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Abstract: Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp.
Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the
Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse
cytotoxicity and phytotoxicity, causing adverse impacts on plants, animals, and humans, and are a
destructive force to crop production worldwide. This review summarizes the structural diversity of
SAMs and encapsulates the relationships between their structures and biological activities. The toxicity
of SAMs on plants and animals is mainly attributed to their inhibitory activity against the ceramide
biosynthesis enzyme, influencing the sphingolipid metabolism and causing programmed cell death.
We also reviewed the detoxification methods against SAMs and how plants develop resistance
to SAMs. Genetic and evolutionary analyses revealed that the FUM (fumonisins biosynthetic)
gene cluster was responsible for fumonisin biosynthesis in Fusarium spp. Sequence comparisons
among species within the genus Fusarium suggested that mutations and multiple horizontal gene
transfers involving the FUM gene cluster were responsible for the interspecific difference in fumonisin
synthesis. We finish by describing methods for monitoring and quantifying SAMs in food and
agricultural products.

Keywords: sphinganine-analog mycotoxins; fumonisins; AAL-toxin; chemical structure; toxicity;
genetics and evolution; biosynthesis

1. Introduction

Mycotoxins are secondary metabolites produced by various fungi. These metabolites have
important ecological functions on living systems in their natural habitats. As secondary metabolites,
mycotoxins are regarded as not essential for fungal growth or reproduction. However, their toxic effects
to plants, animals, as well as humans are attracting increasing attention from chemists, biologists,
food scientists, and healthcare professionals. Many fungi are capable of synthesizing mycotoxins,
including certain saprophytic molds, poisonous mushrooms, human fungal pathogens, and plant
fungal pathogens. Mycotoxins produced by plant pathogenic fungi can be divided into two groups:
(i) host-selective (or host-specific) toxins (HSTs) and (ii) non-host-specific toxins (nHSTs), depending on
whether they are specifically toxic to host plant (HSTs) or to a wide range of species (nHSTs). The known
mycotoxins are typically low molecular-weight chemicals but with diverse structures and modes of
actions. One group of mycotoxins are structurally analogous to sphingosine, the backbone precursor of
sphingolipids that play essential structural and cellular roles in eukaryotic cells. These toxins are called
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sphinganine-analog mycotoxins (SAMs), with fumonisins and the Alternaria alternata f. sp. Lycopersici
(AAL) toxins as the two most widely studied groups of SAMs. SAMs are toxic to plants and animals.
They act by inhibiting the ceramide synthase (CerS), thereby influencing the sphingolipid metabolism
and initiating apoptosis in animals and programmed cell death (PCD) in plants [1–3]. The objective
of this paper is to provide an updated review on the structural diversity, syntheses, modes of action,
and health impacts of SAMs.

The discovery of fumonisin was first reported in 1988 and the organism producing it was
Fusarium verticillioides (syn. Gibberella fujikuroi mating population A, syn. G. moniliformis Wineland, syn.
F. moniliforme Sheldon) [4]. Fumonisins have since been found to be produced by at least 18 species of the
Fusarium genus, with F. verticillioides and F. proliferatum being the most prominent, and by three unrelated
fungal genera, Aspergillus section Nigri (such as Asp. niger, Asp. Welwitschiae (syn. Asp. awamori) and so
on, known as black aspergilli), Tolypocladium (T. inflatum, T. cylindrosporum, and T. geodes), and Alternaria
(the tomato pathotype of A. alternata, formerly known as A. arborescens) [5–10]. Species of the Fusarium
genus can be found as saprophytes in soil and as endophytes and pathogens of many plants worldwide.
A common group of diseases caused by Fusarium pathogens is rotting that can happen to all tissues
during all stages of plant development [11,12]. In addition, the Fusarium species can infect crops at the
post-harvest period during storage [13]. The fungal propagules surviving in the soil can also infect
new crop plants and can be carried to new fields by wind or by anthropogenic activities, such as when
seedlings are transplanted [14]. Fusarium strains can synthesize fumonisins during all stages of their
growth, including the saprophytic stage in the soil, during their pathogenesis, and as endophytes in
different parts of plants, as well as during crop storage after harvest [15].

Fumonisins, as a nHST, are major contaminants of cereals and grains, including corn, rice, wheat,
barley, rye, oat, millet, and products made based on these crops [16]. The consumption of food
contaminated by fumonisins significantly increases health problems for humans, leading to a variety
of cancers such as esophageal cancer and neurological defects [17,18]. For example, the International
Agency for Research on Cancer (IARC) characterized fumonisin FB1 as a group 2B carcinogens for
humans [16]. Fumonisins can also cause diseases and adverse effects in other species, especially in
livestock when the feeds are contaminated [19]. Well-known diseases in livestock caused by fumonisins
include leukoencephalomalacia in horses and pulmonary edema syndrome in pigs [20,21].

Similar to fuminisins, the AAL-toxins include a family of structurally analogous metabolites.
AAL-toxins are a group of HST produced by the ascomycete fungal pathogen A. alternata f. sp.
Lycopersici, the causal agent of tomato stem canker disease [22]. It should be noted that several other
pathotypes of A. alternata could also produce other HSTs responsible for fungal pathogenesis on
their specific host plants, respectively [23]. Unlike other HSTs produced by A. alternata, besides the
susceptible tomato host, AAL-toxins can also affect many other weeds and crops of dicotyledonous
species and at least 25 species of Solanaceae [24,25]. Furthermore, the tomato pathotype of A. alternata
was also reported to produce fumonisins B (FBs) [8,26]. AAL-toxin and FBs were not only detected in
the necrosis plant tissues and culture media inoculated by A. alternata but also in spores and mycelia
of this pathogen [27]. However, AAL-toxin remains the only toxin as a pathogenicity factor for stem
canker disease of sensitive tomato varieties, while fumonisins are toxigenic virulence factors [28].

