces
the surface charge of the floc particles [29].
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Figure 1. The effects of the RMSS dosage on the conditioning of sludge: (a) SRF and Wc; (b) zeta
potential; SEM images of (c) raw sludge and (d) the conditioned sludge by RMSS (20% mg/g DS).

3.1.2. The Improvement Mechanism for Sludge Dewatering Performance

The microstructure of the sludge cake before and after conditioning is shown in
Figure 1c. The RS had a dense structure and almost no pore distribution on the surface,
indicating poor dewaterability. The flocculent structure of the RS was destroyed after being
conditioned by RMSS, forming a large granular structure. Next, some irregular massive
structure appeared, which acted as a skeleton structure in the extrusion dehydration process,
which is conducive to water removal. This is consistent with our previous findings [11].

3.2. Effect of Red Mud and Steel Slag Content on the Phase Composition of Sludge Biochar

XRD Rietveld refinement was conducted using Maud software. The relative quantities
of each mineral in the samples and their residues are shown in Figure 2. The contents of
Quartz and Hercynite in the biochar samples increased with the amount of SS and RM
added. The relative contents of the mineral products determined by Q-XRD analysis are
shown in Figure 2. The SIG value is close to 1.5 and Rwp < 10 s the fitting results were
significant and reliable [30].
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Hercynite is the main iron-containing mineral product in PS80 and PS100, and its
maximum content reached 4.31% in PS80. Ferric oxide may be reduced either with carbon
or with organics; therefore, PS80 yielded more Fe(Il) phase when compared with PS100.
Both Magnetite (Fe304) and Hematite (Fe;O3) phases in the pyrolysis products increased
significantly with the increasing SS and RM content, while the zero-valent iron was not
identified. According to the Fe content in the raw materials, there is a possibility that
amorphous Fe could exist in the pyrolysis products.

600-800°C

3Fey05+C 8C 2,0, + CO 2)
Fe304+AlL 03 %€ FeAl,O, + Fey05 3)
FeSiO;+AlL O3 "¢ FeAlL O, + SiO, )

FeO + ALO; *%%C FeAlL,O, (5)

The values of Gibbs free energy changes, AG®, were negative for reactions (3) and (4),
indicating that the reaction of iron-containing minerals with Al,O3 to form Hercynite could
proceed spontaneously.

3.3. Tetracycline Removal by Sludge Biochar
3.3.1. Tetracycline Removal with Different Sludge-Waste Content, Biochar Dosage, and pH

The effect of biochar with different sludge contents on TC degradation is shown in
Figure 3a. It can be seen that with the increase in sludge content in biochar, the degradation
efficiency presents a rising trend. The degradation efficiency of the PS80 sample reached
95% after 5 min and 99.1% after 20 min. This may be because when the sludge content is
low, it is difficult to form the FeAl,O, phase due to the insufficient reduction of gas in the
pyrolysis process. Compared with the PS80 sample, the degradation efficiency of PS100
for TC decreased, suggesting that the FeAl,O4 phase in pure sludge pyrolysis products
decreased. In other words, steel slag and red mud provide iron oxide and aluminum oxide
to form the FeAl,O4 phase during the co-pyrolysis process with sludge. This also indicates
that adding appropriate amounts of steel slag and red mud in the dewatering process can
not only help to improve the dewatering performance of sludge but also play an important
role in the formation of biochar with catalytic function.

The effect of different PS80 dosages on TC degradation efficiency is shown in Figure 3b.
With the increase of the dosage from 0.04 g/L to 0.20 g/L, the degradation efficiency was
significantly improved, and the degradation efficiency was nearly 99% at 10 min.

Figure 3c illustrates the effect of the different pH levels of solutions on the TC degra-
dation efficiency. The results indicate that acidic solution has little effect on degrada-
tion efficiency. With the decrease in pH levels from 6 to 1, the degradation efficiency
increased slowly, which may be due to the acidic environment promoting the dissolution
of a small amount of Fe?* from the Fe® and iron—carbon compound (Feg 95Cy g5), forming
a homogeneous reaction [21,28]. Moreover, the negatively charged biochar has an elec-
trostatic repulsion to anionic TC~ and TC?~ at high pH levels [31], leading to decreasing
sorption performance.
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Figure 3. The effect of (a) different sludge-derived biochar and (b) different dosages of PS80 and
(c) different initial pH on TC removal; (d) XRD patterns and (e) mineral constituents of different
sludge-derived biochar.

