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ABSTRACT

Research in the genomic sciences is confronted
with the volume of sequencing and resequencing
data increasing at a higher pace than that of data
storage and communication resources, shifting a
significant part of research budgets from the
sequencing component of a project to the compu-
tational one. Hence, being able to efficiently store
sequencing and resequencing data is a problem of
paramount importance. In this article, we describe
GReEn (Genome Resequencing Encoding), a tool
for compressing genome resequencing data using
a reference genome sequence. It overcomes some
drawbacks of the recently proposed tool GRS,
namely, the possibility of compressing sequences
that cannot be handled by GRS, faster running
times and compression gains of over 100-fold for
some sequences. This tool is freely available
for non-commercial use at ftp://ftp.ieeta.pt/�ap/
codecs/GReEn1.tar.gz.

INTRODUCTION

Inspired by the Biocompress algorithm of Grumbach
and Tahi (1), the last two decades have witnessed the
proposal of a myriad of algorithms for compressing
genomic sequences [(2–16) for a recent review].
The acquired knowledge regarding genome structure
that these compression algorithms have been providing,
through their representation of genomic sequences
using probabilistic models, is likely to surpass in relevance
the benefits of the effective storage space reduction
provided.

One of the most successful compression algorithms spe-
cifically designed for genomic sequences is XM, a statis-
tical method proposed by Cao et al. (14), though other
approaches may present competitive or even superior
results for some classes of genomes (15,17). XM relies
on a mixture of experts for providing symbol by symbol
probability estimates that are fed to an arithmetic encoder.

The XM algorithm comprises three types of experts:
(i) order-2 Markov models; (ii) order-1 context Markov
models, i.e. Markov models that rely on statistical infor-
mation from a recent past (typically, the 512 previous
symbols); (iii) the copy expert, which considers the next
symbol as part of a copied region from a particular offset.
The probability estimates provided by the set of experts
are then combined using Bayesian averaging and sent to
the arithmetic encoder.
Common practice continues to rely on standard and

general purpose data compression methods, e.g. gzip or
bzip2. However, this practice may be close to a turning
point, as the rate at which genomic data is being produced
is clearly overtaking the rate of increase in storage
resources and communication bandwidth.
The development of high-throughput sequencing

technologies that offer dramatically reduced sequencing
costs enables possibilities hardly foreseeable a decade
ago (18). Large-scale projects such as the 1000 Genomes
Project (http://www.1000genomes.org/) and The Cancer
Genome Atlas (http://cancergenome.nih.gov/), as well as,
prizes that reward cheaper, faster, less prone to errors and
higher-throughput sequencing methodologies (e.g. http://
genomics.xprize.org/) are paving the way to individual
genomics and personalized medicine (19). As such, huge
volumes of genomic data will be produced in the near
future. However, as a very significant part of the
genome is shared among individuals of the same species,
these data will be mostly redundant. Some ideas for
storing and communicating redundant genomic data
have already been put forward, based on, for example,
single nucleotide polymorphism (SNP) databases (20), or
insert and delete operations (21).
Recently, Wang et al. (22) proposed a compression tool,

GRS, that is able to compress a sequence using another
one as reference without requiring any additional infor-
mation about those sequences, such as, a reference SNPs
map. The algorithm proposed by Kuruppu et al. (23)
RLZ, is also able to perform relative Lempel–Ziv com-
pression of DNA sequences, though its current implemen-
tation cannot fully handle sequences that have characters
outside the {a,c,g,t,n} set.
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Other approaches propose encoding sequence reads
output by massively parallel sequencing experiments
(24–27), which is also a very important problem. The com-
pression of short reads shares some points with the
problem being addressed here, though it needs to cope
with other requirements, such as, the efficient representa-
tion of base calling quality information.
In this article, we describe GReEn (Genome Resequenc-

ing Encoding), a new tool for compressing genome
resequencing data using a reference genome sequence.
As such, it addresses the same problem as GRS (22),
RLZ (23) or XM (14). However, as will be demonstrated,
GReEn outperforms GRS in storage space requirements
and running times, though GRS can handle some se-
quences in a very effective way, and it overcomes RLZ’s
and XM’s lack of support for arbitrary alphabets and
inferior performance.
GReEn is a compression tool based on arithmetic

coding that handles arbitrary alphabets. Its running time
depends only on the size of the sequence being com-
pressed. Moreover, it provides compression gains of over
100-fold for some sequences, when compared to GRS, and
even larger gains when compared to RLZ. Finally, GReEn
handles without restriction sequences that cannot be
compressed with GRS due to excessive difference to the
reference sequence.