Because of the adverse impacts of SAMs on animal and human health, these toxins are also
attracting increasing attention from food inspectors and public health agencies. Over the last three
decades, significant progress has been made in our understanding of SAMs. Our objectives of this
review are to capture these developments on SAMs with regard to their chemical structural diversity,
the relationship between structure and activity, PCD induction, detoxification, genetics and evolution
of SAMs biosynthesis, and laboratory detections.
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2. Chemical and Structural Properties

2.1. Chemical and Structural Properties of Sphingolipids

SAMs have a distinct structural similarity to sphinganine (Figure 1). Sphinganine (dihydrosphingosine,
DHS) is the simplest class of sphingolipids and has a backbone that consists of a linear aliphatic
group with 18-carbon, an amino at C-2, and two hydroxyls (-OH) at C-1 and C-3, respectively.
Phytosphingosine is obtained if a hydroxyl is introduced at C-4. Sphingosine consists of the sphinganine
backbone but with a double bond at C-4. Ceramides are synthesized by linking an amide fatty acid at
C-2 of sphingosine. Ceramides is a waxy lipid molecule, which is found in high concentrations in the
membrane of eukaryotic cells. More complex sphingolipids can be formed by linking different chemical
groups to hydroxyl (C1) of ceramides. Sphingolipids are one type of lipids widely found in their
membranes in eukaryotes and a few prokaryotes, and they form complex and diverse interactions with
other molecules [29]. Sphingolipids play important structural and functional roles, they are involved
in a variety of signal transductions and crucial cellular processes [30,31]. For example, in humans,
ceramides help form the skin’s barrier and regulate immune response, protecting the skin against
environmental irritants, pollutants, and water loss. Without the proper ratio of ceramides on our
epidermal cells, the barrier of the skin will be damaged, resulting in dryness, itching, and irritation [32].
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Figure 1. Chemical structure of sphingolipids. The table shows the different substituents in the chemical
scaffold of the most essential sphingolipid.

2.2. Chemical and Structural Properties of Fumonisins

SAMs consist of two main types of toxins, fuminisins and AAL-toxins. Fumonisins can be divided
into seven groups (FA, FB, FC, FD, FP, FPy, and FLa). These groups differ in the nitrogen functional
group and the length of the carbon backbone [5]. Most fumonisins contain a 19–20 (FD contain 17 or
18 carbon) linear backbone similar to sphinganine with one nitrogen functional group (except for FPys
and FLas), two to four hydroxyl, two methyl, and two propane-1,2,3-tricarboxylic acid (PTCA) side
chains esterified to the backbones [26,33]. The structural features of the seven groups of fumonisins
are shown in Figure 2. Among them, the B group is the dominant one. For example, FB1 accounts
for 70–80% of the total fumonisins produced by F. verticillioides and is the predominant toxic form [5].
FB2 and FB3 are isomers of each other but with one less hydroxyl group than FB1. The B series
of fumonisins (FBs) are also the main food contaminants. Group A fumonisins (FA) are acetylated
derivates of group B toxins, with lower toxicity and bioactivity than their FB counterparts [34]. Group C
fumonisins (FC) have the same nitrogen functional group as FB1 but lack the terminal methyl group
at C-1 [35]. Three forms of acetylated FC1 have been discovered in F. oxysporum [36]. Group P
fumonisins (FP) have a nitrogen functional group of 3-hydroxypyridinium instead of the amino group
in FB at the R2 position [37]. The FC and FP groups have similar phytotoxic and cytotoxic effects
to those caused by FB1 or AAL-toxin [38]. Aside from these four main groups, there are several
other lesser-known fumonisin analogs, with one or two PTCA replaced by a hydroxyl or carbonyl
or other carboxylic acids group at C-13 and/or C-14 of the backbone (for example, HFB1, as show in
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Figure 2). Rheeder et al. summarized the 28 fumonisin analogs that have been characterized between
1988 and 2002 [5]. By reversed-phase high-performance liquid chromatography/electrospray ionization
ion trap multistage mass spectrometry (RP-HPLC/ESI-IT-MSn), Bartok et al. detected 58 fumonisins
(including FD) or fumonisin-like compounds from F. verticillioides in rice cultures, and 28 isomers of
FB1 [33,39]. Indeed, the recent application of a semi-targeted method revealed over 100 structurally
related compounds from SAMs-producing fungi, including a hydroxyl-FB1, and two new classes of
non-aminated fumonisins (FPys and FLas) [26].
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Panel B shows fumonisin. In the table of each panel, the different substituents present in the chemical
scaffolds of individual compounds are shown.

2.3. Chemical and Structural Properties of AAL-Toxin

The AAL-toxins have a structural similarity to fumonisins (Figure 2). The main difference between
fumonisins and AAL-toxins is that AAL-toxins have one fewer PTCA side chain than fumonisins.
The AAL-toxins have been divided into five pairs based on their side chain structures: A, B, C, D, and E
pairs (TA, TB, TC, TD and TE). These pairs differ in their nitrogen functional group and hydroxylation at
C-4 or C-5 positions of the backbone [40–42]. Each pair of AAL-toxins is composed of two regioisomers
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with PTCA esterified to C-13 or C-14 of the backbone, respectively. The TA pair is the major pair of
toxins, with the TB and TC pairs formed by removing hydroxyl groups one by one from C-5 and C-4 of
the TA pair. The TD and TE pairs were acetylated derivatives of TB and TC respectively, while the
acetylated form of TA and keto derivatives of AAL-toxins (2-keto or 14-keto analogues predicted) were
also found in 2015 [26]. These four regioisomeric pairs (TB, TC, TD, and TE) of AAL-toxins can all
induce genotype-specific necrosis characteristics in tomato leaflets in the same pattern as that of the TA
pair, but they differ as much as 1000-fold in their relative toxicity [42].

2.4. Chemical and Structural Properties of Analogs of SAMs

In addition to fumonisins and AAL-toxins, several fungal secondary metabolites have
also been identified as structural analogs of sphinganine and CerS inhibitors (summarized in
Figure 3 and Table 1). These metabolites include myriocins, sphingofungins, viridiofungins,
2-amino-14,16-dimethyl-octadecan-3-ol (2-AOD-3-ol), and a new C17-SAM identified from mussels
contaminated by marine fungi including Aspergillus, Fusarium, and Trichoderma. Australifungin,
a structurally unrelated mycotoxin produced by Sporormiella australis, was also shown to inhibit
sphingolipid synthesis in plants, similar to those of SAMs.
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Myriocins, sphingofungins, and viridiofungins inhibit serine palmitoyltransferase (SPT), while
fumonisins, AAL-toxin, and australifungin inhibit sphinganine-N acyltransferase. Serine palmitoyl
transferase, one of the key enzymes in the synthesis of sphingolipids, was also reported to play a
positive role in PCD regulation. The increase of SPT activity promoted PCD in plants. In contrast,
by inhibiting SPT activity, the excessive accumulation of sphingosine can be alleviated, leading to
reduced PCD [43]. Therefore, myriocin are usually used as a SPT inhibitor to pretreat Arabidopsis thaliana
and tomato plants to induce their resistance to FB1 and AAL-toxin, respectively [44,45].
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Table 1. Analogs of sphinganine-analog mycotoxins (SAMs), their fungal producer(s), and their activities.