3.3.2. Tetracycline Removal Mechanism

To investigate the role of hercynite in biochar, the advanced oxidation effect of Fe-
containing phases on the removal efficiency of TC by PS80 and PS0 with H,O, or without
H,0O, was detected. A pseudo-first-order model (PFO), pseudo-second-order (PSO) model,
and intra-particle diffusion model (IP) were used for the clinical fitting of the data through
the linear form using Equations (6)—(8):

ln(Qe - Qt) =InQ, — kit (6)
t 1 t

o kEQ @

Qr = kst!/? (8)

where Q. (mg g~ !) and Q; (mg g~ ') are the amount of TC on PS80 at any time ¢ (min) and
equilibrium, respectively, and k; (min~1), k; (g:mg~'-min~'), and k3 (mg-g~!-min~1/?) are
the rate constants. Experimental data were fitted and the model parameters were listed in
Table 2. It could be observed that, for the PS80-H,O, sample, the coefficient of correlation
(R?) is higher for the PSO (R? = 1.0000) than for the PFO (R? = 0.9963). Conversely, the
R? values were higher for the PFO (R? = 0.9932) than for the PSO (R? = 0.9871) for the
PS80 sample. It indicates that the PSO was more appropriate for describing the adsorption
behavior of TC onto PS80-H,O,, and the PFO fit better for the adsorption behavior of TC
onto PS80. The PFO and PSO models describe the kinetics of the adsorption rate for liquid-
solid systems [32], which are based on the adsorption capacity of the solid. Therefore, the
uptake of TC onto PS80 is similar to the phenomenon of physisorption, while the uptake of
TC onto PS80 combined with HyO; is more similar to the chemisorption process.
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Table 2. Parameters from the kinetic modeling of Tetracycline on biochar.

Sample

Pseudo-First-Order Model

Pseudo-Second-Order Model

Weber Model

R?2 K; (min—1) Q.(mg-g—1) R? K> (g'mg~1-min-1) Q.(mg-g—1) R? K3 (g'-mg~1-min—1)
PS80-H,O, 09963  0.6467 98.87 1.0000 4.4258 100.13 ; ;

PS80 09932  0.1538 72.63 0.9871 0.1740 9115 - ;
PS80-H>02 9995 .1207 74.80 0.9982 0.0013 95.86 ; -
/scavenger
PS0-H,0, ; ; ; ; ; : 0.8985 0.0262

PSO ; ; ; ; ; ; 0.9340 0.0229

According to the fitting results, the equilibrium adsorption quantity Q. for PS80 with
H,0; (100.13 mg g~!) was much higher than for PS80 without H,O, (72.63 mg g~ 1),
implying a better adsorption performance for PS80-H,O,. It was demonstrated that the
Fe/Al atoms in the [FeZ"-Al3*] unit on the surface of the FeAl,O, phase could react with
H,0; to produce the -OH and OH™ group. It is noted that the uptake of TC onto PS80-H,O,
is also a physisorption-controlled reaction, since the diffusion process of the TC reaching
the surface pore of the biochar is slower than the homogeneous Fenton reaction between
the adsorbed TC and the -OH generated from the surface of biochar.

As shown in Figure 4, the removal capacity of TC by PSO with or without H,O,
differences in the TC removal efficiency is not significant, mainly due to the main Fe-
containing phases Hematite and Magnetite in the PSO presented in Figure 3d,e. The IP
fitted quite well for the TC removal process by PS0 and PS0-H,O,, indicating that the film
diffusion process was the main rate-controlling mechanism for this adsorption system at
0-25 min; it involves the slow movement of the TC from the boundary layer to the RMSS
bend’s surface. As can be seen in Table 2, the TC removal rates for PSO and PS0-H,O, were
approximately equal. This means that there was no obvious Fenton reaction that occurred
in the PSO groups.