MATERIALS AND METHODS

Dataset

We use the same data as in (22), for ease of comparison
with GRS: two versions of the first individual Korean
genome sequenced, KOREF_20090131 and KOREF_
20090224 (28); two versions of the genome of the thale
cress Arabidopsis thaliana, TAIR8 and TAIR9 (29,30);
and two versions of the rice Oryza sativa genome,
TIGR5.0 and TIGR6.0 (31). We also present results for
four additional human genome assemblies, namely, the
genome of J. Craig Venter referred to as HuRef (32), the
Celera alternate assembly referred to as Celera (33),
the genome of a Han Chinese individual referred to as
YH (34), and the human genome reference assembly
build 37.p2, as made available by the National Center
for Biotechnology Information and referred to as
NCBI37 (35).

Software availability

The codec (encoder/decoder) is implemented in the
C programming language and is freely available for
non-commercial purposes. It can be downloaded at
ftp://ftp.ieeta.pt/�ap/codecs/GReEn1.tar.gz.

The compression method

As with GRS (22), GReEn relies on a reference sequence
for compressing the target sequence. The reference
sequence is generally only slightly different from the
target sequence, although this is not mandatory. In fact,
it is possible to use a sequence from a different species as
reference, though, as expected, the compression efficiency

depends on the degree of similarity between both reference
and target sequences. Moreover, in order to recover
the target sequence, the decoder needs access to exactly
the same reference sequence as that used by the encoder.

The codec developed in GReEn is able to handle arbi-
trary alphabets, although it automatically ignores all lines
beginning with the ‘>’ character, as well as, all newline
characters. We denote by C ¼ fc1; c2; ; cjCjg the set of all dif-
ferent characters, or symbols, that are found in the target
sequence, where jCj denotes the number of elements in C,
i.e. the alphabet size.

Each character of the target sequence is encoded by an
arithmetic encoder (36). As with any arithmetic encoder,
besides the symbol to encode, it is necessary to provide the
probability distribution of the symbols. One major advan-
tage of arithmetic coding is its ability to adjust the prob-
abilistic model as the encoding proceeds, in response to
the changing probability distribution from one encoded
symbol to the next.

We denote by �(c) the relative frequency of character
c 2 C in the target sequence, and by Pn(c) the estimated
probability of character c 2 C when encoding the character
at position n in the target sequence. The set of
probabilities fPnðcÞ; c 2 Cg are passed down to the arith-
metic coder. Note that, whereas �(c) values are fixed for a
given target sequence, Pn(c) values usually change along
the coding process. For a sequence xN ¼ x1x2xN; xi 2 C,
with N characters, the arithmetic coder produces a bit-
stream with

�
XN
n¼1

log2 PnðxnÞ ð1Þ

bits, which demonstrates the importance of providing
good probability estimates to the arithmetic coder.

The probability distribution, Pn(c), can be provided by
two different sources: (i) an adaptive model (the copy
model) which assumes that the characters of the target
sequence are an exact copy of (parts of) the reference
sequence; (ii) a static model that relies on the frequencies
of the characters in the target sequence, i.e. �(c). The
adaptive model is the main statistical model, as it allows
a high compression rate of the target sequence, particu-
larly in areas where the target and reference sequences are
highly similar. However, this adaptive, or copy, model will
at times not be used (the reasons why will be detailed
shortly), and the static model will act as a fallback mech-
anism, feeding the arithmetic coder with the required
probability distribution.

The copy model

The copy model is inspired by the copy expert of the XM
DNA compression method (14), relying on a pointer to a
position in the reference sequence that has a ‘good chance’
of containing a character identical to that being encoded.
As encoding of the target sequence proceeds, the pointer
associated with the copy model may be repositioned to
different locations of the reference sequence. When this
repositioning occurs, all parameters of the model are
reset. Besides accounting for the number of times, tn,
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that the copy model was used after the previous repos-
itioning, two more counters are maintained: h1n stores the
number of times the model guessed the correct character
including the correct case (uppercase or lowercase), and
h2n records the number of times the model guessed the
character but failed the case (for example, it guessed ‘A’
but the correct character was ‘a’).