Analog of SAMs Fungi/Origin Activities Scopus Citation
(Review) Reference

Myriocins
(thermozymocidin, ISP-I)

Myriococcum albomyces
Melanconis flavovirens

Isaria sinclairii

Antifungal activity
Inhibitor of serine palmitoyltransferase (SPT)

Immunosuppressive activity
Protective effect on hepatotoxicity

Relieve fumonisin B1 (FB1)-induced toxicity and cell death
Multi-pharmacological function on human

421(34) [46–53]

Sphingofungins
E/F Paecilomyces variotii Inhibitor of SPT

Antifungal activity 65(15) [54–58]A/B/C/D/I Asp. fumigatus
G/H Asp. penicilliodes

Viridiofungins A/B/C Trichoderma viride Pers Inhibitors of SPT and squalene synthase
Antifungal but lack antibacterial activity 21(5) [59–61]

Tri. harzianum

Australifungin Sporormiella australis Inhibitors of sphinganine-N acyl transferase
Antifungal activity, phytotoxicity 26(7) [62,63]

2-AOD-3-ol F. avenaceum Animal cell toxicity as fumonisin B 5 [64]

C17-sphinganine analog mycotoxin Contaminated mussels Blocking skeletal muscle contraction 1 [65]
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3. Relationships between SAMs’ Structure and Biological Activities

The biological effects of SAMs, such as their toxicity, are similar among different SMAs. Many SAMs
have a similar spectrum of susceptible plant species [34]. Tomato tissues and cells are similarly sensitive
to AAL-toxins and to FB1 and FB2 toxins. In some other plants, AAL-toxins can cause necrotic cell death,
similar to that of fumonisins [66]. For animal tissue cultures, the TA toxins can induce cytotoxicity in
both rat liver and dog kidney cells as FB1 toxin [67,68]. Besides, AAL-toxin and F. verticillioides could
also inhibit larval growth and reduced pupal weights of tobacco budworrn Heliothis virescens [69].
Such similarities have been attributed to the structural similarities between the SAMs and sphinganine.
However, there are differences among SAMs in their biological effects and those differences are related
to their structural differences. Below, we summarize the main findings in this area.

The amino functional group of SAMs is essential for their toxic activity. The peracetylated
derivatives of AAL-toxins and FB1 are biologically inactive or have significantly reduced toxicity in
both the plant bioassay and the animal tissue culture systems [66,70,71]. These results were consistent
with initial reports on these toxins showing that blocking the free primary amines of AAL-toxins by
specific reagents could abolish the biological activities of these toxins in plants [72]. In an in vitro
test of rat primary hepatocytes, it was noted that the N-acetyl analogue of FB1, FA1, also showed
CerS inhibition [68]. Later, FA was found to spontaneously undergo isomerization, rearranging
its O-acetylation group to form different analogs. The impact of these rearrangement products on
inhibition of CerS in rat liver slices also supported the important role of a primary amino for both CerS
inhibition and toxicity [73]. Derivatization of the amino group with fluorogenic reagents also makes
the FBs’ detection possible by the high-performance liquid chromatography (HPLC) assay [74]. FBs can
bind covalently to proteins by reacting with amino groups in abiogenic conversions, which may increase
the toxicity of those conversion products [75]. Similarly, the terminal amino group of FB1 can conjugate
to bovine serum albumin (BSA) and work as an immunogen to produce monoclonal antibodies for
enzyme-linked immunosorbent assay (ELISA) detection [76]. Amino group of fumonisins can also
work as an electron donor and react with the electrophilic carbon within the isothiocyanate (ITC) group.
Consequently, FBs can be degraded by fumigation treatment with ITC-containing compounds [77].

The hydrolysis product of FB1 (HFB1) was shown as less toxic than both FB1 and TA to plants [78].
Neither HFB1 nor the yeast sphingolipids (completely acetylated) contain PTCA. While both had
adverse effects on duckweed growth, they showed lower phytotoxicity than TA and FB1 that contained
one and two PTCA, respectively [79]. In contrast, the hydrolysis products of AAL-toxins largely
maintain the toxicities of their parental compounds to the susceptible tomato lines [66]. These results
indicate that PTCA is important to phytotoxicity of FBs and there is specificity of interaction between
AAL-toxins and tomatoes.

Different from those in plants, an in vitro test using primary hepatocytes of rat showed that the
HFBs had greater cytotoxicity than FBs. However, the HFBs could not initiate cancer development due
to the lack of PTCA moiety, which was proposed to play an active role in the fumonisins absorption
from the gut [70]. In the pregnant LM/Bc mouse model, HFB1 did not cause neural tube defects.
In contrast, 10 mg of FB1/kg body weight of mice disrupted maternal sphingolipid metabolism, caused
hepatic apoptosis in the female mice, increased fetus mortality, and reduced fetus weight [80]. In the
SAMs-sensitive pig model, HFB1 was shown to have limited intestinal or hepatic toxicity but only
slightly disrupted sphingolipids metabolism [81]. The toxic effects of FB1 and HFB1 exposure on
intestinal barrier function and immunity in a pig intestinal porcine epithelial cells and porcine peripheral
blood mononuclear cells co-culture model was also investigated. FB1 aggravated lipopolysaccharide
(LPS)/deoxynivalenol (DON)-induced intestinal inflammation, while HFB1 showed less toxicity to the
immune system [82]. In addition, when HFB1 and HFB2 were acylated by CerS, the N-acyl-metabolites
were toxic in vitro to the human colonic cell line and in vivo to the intraperitoneal rat tissues [83].

Fumonisins are capable of binding to polysaccharides and proteins via their two PTCA side chains
in thermal-treated food and form fumonisin artifacts [84]. The activities of SAMs vary depending on
where hydroxylation occurs along the carbon backbone. For example, FB2 had a greater cytotoxic effect
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than FB3 and FB1 in primary rat hepatocytes [70]. However, different from most other side groups,
the C-1 terminal methyl group, which differed between FC and AAL-toxin from other fumonisins,
seemed not required for the biological activity in SAMs.

Similar symptoms but less phytotoxicities of SAMs were observed when long-chain sphingoid
bases or simple sphingolipids were applied to duckweed, which indicated that the phytotoxicity
of SAMs might be resulted from the accumulation of phytotoxic sphingolipid intermediates [71,85].
This result was consistent with the induction of PCD through ceramide-based signaling pathways
(described below).

Although AAL-toxins and fumonisins are structurally related chemicals with similar phytotoxicity,
the latter are 10 times less efficient. AAL-toxins have been considered to serve as an herbicide at a
very low dosage against a wide variety of broadleaf weeds (e.g., jimsonweed, prickly sida, and black
nightshade). However, monocotyledonous crops (e.g., maize, wheat, and resistant varieties of tomato)
are tolerant to AAL-toxins [24,86,87]. Until 2013, the mode of action through CerS inhibition was not
among the 21 molecular target sites of the commonly used herbicides. Using AAL-toxin as a lead
compound has the potential to develop novel and safe bioherbicide, which has phytotoxicity but
reduced or no mammalian toxicity [88,89].