100 _ ]
~~ +H202
en
ED 80+ H,0,/scavenger+
=
g
§ 60-
g A PS80/H,0,
: ¢ PS80
2 40+ N
g PS0/H,0,
% & PSO
:‘? ®  PS80/H,0,/scavenger
£ 20
] A 4
=.{2:-_~_ .......... g
0+ : . | |
0 8 10 15 0 1
time (min)

Figure 4. TC removal capacity by PS80 and PSO with and without H,O,.

The chemical and mineralogical compositions of varieties of sludge are reported in
Table 3. The alumina content was increased with the increase in sludge amounts, and
the iron content was decreased at the same time, due to the high Al and the low Fe
content in the sludge. The Al,O3;/Fe;O3 value in PS80 was 2.314, which is quite close to
the Al/Fe stoichiometric ratio of FeAl,O4 and occurs in much higher FeAl,O4 content
levels in the biochar.
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Table 3. Chemical Composition and Firing Behavior of red mud-steel slag-sludge.

PSO PS33 PS60 PS80 PS100

ALO; 0.1579 0.1837 0.2049 0.2205 0.2362
Fe,O; 0.2421 0.1815 0.1320 0.0953 0.0586
K* 0.5052 0.9708 0.5415 0.3265 0.1635
A/F 0.6520 1.0119 1.5520 2.3141 4.0307
yields 0.9876 0.9202 0.8844 0.8215 0.7730
BET (m2/g) 436 28.66 40.17 46.40 37.52

* K=FeyO3 + MgO + CaO + NayO + KzO/(A]zOg + Si04).

According to the waste materials bloating theory proposed by Riley, the silica and alumina
and the fluxing content (i.e., the sum Fe;O3 + MgO + CaO + NayO + K;0) could be used to pre-
dict the bloating attitude [33]. The value of Fe;O3 + MgO + CaO + NayO + K,O/ (Al O3 + SiOy)
ratio (K) decreased with the increase in the sludge amounts and was inversely proportional with
the expansion. SEM observations demonstrated a good pore structure in the PS80 compared
with the PSO (Figure 5). Both samples showed a coacervate that was loose, sponge-like, and
permeated with flaky minerals. The coacervate in PS80 was made up of smaller sized particles;
most pores had diameters of less than 100 nm. These features could explain the higher removal
efficiency of TC by PS80.

Figure 5. SEM of biochar (a) PSO and (b) PS80.

PS80 had a better pore structure; biochar could absorb the TC, and then the TC on
the biochar surface would be degraded by the FeAl,O, through the heterogeneous Fenton
reaction. Research shows that heterogeneous Fenton reactions initiated by the bound iron
phases (Fe304 and FeAl,O4) on the surface of the biochar could increase the amount of
radical hydroxyl radical (-OH) generation. To confirm the role of the -OH on the adsorption,
4 mM tertiary butanol (TBA) was added in the PS80-H,O, sample as the free radical
scavenger. As can been seen in Figure 4, there were no significant differences between the
adsorbing capacity of the PS80 and the PS80-H,O, /scavenger. Furthermore, the PFO fitted
the experimental data well when compared with the PSO (Table 2), indicating that the
adsorption behavior of TC onto the PS80-H,O, /scavenger was back to the physisorption
when the -OH was scavenged by TBA. The mutual promotion effect of FeAl,O4/biochar for
TC removal in this research can be concluded to be as the graphical abstract depicted. The
adsorption of TC by biochar could reduce the diffusion distance between -OH and TC, thus
enhancing the heterogeneous Fenton reaction rate. On the other hand, the degradation of
TC by FeAl,Oy4 released the adsorption sites on the biochar surface and was thus beneficial
to the heightening of the adsorption capacity of biochar. The Al,O3/Fe;O3 value and the
micro-nano pore structure play a key role in this process.
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To reveal the mechanisms involved in the TC removal process, FTIR analyses of the
PS80 before and after sorption of TC at 25 min with H,O, (PS80-H,O,-TC) and without
H,0O; (PS80-TC) were performed and are shown in Figure 6. Functional groups of PS80,
PS80-TC, and PS80-H;O,-TC are presented in Table 4. As can be seen in the depiction
of the waste and sludge-derived biochar PS80, the strong peak located at 1043 cm ! was
assigned to C—-O-C stretching vibration and Si-O bonds, which are found in most silicon-
rich solid wasted-derived biochar [34]. The bands around 794 cm ™!, 775 cm ™!, and 598
cm ! corresponded to the Al-O bending vibration and Fe-O bending vibration, indicating
the formation of Fe oxides or Fe-O/Al-O complexes on the surface of the biochar during
the pyrolysis process.