Figure 1 exemplifies the operation of the copy model.
Consider the most recent repositioning occurred at
position 341 587 of the reference sequence, corresponding
to position 327 829 of the target sequence (in this example,
the reference is ahead of the target, but this may be dif-
ferent in other cases). Assuming the codec is going to
compress the character marked with ‘?’, then the character
predicted by the copy model would be ‘G’ (the one under
the ‘Current position’ arrow), with tn=12, h1n ¼ 5 and
h2n ¼ 6. The characters linked by the dashed arrow
indicate a prediction error (the predicted character was
‘A’, whereas the correct one was ‘G’).

Computing the probabilities. Let us denote by p1n the char-
acter predicted by the copy model (‘G’ in the example in
Figure 1) and by p2n the case converted p1n (‘g’ according to
the example in Figure 1). If p1n; p

2
n 2 C (note that characters

of the reference sequence that do not appear in the target
sequence do not belong to C), the probabilities that are
passed down to the arithmetic coder are given by

PnðcÞ ¼

h1n þ 1

tn þ 3
; for c ¼ p1n

h2n þ 1

tn þ 3
; for c ¼ p2n

1� Pnðp
1
nÞ � Pnðp

2
nÞ

1� �ðp1nÞ � �ðp
2
nÞ

�ðcÞ; for c 6¼ p1n; p
2
n:

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

The first two branches of Equation (2) correspond to
Laplace probability estimators of the form

PðEkÞ ¼
NEk þ 1

XK
k¼1

NEk þ K

; Ek � C; ð3Þ

where the Eks form a set of K collectively exhaustive and
mutually exclusive events, and NEk denotes the number of
times that event Ek has occurred in the past. In Equation
(2) we considered three events, namely, E1 ¼ fp

1
ng,

E2 ¼ fp
2
ng and E3 ¼ C n fp

1
n; p

2
ng. The third branch of

Equation (2) defines how the probability assigned to
E3, i.e. 1� PðE1Þ � PðE2Þ, is distributed among the indi-
vidual characters of E3. This distribution is proportional
to the relative frequencies of the characters, �(c), after
discounting the effect of treating p1n and p2n differently.
If only p1n or p2n belongs to C, the probabilities are

given by

PnðcÞ ¼

hþ 1

tn þ 2
; for c ¼ p

1� PnðpÞ

1� �ðpÞ
�ðcÞ; for c 6¼ p

;

8>><
>>:

ð4Þ

where h ¼ h1n if p ¼ p1n, or h ¼ h2n if p ¼ p2n. As such,
we have considered only two events, namely, E1 ¼ fpg
and E2 ¼ C n fpg, where the distribution of probabilities
among the characters of E2 is performed as before.
Finally, if both p1n; p

2
n 62 C, the probabilities communi-

cated to the arithmetic coder are the character frequencies
of the target sequence, i.e.

PnðcÞ ¼ �ðcÞ: ð5Þ

Starting and stopping the copy model. Typically, the codec
starts by constructing a hash table with the occurrences
and corresponding positions in the reference sequence of
all k-mers of a given size (the default size is k=11, but it
can be changed using a command line option). Figure 2
shows an example where k=8 and k-mers ‘CTNANGTC’
and ‘AAAGTTGG’ have been mapped by the hashing
function into the same index (index 4 529 821). As usual
in hashing schemes, disambiguation is achieved by direct
comparison of the k-mers that originated the index, which
have to be stored in the data structure in order to be
compared. Using the hash table, it is easy to find in the
reference sequence the characters that come right after all
occurrences of a given k-mer.
Before encoding a new character from the target

sequence, the performance of the copy model, if in use,
is checked. If tn � h1n � h2n > mf, where mf is a parameter
that indicates the maximum number of prediction failures
allowed, the copy model is stopped. The default value for
mf is zero, but this may be changed through a command
line option.
Following this performance check, if the copy model is

not in use, an attempt is made to restart the copy model
before compressing the character. This is accomplished by
looking for the positions in the reference sequence where
the k-mer composed of the k-most-recently-encoded char-
acters occurs. If more than one position is found, the one
closest to the encoding position is chosen. If none is found,
the current character is encoded using the static model and
a new attempt for starting a new copy model is performed
after advancing one position in the target sequence.

341 587

GGATAGGTAacgGTATTcct?

327 829

... ...
Target

Reference

GGATAGGTAACGATATTCCTG ......