4. Detoxification of SAMs

Using agricultural and manufacturing practices for preventing the spread and growth of
toxin-producing fungi and limiting mycotoxin production is the preferred method to eliminate
food contamination by fungal toxins at the pre-harvest period [90]. However, it is extremely difficult to
completely prevent fungal pathogen growth and mycotoxin contamination in agricultural practices and
in food storage and processing. Since the toxicity of SAMs is structurally dependent, our knowledge
on the relationships between SAMs’ structure and biological activity provides clues for developing
effective management strategies to minimize the impact of SAMs in food and feed products. Indeed,
structural modifications such as hydrolysis have been demonstrated as effective at reducing the toxicity
of SAMs [91].

Over the last three decades, chemical, biological, and physical strategies have been developed to
degrade mycotoxins in food and feed products [92]. For example, nixtamalization was applied to reduce
FBs by cooking fumonisin-contaminated maize with lime, as well as by using atmospheric ammoniation
treatment [93–95]. Chlorine dioxide also showed the ability to degrade FB1 [96]. Two common cooking
methods include extrusion and nixtamalization were shown to reduce the toxicity of FB1-contaminated
corn [97]. Cold atmospheric pressure plasma was used as a physical treatment to successfully
degrade pure FB1 and AAL-toxins within 60 s, while the presence of the matrix slowed down the
degradation [98,99]. Ozone was applied to disrupt fungal cells of Fusarium and Aspergillus by oxidizing
sulfhydryl and amino acid groups of enzymes or attacking the polyunsaturated fatty acids of the cell
wall [100]. However, not all SAMs are susceptible to physical and chemical treatments. In addition,
some of these treatments may also result in derivatives with unknown toxicity and be detrimental for
the treated commodities, as shown in some cases [101,102].

Another method to reduce SAM toxicity is through microbial actions. Microorganisms can carry
out biotransformation reactions to detoxify SAMs [91]. Such methods include deamination, acetylation,
hydrolysis, glucosylation, and decarboxylation. For example, Benedetti et al. isolated a Gram-negative
rod bacterial strain from soil capable of degrading fumonisin to four metabolites when fumonisin was
supplied as the sole carbon source [103]. The bacterium Sphingopyxis sp. could detoxify fumonisin B1
by at least two enzymatic steps, including an initial de-esterification reaction followed by de-amination
of hydrolyzed product [104]. Chlebicz and Śliżewska found that 12 strains of Lactobacillus sp. bacteria
and 6 strains of Saccharomyces cerevisiae yeast could reduce the concentration of FB1 and FB2 by
40% [105]. Similarly, Burgess demonstrated that fumonisin-producing Asp. welwitschiae have the
ability to produce enzymes to synthesize non-aminated fumonisins that are less toxic than FB, and that
those enzymes could be used for fumonisin detoxification [106]. Indeed, using enzymes to detoxify by
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modification of chemical structures has become a promising method for mycotoxins control after grains
harvest [107,108]. For example, fumD (carboxylesterase) from Sphingopyxis catalyze detoxification of
FB1 to the hydrolyzed form by hydrolysis of both PTCA side chains. Then, the aminotransferase FumI
could degrade FB1 by catalyzing the deamination of HFB1. FumD has also been tested for interference
of fumonisins adsorption in turkey, swine, and pig [109–111]. Finally, several other enzymes such as
manganese peroxidase from lignocellulose-degrading fungi and laccase from Pleurotus eryngii were all
capable of degrading fumonisins [112,113].

Another potential method to reduce SAMs from food and feed products is to use adsorbent
materials to soak up and remove the toxins. Many materials have shown the capacity to adsorb
mycotoxins in vitro, thus the use of adsorbents in livestock diet as feed additives can potentially
decrease the bioavailability of mycotoxins to humans and animals. As feed additives, cholestyramine,
nanosilicate clay platelets, and refined calcium montmorillonite clay all reduced FB1 toxicosis [114–116].
Moreover, natural products such as the phenolic compound chlorophorin, honey, and cinnamon oil
have all shown promise as fumonisin-reducing agents [117–119].

5. Programmed Cell Death and Sphingolipids

Almost all cells die eventually. There are four main types of cell death: necroptosis, pyroptosis,
ferroptosis, and apoptosis, classified based on their distinct molecular and cellular processes and
different outcomes. Apoptosis or programmed cell death (PCD) is a kind of cell suicide that strictly
regulates cells that are no longer needed or are a threat to the wellbeing of multicellular organisms.
Both plants and animals have PCD and they are functionally analogous to each other [120–123]. PCD
plays essential roles to maintain normal physiological activities in multicellular organisms such as
plants and animals and is an active self-regulating process to selectively eliminate redundant, aged,
and damaged cells. PCD can be predicted for specific cells at defined developmental stages. However,
PCD can also be induced by membrane-bound and cytosolic proteins stimulated by stress-induced
signals. Such signals can trigger cell death via intricate cascades of transcriptional changes and
post-translational protein modifications [122,124]. The characteristics of PCD include reduced cell
volume, chromatin marginalization and condensation, nuclear lamina disassembly, DNA fragmentation,
and apoptotic body formation, etc. [1].

PCD triggers and propagation involve many factors, including the expressions of certain cell
surface receptors, transmembrane domains of several membrane proteins, intracellular proteins
related to the propagation of death signals, secondary messengers including inositol triphosphate
and ceramides, calcium (Ca2+) fluxes, reactive oxygen species (ROS), regulatory factors of cell cycle,
and other suppressors or activators proteins. Many of these subcellular components, genes, and signal
transduction pathways involved in PCD are functionally conserved across all domains of cellular
organisms, from bacteria to fungi to plants and animals. However, there are differences in the actual
mechanisms among organisms, as summarized in References [125,126].

Sphingolipids have been implicated to play an important role in cell growth, development,
response to external environment, and PCD. As the main component of the cell membrane system,
sphingolipids help to maintain the structural stability and transport of molecules across cell
membranes [127,128]. In mammals, sphingolipids are especially abundant in the nervous system cells,
with important functions in cell contact, growth, differentiation, communication, response to stress
signals, and apoptosis [30,129]. In plants, sphingolipids are involved in response to both biotic and
abiotic stresses, such as to pathogen infection, drought, and low temperature [31,130,131]. Indeed,
the linkage of ceramide signaling to apoptosis has been widely reported in both plants and animals.
Consequently, actions by SAMs to disrupt the functions of sphingolipids could have significant
negative consequences. However, our knowledge about the roles of sphingolipids on apoptosis have
also led to increasing interests on potential novel therapies using sphingolipids as treatment targets
against degenerative and proliferative diseases in humans and animals, such as cancer and Parkinson’s
disease [132,133].
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A large number of studies have shown that sphingolipids could serve as critical secondary
messengers in signal transduction to regulate PCD [134,135]. For example, in neutrophils, sphingolipids
have been linked to increased superoxide formation and Ca2+ influx, which are universal signaling
molecules involved in many cellular functions [136]. The induction of PCD in Arabidopsis by ceramides
was also verified to be partly dependent on ROS in mitochondria or regulated by the release of
Ca2+ [137,138]. In addition, increase of sphingosine level can activate the mitogen-activated protein
kinase (MAPK) pathway in which MPK6 participates, promote the accumulation of sialic acid (SA),
and then induce PCD [43]. Lachaud et al. found that the activated calcium-dependent kinase (CPK3) can
regulate the process of sphingosine-induced PCD by dissociating CPK3 from the 14-3-3 protein-complex
under increased calcium concentration induced by sphingosine. The activated CPK3 is then degraded
followed by PCD induction [139].