3428 1600 1043 794 598 469
988 {775 564

2517

2463

26485
—— PS80

——PS80+TC
PS80+H,0,+TC

I | | |
4000 3600 3200 2800 2400 2000 1600 1200 800 400
Wave number (cm™)

Figure 6. FTIR spectra of the PS80, PS80+TC, and PS80+H,O,+TC samples.

Table 4. Functional groups of biochar before and after TC sorption.

Wave Number (cm—1) Assignment
PS80 PS80-TC PS80-H,0,-TC
3428 3428 3428 -OH stretching
2648
2463
2517
1625 stretching vibration of -OH
1600 C=0bond in the TC [35]
1428
1043 1043 C-O-C stretching vibration [31] and Si-O bonds
988
794 794 Al-O bending vibration
775 775 Al-O bending vibration
598 Fe-O bonds
564 564 Fe-O bending vibration [36,37]
469 469 469 Si-O-Si bonds
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For the PS80-TC sample, the bands appearing at 1600 cm~! could be assigned to the
C=O0 stretching at ring A in TC. Compared to PS80, the peaks at 2648 cm ! and 2463 cm™!
disappeared in PS80-TC and there were no other peak shifts, indicating that TC was bound
to the PS80 surface controlled by physical adsorption. In PS80-H,O;-TC, the peaks of
1600 cm !, 1043 cm ™1, and 564 cm ! shifted to 1625 cm 1, 988 cm !, and 598 ecm 1,
indicating that C=O containing functional TC and Fe-O groups in PS80 may participate in
the adsorption process. The comparison of the removal capacity for TC with other materials
shows the obvious advantages of PS80 (Table 5), indicating a good application prospect.

Table 5. Comparison of the removal capacity for TC with other materials reported in the literature.

Materials Cp (mg/L) Removal Rate (%) References
PFSC-900/PMS 40 90.10 [38]
MBC 20 98.70 [39]
g-C3Ny4/BC/BipsFeOyg 20 92.20 [40]
MKBC 50 84.15 [41]
MPBC 20 98.77 [42]

PS80 40 99.10 This study

4. Conclusions

In this study, a micro-nano pore structure biochar (PS80) derived from the co-pyrolysis
of RMSS and sludge was synthesized, and its TC removal mechanism was clarified. In-
deed, the sludge dewatering performance was improved after conditioning with RMSS,
contributing to the destruction of the flocculent structure of sludge and the provision of
a porous skeleton structure and Fe®* by weak acid-modified RMSS. The presence of the
FeAl,O4 phase in the co-pyrolysis biochar was confirmed by QXRD and FTIR. Biochar
PS80, produced by a co-pyrolysis comprising 20% RMSS and 80% sludge, has a maximum
TC removal efficiency of 99.1% combined with H,O, at a TC dosage of 40 mg/L, a 25 min
contact time, and a temperature of 25 °C. The removal process fits the pseudo-second-order
kinetics model, suggesting that the process was controlled by chemisorption; the movement
of the TC from the liquid phase onto the PS80 without H,O, was found to be a physisorp-
tion process. The relevant adsorption mechanism is as follows: (1) The RMSS changes the
Fe/Al and the Fe;O3 + MgO + CaO + NayO + K,O/(Al,O3 + SiOy) ratio of the blend to
within a suitable range, thus inducing the formation of FeAl,Oy in the biochar. (2) Anionic
TC~ and TC?~ enters the biochar pores to deposit on the surface of the adsorbent at a pH
level from 2 to6. (3) FeAl,Oy4 on the surface of the biochar increases the amount of -OH
generation to degrade the TC. (4) The degradation of TC by FeAl,O4 releases the adsorption
sites on the biochar surface, heightening the adsorption capacity of biochar. We propose
that RMSS-sludge-derived biochar can be used as a cost-effective adsorbent to remove TC
from wastewater.
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