Current position

Figure 1. The copy model. In this example, the copy model was re-
started at position 341 587 of the reference sequence, corresponding
to position 327 829 of the target sequence. Since then, it has cor-
rectly predicted 5 characters, if the case is considered, and a total of
11 characters if the case is ignored. The dashed arrow indicates a failed
prediction. According to this example, the next character to be pre-
dicted is ‘G’.
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Special case for equal size sequences. When the reference
and target sequences have the same size, the codec
assumes that both sequences are aligned. Therefore,
whenever the copy model is restarted, it is forced to use
the current encoding position as reference. This avoids
constructing the hash table, hence, increasing the codec
speed and generally producing better results. However,
this mode of operation may be overridden by a
command line option, as it may lead to poor performance
for same-sized sequences that are not aligned.

RESULTS

We compare the performance of the method proposed
here, GReEn, to the performance of GRS (22), the most
recently proposed approach for compressing genome
resequencing data that handles sequences drawn from
arbitrary alphabets. We also include results of the RLZ
algorithm (23) for some sequences, due to its restriction to
sequences drawn from the alphabet {a, c, g, t, n}.
Tables 1–3 present both the number of bytes produced

and the time taken by the respective methods for com-
pressing the sequences used in (22). The results regarding
both the GRS and RLZ methds have been obtained using
the software publicly provided by the authors. All experi-
mental results were obtained using an Intel Core i7-2620M
laptop computer at 2.7 GHz with 8 GB of memory and
running Ubuntu 11.04. The best results are highlighted
in boldface.
Table 1 displays the compression results for the TAIR9

version of the thale cress genome using the TAIR8 version
as reference. Globally, GReEn required 6559 bytes for
storing the sequences, whereas GRS needed a little more
(6644 bytes). While GReEn took 48 s to encode the data,
GRS needed only 28. Therefore, in this case, GRS is
equivalent to the proposed method in terms of storage
space, but faster.
Table 2 displays the compression results for the

TIGR6.0 version of the rice genome using the TIGR5.0
version as reference. In this case, the outcome varies dra-
matically to the previous results (Table 1). The first

significant difference can be observed in both the com-
pressed size and compression time of chromosome
1 : 1 502 040 bytes in 708 s using GRS versus 4972 bytes
in 18 s (more than a 300-fold improvement) using
GReEn. A similarly significant difference can be
observed in chromosome 11 (with a gain of over
160-fold). Globally, GRS required 4 901 902 bytes and
2290 s, whereas GReEn was able to store the entire
genome in just 125 535 bytes (39-fold improvement)
using only 123 s of computing time.

The main conclusion from these results is that, under
certain conditions not yet investigated, GRS fails to find
large-scale similarities between the two sequences.
Therefore, the number of bytes generated is much larger
than necessary and, probably as a consequence, the
running time explodes. Moreover, when the target
sequence is exactly equal to the reference sequence (as in
chromosomes 6, 9 and 12), the GRS reports a number of
bytes that is essentially zero [in (22) they are shown as
zero, although we opted to display the number of bytes
effectively used], while GReEn uses a few hundred bytes.
However, if critical, this could be easily reduced to almost
zero using a sequence comparison before starting encoding

... CTNANGTC GGATAGGT CTNANGTC AAAGTTGG

681 789341 587 900 812

... ... ... ...

CTNANGTC AAAGTTGG

GGATAGGT

231 568
681 789

900 812

341 587
8 721 311

4 529 821

...
...

...

231 568

Figure 2. Data organized in a hash table.

Table 1. Arabidopsis thaliana genome: compression of TAIR9 using

TAIR8 as reference

Chr jCj Size GRS GReEn

Bytes Secs Bytes Secs

1 11 30 427 671 715 7 1551 13
2 11 19 698 289 385 4 937 8
3 10 23 459 830 2989 6 1097 9
4 7 18 585 056 1951 5 2356 7
5 5 26 975 502 604 6 618 11
Total – 119 146 348 6644 28 6559 48

Size of the compressed target sequences (in bytes) and corresponding
compression time (in seconds). The original sequence alphabets have
been preserved. The jCj column indicates the size of the alphabet of the
target sequence.
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(note that, due to the requirement that the probabilities
communicated to the arithmetic coder should be repre-
sented as integers, a lower bound exists in the minimum
number of bits that can be generated in each coding step).