Mutational studies of Arabidopsis and in vitro experiments have shown that ceramides,
and free sphingoid bases such as sphingosine, sphinganine, and phytosphingosine, can all induce
PCD. In contrast, phosphorylated products of these compounds can inhibit or alleviate PCD in
plants [44,138,140–142]. However, phosphorylated sphingosine can inhibit the growth of yeast cells,
which suggests that there are different mechanisms of action between plants and yeasts [143]. It is
worth mentioning that not all ceramides can induce PCD. Nagano et al. found that when the C2
position of fatty acid in the side chain of ceramides was hydroxylated, PCD was inhibited rather than
induced [144]. These results indicate that the occurrence of PCD in plants depends not only on the
absolute content of sphingolipids, but also the relative ratios of various modified forms. In the next
section, we will describe how SAMs are involved in PCD.

6. SAMs Trigger PCD through Ceramide-Based Signaling Pathways

In plants, pathogen invasions can lead to disruptions in host cellular homeostasis, and trigger
cell death in susceptible varieties or even in resistant varieties with a hypersensitive response (HR).
Because of its many similarities with PCD, HR is often considered as a form of PCD in plants.
AAL-toxins, as the pathogenic factor of tomato stem canker disease, can induce PCD in sensitive
tomato varieties resulting in fragmentation of chromosomal DNA and formation of apoptotic bodies in
cells [145]. Similarly, when treated by FB1 produced by pathogenic Fusarium, Arabidopsis protoplasts
showed symptoms similar to PCD in animal cells [146]. At the tissue and organ levels, Arabidopsis
leaves treated with the FB1 toxin showed characteristic disease symptoms. Cells of the diseased
leaves had overall phenotypes similar to HR, including callose accumulation, ROS production,
and pathogenesis-related (PR) gene induction [147]. The damages caused by SAMs on host plants
can further increase pathogen infection and colonization. Similar to those found in plants, SAMs
can induce neuro-/renal-responses, heptatoxicosis, and neoplasms, as well as cell death in animals.
The relationship between apoptosis and ceramide signaling has been established in both plants and
animals in their response to SAMs [120]. For example, the induction of cell death in both tomato and
African green monkey kidney (CV-1) cells occurred under similar toxin concentrations and time frames.
For both types of cells, morphological markers characteristic of apoptosis were observed, including
cells with positive terminal deoxynucleotidyl transferase end labeling (TUNEL), DNA fragmentations,
and the formation of apoptotic-like bodies [145,148].

SAMs are structurally analogous to sphinganine and are thus effective inducers of PCD.
The emerging mechanism of their actions is that SAMs can competitively bind to CerS in cells.
Such binding leads to the accumulation of free sphingoid bases, the substrates of CerS, while ceramides
as products of CerS were consumed and reduced, activating PCD in plant and animal cell lines [3,85].
For example, it was reported that FB1 is a potent competitive inhibitor of CerS from liver and brain
microsomes in several mammalian cell lines [149,150]. An increase in sphinganine was observed in an
in vivo test of CerS inhibition, as well as in FB-fed animals treated at high concentrations [2]. In addition,
TA and FB1 can inhibit CerS in rat hepatocytes and green tomato fruits [150,151]. Furthermore, it was
found that FB1 not only induced apoptosis in animal cells, but also altered cell morphology, cell–cell
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interactions, cell surface proteins behavior, protein kinase activity, and cell growth and viability
in non-apoptotic cells [148,152]. In plant cells, after exposure to SAMs, sphingosine concentration
increased significantly within a short time, followed by the accumulation of ROS in the cytoplasm
and then apoptosis. These results suggested that the accumulation of sphingosine in cells was the
upstream signal of ROS for cell death [43,44,85]. The induction of PCD by FB1 is also related to the
accumulation of ceramides. In A. thaliana, there are two types of CerSs that use different substrates.
Class I CerSs use sphinganine and C-16 fatty acyl-CoA as substrates, while class II use phytosphingosine
and very long-chain fatty acyl-CoA as substrates. FB1 mainly inhibits the activity of class II CerSs.
When treated with FB1, phytosphingosine in cells increases significantly. At the same time, as the
product of a previous step, sphinganine also increases, which provides more substrates for class I CerS.
Consequently, the products of class I CerS in cells increase, leading to induced PCD [153,154].

7. Plant Resistance to SAMs

Phytohormones are also involved in the defense reaction induced by SAMs. Changes in ethylene
(ET) were first discovered in AAL-induced necrosis of tomato [155]. Alteration in ethylene perception
in “never ripe” mutants of tomatoes can markedly alleviate the tissue damage caused by SAMs, which
indicated an ethylene-associated signal transduction during plant cell death [156]. Later, a transcription
analysis of AAL-toxin-induced cell death was carried out in Arabidopsis. Genes responsive to ROS
and ET were among the earliest upregulated genes [157]. Mase used VIGS (virus-induced gene
silencing) analyses and verified that the ET signaling pathway and MAPK cascades were required for
AAL-toxin-induced PCD in tobacco [158]. By SA-mediated ET suppression, glutathione (GSH) may be
involved in resistance primarily against AAL-toxin-induced stress in Arabidopsis [159].

Unlike ethylene in host basal defense responses against the tomato pathotype of A. alternata,
the jasmonate (JA)-dependent signaling pathway is not involved in host defense against the toxigenic
A. alternata pathogen. JA affects pathogen acceptability via a toxin-independent mannerin in the
interactions between plants and toxigenic necrotrophic fungal pathogens. It may act upstream
of ethylene biosynthesis in AAL-toxin-triggered tomato cell death [160,161]. Later, a comparative
proteomics analysis revealed that the COI1 (coronatine insensitive 1, JA receptor)-dependent JA
pathway enhances AAL-toxin-induced PCD of tomato through regulating the redox status of the
leaves, other phytohormone pathways, and/or important PCD components [162].