Table 3 displays the compression results for the
KOREF_20090224 version of the human genome using
the KOREF_20090131 version as reference. In this case,
GReEn gives consistently better results, both in terms of
storage requirements and computing time. In fact, this
latter aspect deserves a special note because contrarily to
GRS, the running time of GReEn varies linearly with the
size of the sequence. Therefore, GReEn allows for an a
priori good estimate of the time that is required to
compress a given sequence.

Besides considering the datasets in (22), we also inves-
tigate four human genome assemblies, in order to provide
a more comprehensive comparison of both GRS and
GReEn compression approaches. However, our intention
fell short because GRS failed to compress most of the
sequences due to an excessive difference between the ref-
erence and target sequences. Table 4 displays the results
obtained when the YH genome was compressed using
KOREF_20090224 as reference. It is clear that GRS
gave unacceptable results, both regarding the size of the
compressed sequences and the time required to compress
them, for the few chromosomes that could be compressed
with GRS.

Table 5 displays the compression results, using GReEn,
for four different human genome assemblies (HuRef,
Celera, YH and KOREF_20090224) using the NCBI37
version as reference. As this article is about sequence com-
pression, not sequence analysis, we refrain from elaborat-
ing too much on the differences observed. Nevertheless,
we hint at what we believe may be possible explanations.
First, the HuRef and Celera assemblies are not
resequencing assemblies and this, per se, accounts for

greater compression differences with respect to the refer-
ence assembly.
The HuRef assembly is an individual genome sequenced

with capillary-based whole-genome shotgun technologies
and de novo assembled with the Celera Assembler. Hence,
this assembly is the farthest apart (i.e. with a larger
number of bytes required for its compression) from the
reference NCBI37 assembly.
The Celera assembly represents one of the two pioneer-

ing efforts in sequencing a human genome. Its consensus
sequence is derived from the genomes of five individuals
using a capillary-based whole-genome shotgun sequencing
approach. Unlike the reference assembly generated by the
International Human Genome Sequencing Consortium
(here represented in the NCBI37 assembly), which used
a clone-based hierarchical shotgun strategy that is more
likely to output a high-quality finished genome sequence
as the sequence assembly is local and anchored to the
genome, the Celera Genomics Sequencing Team opted
for a whole-genome shotgun strategy where sequence
contigs and scaffolds must be individually anchored to
the genome, rendering assembly more complex and more
prone to long-range misassembly. Moreover, this whole-
genome shotgun assembly resulted from a combined
analysis of the genomic data generated by the Celera
Genomics Sequencing Team and some data generated
by the International Human Genome Sequencing

Table 3. Homo sapiens genome: compression of KOREF_20090224

using KOREF_20090131 as reference

Chr Size GRS GReEn

Bytes Secs Bytes Secs

1 247 249 719 1 336 626 222 1 225 767 32
2 242 951 149 1 354 059 230 1 272 105 31
3 199 501 827 1 011 124 165 971 527 26
4 191 273 063 1 139 225 193 1 074 357 25
5 180 857 866 988 070 173 947 378 23
6 170 899 992 906 116 146 865 448 22
7 158 821 424 1 096 646 167 998 482 20
8 146 274 826 764 313 125 729 362 19
9 140 273 252 864 222 134 773 716 18
10 135 374 737 768 364 122 717 305 17
11 134 452 384 755 708 119 716 301 17
12 132 349 534 702 040 114 668 455 17
13 114 142 980 520 598 87 490 888 15
14 106 368 585 484 791 81 451 018 14
15 100 338 915 496 215 79 453 301 13
16 88 827 254 567 989 91 510 254 11
17 78 774 742 505 979 81 464 324 10
18 76 117 153 408 529 71 378 420 10
19 63 811 651 399 807 62 369 388 8
20 62 435 964 282 628 48 266 562 8
21 46 944 323 226 549 40 203 036 6
22 49 691 432 262 443 41 230 049 6
M 16 571 183 1 127 1
X 154 913 754 3 231 776 500 2 712 153 20
Y 57 772 954 592 791 96 481 307 7

Total 3 080 436 051 19 666 791 3,188 17 971 030 396

Size of the compressed target sequences (in bytes) and corresponding
compression time (in seconds). The original sequence alphabets have
been preserved. The size of the alphabet in the target sequence is 21 for
all chromosomes, except for the M chromosome where it is 11.

Table 2. Oryza sativa genome: compression of TIGR6.0 using

TIGR5.0 as reference

Chr jCj Size RLZ GRS GReEn

Bytes Secs Bytes Secs Bytes Secs

1 5 43 268 879 185 715 35 1 502 040 708 4 972 18
2 5 35 930 381 210 295 28 1 409 5 1 906 14
3 6 36 406 689 – – 47 764 28 17 890 15
4 5 35 278 225 175 663 27 36 145 20 6 750 14
5 5 29 894 789 120 625 21 6 177 5 5 539 12
6 5 31 246 789 61 038 23 14 4 482 2
7 5 29 696 629 167 822 21 4 067 8 2 448 12
8 5 28 439 308 109 608 20 118 246 43 9 507 11
9 5 23 011 239 44 953 16 14 4 366 2
10 9 23 134 759 – – 788 542 339 60 449 9
11 11 28 512 666 – – 2 397 470 1 122 14 797 12
12 5 27 497 214 53 714 19 14 4 429 2

Total – 372 317 567 – – 4 901 902 2 290 125 535 123

Size of the compressed target sequences (in bytes) and corresponding
compression time (in seconds). The original sequence alphabets have
been preserved. The jCj column indicates the size of the alphabet of the
target sequence. The missing RLZ values correspond to sequences with
characters that cannot be handled by the current implementation of
this algorithm.
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Consortium, hence, it has been claimed that this Celera
assembly is not a totally independent human genome
assembly (37). We believe this may be part of the explan-
ation for the smaller compression values in Table 5 with
respect to this assembly, than those of the HuRef
assembly.
The YH assembly is an individual genome based on

resequencing data from massively parallel sequencing
technologies and assembled with the Short Oligonucleo-
tide Alignment Program, using the NCBI human genome
assembly as reference. Essentially, it is a map of SNPs with
respect to the reference assembly, hence it displays very
low compression values in Table 5.
The KOREF_20090224 assembly is also an individual

genome based on resequencing data from massively
parallel sequencing technologies and assembled with the
Mapping and Assembly with Qualities program, using the
NCBI human genome assembly as reference. As with the
YH assembly, resequencing renders the resulting assembly
very redundant with respect to the reference (NCBI37)
assembly, hence also displaying very low compression
values in Table 5.
The compression values for chromosome 19 in the YH

and KOREF_20090224 assemblies are unexpectedly high.
This chromosome has the highest GC content (48.4%)
and the lowest (median) sequence depth (28-fold) in the
YH genome (34), hence constraining the quality of the

final sequence. Not surprisingly, chromosome 19 in the
YH genome has a very large number (more than twice
those of the reference NCBI37 assembly) of unsequenced
bases (‘N’ symbols in our encoding). Chromosome 19 in
the KOREF_20090224 assembly faces the same hurdles,
which we assume to be a consequence of the similar
sequencing methodology.

Finally, Table 6 displays again the compression results
for the KOREF_20090224 version of the human genome
using the KOREF_20090131 version as reference.
However, for allowing the comparison of GReEn to
GRS and RLZ on a larger genome, we converted the se-
quences to the {a,c,g,t,n} alphabet.

DISCUSSION

The GRS tool recently introduced by Wang et al. (22) for
compressing DNA resequencing data using a reference
sequence allows to significantly reduce data storage
space requirements. However, this tool seems to be effect-
ive only when the target sequence is very similar to the
reference sequence, preventing the compression of many
sequences of interest. Moreover, as we have shown, for
example, in chromosomes 1 and 11 of the TIGR6.0
version of the rice genome, it may fail to give reasonable
results even for similar sequences. Another drawback of
GRS is that the encoding time does not depend only on

Table 4. Homo sapiens genome: compression of YH using

KOREF_20090224 as reference

Chr Size GRS GReEn

Bytes Secs Bytes Secs

1 247 249 719 – – 2 349 124 22
2 242 951 149 – – 2 420 007 22
3 199 501 827 17 410 946 2879 1 730 477 18
4 191 273 063 – – 1 877 056 17
5 180 857 866 – – 1 792 278 16
6 170 899 992 25 815 446 7526 1 588 739 15
7 158 821 424 – – 1 820 425 14
8 146 274 826 – – 1 358 770 13
9 140 273 252 – – 1 476 495 13
10 135 374 737 – – 1 353 193 12
11 134 452 384 – – 1 274 433 12
12 132 349 534 16 136 610 2120 1 174 966 12
13 114 142 980 11 227 954 3181 866 266 10
14 106 368 585 – – 826 672 10
15 100 338 915 – – 892 429 9
16 88 827 254 – – 1 015 246 8
17 78 774 742 – – 864 710 7
18 76 117 153 13 187 892 4061 713 787 7
19 63 811 651 – – 589 422 6
20 62 435 964 8 409 776 1449 493 404 6
21 46 944 323 726 269 664 374 383 4
22 49 691 432 – – 444 932 5
M 16 571 321 1 127 1
X 154 913 754 – – 3 258 188 11
Y 57 772 954 – – 859 688 4