The sensitivity of tomato plants to the fungal pathogen A. alternata f. sp. lycopersici is controlled
by the Alternaria stem canker resistance locus (Asc-locus) on chromosome 3 [163]. Mutations of tomato
Asc locus gives resistance to the pathogen, while overexpression of the tomato Asc-1 gene mediates
high insensitivity to SAMs in tomato and confers resistance to pathogen infection in sensitive Nicotiana
plants [164,165]. Asc-1 is a homolog of the yeast longevity assurance gene LAG1, which encodes
components of sphinganine N-acyltransferase. This resistance gene could prevent the disruption of
sphingolipid metabolism during AAL-toxin-induced PCD. Both Nicotiana and Lycopersicon genera
belong to Solanaceae. In tomato, insensitivity to SAMs and susceptibility to the pathogen is determined
by Asc-1 [166]. In contrast, the SAM-sensitive species in the Nicotiana (except for N. umbratica) still
have Asc-1 homologs and are resistant to A. alternata f. sp. lycopersici infection with HR, which
indicates an additional (non-host) resistance mechanism between Nicotiana and this pathogen [167].
The multilayered defense systems also exist in Arabidopsis non-host resistance to A. alternata [168].
Similarly, although many Fusarium species produce fumonisin, they cannot infect AAL-sensitive tomato.
This non-host resistance includes a multi-layer defense system involving both pre- and post-invasion,
and help plants defend against various pathogens [169]. In addition, Zélicourt demonstrated that two
of three Lag1 homologs in the Orobanche cumana genome were responsible for an enhanced sensitivity
to AAL-toxin [170].

Aside from the above-mentioned genes, several other genes were identified from Arabidopsis and
found to be involved in the AAL-induced PCD pathway, including Zinc A. thaliana 11 (a zinc finger
protein ZAT11), fbr41 (FB1 Resistant41), and baculovirus p35 gene (inhibitor of a class of cysteine
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proteases). All of them showed protective effects on AAL-toxin-induced cell death and pathogen
infection in plants [171–173]. Discovery of resistant genes has provided a potential strategy for SAMs’
control in crop production by plant transgenic modification.

Because of the high toxicity of fuminisins, especially FB1, a large number of studies have focused
on them. So far, the mechanism of FB1 toxicity has been centered around its structural resemblance
with sphinganine and consequent competitive inhibition of CerS and the disruption of lipidomic
profiles. However, there is emerging evidence suggesting that FB1 can disrupt mitochondrial function
and generate excessive toxic ROS.

Table 2 shows a list of reviews summarizing the latest advances related to fumonisins, in their
assessment, biosynthesis, detection, crop breeding of resistant varieties, and toxicity.

Table 2. Topical reviews on fumonisins over the last five years.

Subject Content Reference

Assessment Biomarkers, metabolism, and biomonitoring of
fumonisins in human biological fluids [174]

Assessment Impact on agriculture, food, and human health and
their management strategies [16]

Assessment Risk assessment and intervention models for
fumonisin of maize in South Africa [175]

Assessment Fumonisins and related Fusarium occurrence in
wheat and its by-products [176]

Assessment Fumonisins and their modified forms [177]

Assessment Biological methods for fumonisins reduction and
related Fusarium species control [178]

Assessment Fumonisins and A. alternata f. sp. Lycopersici (AAL)
toxins in ruminants and their forages [19]

Biosynthesis Genetic regulation of fumonisins biosynthesis by
specific genes and global regulators [179]

Biosynthesis Impact of environmental variables and genetics of
maize resistance on fumonisin accumulation [180]

Detection Analytical methods for fumonisins detection in
single corn kernels [181]

Detection Molecular methods for early detection of
fumonisin-producing F. verticillioides [182]

Plant resistant Genomic, genes, and pathways in maize resistance to
Fusarium ear rot and fumonisin accumulation [183]

Plant resistant Relationship between Bt maize hybrids and
fumonisins contamination level [184]

Toxicity Mitochondrial toxicity induced by FB1 [185]

Toxicity Molecular mechanisms underlying FB1-mediated
toxicities and related interventions [186]

Toxicity CerS inhibition by fumonisins result in animal and
plant disease [187]

Toxicity Dietary fumonisin and growth impairment in
children and animals [188]

Toxicity Impact of fumonisin-contaminated feed on pig
intestinal health [189]

Toxicity Oxidative stress-mediated toxicity and metabolism
in vivo and in vitro [190]

8. Genes Responsible for SAMs Production

In fungi, genes directly involved in the biosynthesis pathway of the same secondary metabolite
are usually located at adjacent positions in gene clusters in the genome [191]. These genes are
often co-expressed and co-regulated. The genes involved in fumonisin biosynthesis fit this general
pattern. Specifically, Fusarium species capable of producing fumonisins typically contain one gene
cluster involved in their synthesis, called the FUM gene cluster. At present, a total of 21 genes have
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been identified in FUM gene clusters of various species and verified to be involved in fumonisin
biosynthesis and regulation or self-protection using a variety of approaches, such as gene knockouts,
domain swapping, and heterologous expression (Table 4) [192–197]. In F. verticillioides, the FUM cluster
responsible for fumonisin B biosynthesis includes 17 genes [193,197,198].

As described previously, SAMs are polyketide-derived compounds with structural similarity
to sphinganine. Polyketides are synthesized by polyketide synthases (PKSs), which are large
multifunctional enzymes. FUM1 is a PKS gene previously designated as FUM5 [199]. PKS encoded by
FUM1 catalyzes the synthesis of an octadecanoic acid precursor as the initial step for FB biosynthesis
in Fusarium spp. [200,201]. The proposed biosynthetic pathway of FB is described in Figure 4 [197].
The precursor mentioned above undergoes condensation with L-alanine to synthesize the polyketide
backbone, this reaction was catalyzed by the aminotransferase Fum8 [192,201]. In F. oxysporum strain
O-1890, the orthologue of FUM8 determines that Fusarium produces predominantly FCs [195]. The fum8
deletion in some stains of A. welwitschiae is also considered to be associated with the loss of FB2
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Figure 4. The FUM gene cluster, the proposed pathway of fumonisin biosynthesis, and the proposed
mechanism for self-protection against fumonisins toxicity by the toxin-producing fungi (FBs and
FCs). SAM, S-adenosyl methionine; VE, vesicles; MT, mitochondrion; ER, endoplasmic reticulum; NU,
nucleus; PM, plasma membrane.

A likely mitochondrial carrier protein encoded by FUM11 transport the substrate
tricarboxylate for Fum7 (dehydrogenase) and Fum10 (acyl-CoA synthase) to produce CoA-activated
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tricarballylic acid, which are attached to the polyketide backbone by Fum14 (condensation-domain
protein) [192,194]. The ensuring steps of fumonisin biosynthesis involving various modifications of
the backbone (including primarily hydroxylation) were catalyzed by several enzymes, such as
Fum6/Fum12/Fum15 (cytochrome P450 monooxygenase), Fum2 (hydroxylase of C10), Fum13
(short-chain dehydrogenase/3-ketoreduction), and finally, Fum3 (hydroxylase of C5, dioxygenase),
catalyzed by FUM9-encoded protein (alleles of FUM3) [192,193,203–206].

In addition, FUM21 encoding a GAL4-like Zn(II)2Cys6 transcription factor was verified to be
involved in the regulation of fumonisin synthesis. However, it seemed that the deletion of FUM16 had no
apparent effect on fumonisin production in F. verticillioides [194,198,207–209]. Recently, FUM17–FUM19
in F. verticillioides were found to help the fungus to avoid its own toxicity during fumonisin production.
Fum19 is an ATP-binding cassette transporter (ABC transporter) and acts as a repressor of the FUM
gene cluster. FUM17 and FUM18 are CerS homologs. FUM18 could fully complement the yeast CerS
null mutant LAG1/LAC1, while co-expression of FUM17 and CER3 partially complemented. Both the
Fum17 and Fum18 proteins enable F. verticillioides to increase its resistance of fumonisin by providing
FUM cluster-encoded CerS activity as a first level of self-protection [197].

Aside from the FUM genes, other genes like FST1 (transporter), FUG1 (transcription or signal
transduction factors), CPP1 (protein phosphatase type 2A catalytic subunit), and FvVEl (regulator)
in F. verticillioides, PKS3 and PKS11 in F. proliferatum, and GATA-type transcription factors AreA and
AreB (known as the global nitrogen regulators) in F. fujikuroi have also been demonstrated to have
an important role in fumonisin biosynthesis and regulation [209–214]. In addition, a degenerated,
over-represented motif which is potentially involved in the cis-regulation of FUM genes and fumonisin
biosynthesis was also identified from both F. verticillioides and Asp. niger, while it was not found in
fumonisins non-producing fungi containing various FUM homologues [215].

Several abiotic and biotic factors have been found to affect the expression of FUM genes and
regulate biosynthesis of fumonisin. These factors include water activity, temperature, carbon sources
and other nutrients, host plant species and varieties or their extracts, and plant age [216–220]. Mature
plants and extracts from those plants are often associated with higher concentrations of SAMs. It has
been suggested that harvesting the crop at earlier stages other than full maturity could be one of the
strategies to control fumonisin contamination [221,222].

The genome sequencing and analysis of Asp. niger revealed that its genome contained a gene
cluster (fum cluster) homologous to the FUM cluster in Fusarium species (shown in Table 4). Specifically,
12 homologues of the fumonisin synthesis genes were found, including fum1, fum3, fum6, fum7, fum8,
fum10, fum13 to fum16, fum19, and fum21 genes [208,223,224]. This gene cluster is also found in
fumonisin-producing isolates of Asp. welwitschiae but is absent from the genomes of other sequenced
Aspergilli that do not produce fumonisin, such as Asp. fumigatus, Asp. oryzae, and Asp. nidulans [7,208].
In addition, homologs of multiple fum genes have been found in several other Aspergilli spp. but where
no fumonisin production has been detected (summarized in Table 3). Some of the Aspergullus spp.
contain genes that are unique to them. For example, a dehydrogenase gene (sdr1) of a short-chain
length was found in the fum cluster of Asp. niger but is absent in the FUM gene cluster of Fusarium spp.
In contrast, the Fusarium FUM2 gene with a function of hydroxylation at the C-10 backbone position
of fumonisin is absent in the Asp. niger fum cluster [207,208]. This result is consistent with the study
that shows that Asp. niger only produces fumonisins FB2, FB4, and FB6, which lack a hydroxyl
at C-10 [7,225,226]. However, isolates of several black aspergilli (including A. niger, Asp. foetidus,
and A. tubingensis) isolated from peanuts and maize also produced FB1 and FB3, consistent with a
complex biosynthesis pattern of the fumonisins in Aspergilli spp. [227].
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Table 3. Difference in genomic context of fumonisin biosynthetic gene (fum) cluster between strains
of Aspergillus spp.

Fungi Stains fum Cluster Reference

Asp. niger
fumonisin-producing strains fum cluster [208]

fumonisin-non-producing strains Intact fum cluster [7,235]

Asp. welwitschiae
fumonisin-producing strains fum cluster [7]

fumonisin-non-producing strains Three fum cluster types
including an intact cluster [7,235]

Asp. tubingensis
fumonisin-producing strains Not tested [227]

fumonisin-non-producing strains Multiple patterns of
fum gene deletion [7]

Asp. brasiliensis fumonisin-non-producing strains Multiple patterns of
fum gene deletion [7]

Asp. luchuensis fumonisin-non-producing strains Multiple patterns of
fum gene deletion [7,236]

Asp. fumigatus fumonisin-non-producing strains Not detected [208]

Asp. oryzae fumonisin-non-producing strains Not detected [208]

Asp. nidulans fumonisin-non-producing strains Not detected [208]

Asp. foetidus fumonisin-producing strains Not tested [227]
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Table 4. Homologous genes and their functional roles in the biosynthesis of SAMs.

Homologue of Cluster Genes Predict Gene Product and Function Reference

fumonisin AAL-toxin

Fusarium spp. Aspergillus spp. A. alternata [169,224]

FUM1
(fumonisin biosynthetic gene 1,

previously designated as FUM5))
fum1

ALT1
(AAL-toxin biosynthetic

gene 1)
polyketide synthase [12,199,200]

FUM2 absent Dioxygenase for hydroxylation of C10 [228]

FUM3 fum3 Dioxygenase for hydroxylation of C5 (the same gene as FUM9) [205,228,229]

FUM4 Not clear [230]

FUM6 fum6 ALT2 Cytochrome P450 monooxygenase–reductase fusion proteins for
hydroxylation of C14/C15 [192,231]

FUM7 fum7 ALT3 Type III alcohol dehydrogenases for PTCA
(propane-1,2,3-tricarboxylic acid) side chain formation [192,194,232]

FUM8 fum8 α-oxoamine synthase and homologous for amino transfer and
FBs/FCs production [192,195]

FUM10 fum10 Fatty acyl-CoA synthase for PTCA esterification [193,194]

FUM11 mitochondrial transport protein for PTCA transport [193,194]

FUM12 cytochrome P450 monooxygenases [193]

FUM13 fum13 ALT6 Short-chain dehydrogenase/ketoreductase of C3 [193,204,206]

FUM14 fum14 Non-ribosomal peptide synthetase for PTCA esterification [193,194,233]

FUM15 fum15 Cytochrome P450 monooxygenases [193]

FUM16 fum16 Fatty acyl-CoA synthetase [193,194,224]

FUM17 CerS for self-protection against fumonisins [193,197]

FUM18 CerS for self-protection against fumonisins [193,197]

FUM19 fum19 ABC transport protein as a repressor of FUM gene cluster [193,197]