Size of the compressed target sequences (in bytes) and corresponding
compression time (in seconds). The original sequence alphabets have
been preserved. The missing values are due to the inability of GRS to
compress sequences differing more than a predefined value.

Table 5. Homo sapiens genome: compression with GReEn of the

HuRef, Celera, YH and KOREF_20090224 versions using the

NCBI37 as reference

Chr HuRef Celera YH KOREF

1 6 652 184 5 106 720 1 979 661 2 074 258
2 4 109 606 3 271 105 2 205 102 1 833 388
3 1 718 683 1 125 544 2 868 462 2 808 941
4 2 440 255 1 675 878 1 815 309 1 844 448
5 2 084 630 1 962 869 1 327 235 1 289 709
6 1 926 853 1 846 101 1 460 666 1 436 168
7 2 216 643 2 345 859 1 381 234 1,511 664
8 1 755 512 1 084 584 1 323 845 1 310 275
9 3 939 856 2 906 969 1 049 456 1 152 997
10 2 235 388 2 025 459 1 075 899 1 237 129
11 1 565 536 1 459 854 1 068 335 1 104 478
12 1 495 696 1 559 635 1 199 709 1 260 183
13 4 429 154 3 023 681 1 065 006 1 052 608
14 3 480 676 2 325 885 803 902 854 166
15 3 358 239 2 944 889 946 244 958 050
16 1 848 172 2 319 629 747 166 802 956
17 1 091 917 1 163 879 955 918 905 359
18 893 600 625 364 726 165 765 927
19 697 898 621 943 2 777 894 2 832 746
20 611 521 433 253 468 215 490 498
21 884 601 415 412 434 679 481 691
22 929 001 655 089 404 354 431 417
X 3 159 205 3 259 716 492 893 740 530
Y 565 746 1 157 801 138 838 279 461

Number of bytes after compressing each sequence. For ease of com-
parison we transformed all characters to lowercase and mapped all
unknown nucleotides to ‘n’ before compression. Therefore, after this
transformation, all sequences were composed only of characters from
the alphabet {a,c,g,t,n}.
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the sequence size, but mainly on the similarity between the
target and reference sequences (lower similarity implying
greater compression times), resulting in a large unpredict-
ability regarding the time that a certain sequence requires
to be compressed.

To overcome these limitations, we propose a statistical
compression method that uses a probabilistic copy model.
The probabilities are estimated for every character of the
target sequence and are used to feed an arithmetic coder.
The compression tool has two control parameters,
namely, the size of the k-mer that is used for searching
copies (with a default value of k=11), and the number of
prediction failures that are tolerated by the copy model
before it is restarted (with a default value of 0). Changing
these parameters may change the performance of the
codec, degrading the performance for some sequences
while improving it for others. It is left to the user the
decision of trying to optimize these parameters or, as we
have done when producing the experimental results
included in this article, to use the default values.

CONCLUSION

In this article, we described a computational tool, GReEn,
aiming at compressing genome resequencing data using
another sequence as reference. This tool is able to
handle arbitrary alphabets and does not pose any

restrictions or requirements on the sequences to
compress. Several examples of its efficiency in compressing
genomic data and its improvements with respect to other
recently proposed tools have been included, rendering
evident the practical interest of the tool here proposed.
With the generation of increasingly larger volumes of

genome sequencing and resequencing data, and the
increasing costs associated to storing and transmitting
those data, compression tools that efficiently recognize
redundancies are in demand. However, the interest in
such compression methodologies goes beyond data
storage and communication. By being a probabilistic
model of the underlying genomic sequence(s), compres-
sion tools reveal similarities and differences that are para-
mount for studies of human genomic variation between
individuals, hence, key for progress in personal medicine
efforts.
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