FUM20 Not clear [234]

FUM21 fum21 ALT13 Zn(II)2Cys6 transcription factor [198]

absent SDR1 Short-chain dehydrogenase/reductase (SDR) [7]
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AAL-toxins are produced by A. alternata f. sp. Lycopersici, a specific pathotype of a common
plant fungal pathogen in a genus different from Aspergillus and Fusarium. This pathotype can produce
polyketide-derived compounds similar in structure to fumonisins produced by Fusarium species.
The ALT (AAL-toxins synthesis) genes are also located as a cluster on a conditional disposable (CD)
chromosome of ~1.0 Mb in all strains of the tomato pathotype of A. alternata from different countries [237].
Such CD chromosomes carrying a toxin biosynthesis gene cluster were also found in other pathotypes
of A. alternata [169]. They control other HSTs production and pathogenicity to their host. They could
maintain stably in a new genetic background to an expanded range of pathogenicity, which was verified
by a protoplast fusion test [238]. The AAL-toxin gene cluster includes at least 13 genes in a 120 kb
region, some of which showed significant similarity to the FUM gene cluster consisting of 17 genes in
a 45.5 kb region. However, the arrangement of genes in the ALT and FUM clusters differs between
these two groups of fungi. In addition, in one strain, As-27 of A. alternata, there were two sets of the
AAL-toxin biosynthetic gene cluster on the CD chromosome [169]. The synthesis of AAL-toxins was
found to be initiated by ALT1-encoded PKSs to produce the aminopentol backbone, which was then
modified by other enzymes [239]. The functional similarity between ALT1 and FUM1 was confirmed
when fumonisin biosynthesis in FUM1-disrupted F. verticillioides was restored when complemented by
the ALT1 from A. alternata [240]. Similarly, expression of ALT1 and production of AAL-toxins were also
found to be regulated by the global regulator LaeA [241]. AAL-toxin accumulation also benefits from
high water activity (0.995 aw) and high temperature (above 30 ◦C) during the incubation period of the
pathogen [242].

Interestingly, a PKS gene similar to FUM1 and orthologs of the FUM gene cluster were found in
the genome of Cochliobolus spp. by phylogenetic analysis of fungal polyketide. These fungi were also
speculated to produce a fumonisin or other SAMs [243,244]. To predict the potential distribution of
SAM production in fungi, Kim et al. proposed a hypothesis on SAM biosynthetic gene clusters based on
fumonisin biosynthesis model. This putative gene cluster should include a PKS, an aminotransferase,
and a dehydrogenase gene. Their model showed that sixty-nine species of the Fusarium genus and
species of twenty-four other fungal genera were predicted to have at least one SAM cluster [245].

9. Evolution of SAMs Production

Horizontal gene transfer (HGT) has been proposed as a major mechanism responsible for the
acquisition and evolution of fumonisins and AAL-toxins biosynthetic gene clusters among divergent
fungi [7,9,169,224]. In Fusarium, genome sequence analyses revealed that the fumonisin biosynthetic
genes (FUM) are clustered and show a consistent gene organization among most species. For example,
the FUM clusters in F. oxysporum, F. proliferatum, and F. verticillioides exhibit relatively little variability,
with the order and orientation of genes within the clusters all being the same as each other. In addition,
their sequence variability among the orthologues of coding regions from F. oxysporum and F. verticillioides
is relatively low [193,195]. The two different species of Aspergillus that produce fumonisins, Asp. niger
and Asp. welwitschiae, are also similar to each other in their gene order but different from that of the
FUM cluster in Fusarium [224]. At present, the tomato pathotype of A. alternata was the only species
of genus Alternaria capable of producing SAMs and this pathotype has clustered genes (involved in
AAL-toxin biosynthesis) similar to the FUM cluster in Fusarium [169,237]. Together, the gene structure
and sequence analyses suggested that the SAMs biosynthetic gene cluster likely originated in Fusarium
and transferred to Asp. niger and A. alternata by HGT. The similarities in chemical structure and
cytotoxicity on plants and animals between fumonisins and AAL-toxins are also supportive of this
hypothesis. However, the differences between FUM clusters and the AAL-toxins biosynthetic gene
cluster also suggested that there has been significant divergence between them.

Analyses of the FUM gene cluster among Fusarium species also revealed evidence for gene gain,
loss, and mutations of different genes. For example, not all Fusarium species can produce fumonisins.
Even for species that can synthesize fumonisins, some strains produce more than others under the same
experimental conditions, while other strains do not produce the toxins at all [9,196]. Indeed, for certain
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strains, while the FUM genes were detected, there was no detectable fumonisin. This was likely
due to the accumulation of mutations leading to the FUM genes being nonfunctional. For example,
several mutations have been found in FUM7 and FUM21 in F. fujikuroi [246]. Furthermore, several
fumonisin-non-producing Fusarium species lack the fumonisin biosynthetic genes but retain homologs
of several genes that flank the Fum cluster in F. verticillioides [247]. Interestingly, the flanking regions
of the FUM cluster often differ between species, consistent with the independent origins of the FUM
cluster, including independent acquisition and/or loss of the gene cluster by fumonisin-producing
species [195]. For example, fumonisin-non-producing strains of F. verticillioides isolated from banana
did not contain the functional fumonisin biosynthetic gene (FUM) cluster but did contain portions of
FUM21 and FUM19 flanking the cluster, both of which are the terminal genes at each end of the FUM
cluster. However, the banana strains are still pathogenic to banana, but they do not show the same
pathology as the fumonisin-producing strains do on maize. When a banana strain was co-transformed
with two overlapping cosmids containing the entire FUM gene cluster, fumonisin production and
pathogenicity on maize seedlings were recovered [248]. Similar to Fusarium, FB-non-producing
isolates of Asp. niger or other Aspergillus species also had an intact fum cluster or multiple patterns
of fum gene deletion, respectively (shown in Table 3). Similarly, the AAL-toxin-production gene
cluster in A. alternata was likely derived from Fusarium species by an HGT event. Evidence from the
ALT gene cluster distributed in isolates of A. alternata also supports this hypothesis of HGTs within
AAL-toxin-producing pathogens [237]. Together, these results suggest that there have been multiple
HGTs of the cluster between species, as well as duplication and loss of the whole or part of the cluster
after acquisition [9].

The hypothesis that multiple HGTs were involved in generating the current distribution of FUM
gene clusters is further supported by phylogenetic studies. Specifically, phylogenetic trees based on
genes from the FUM cluster often do not parallel that of the Fusarium species tree based on other
genes [9]. In Fusarium, the translation elongation factor (tef-1α) gene is the most commonly used marker
gene for taxonomic studies. However, sequences of the tef-1α are often insufficient for distinguishing
fumonisin-producing isolates from different countries and/or host plants. In contrast, DNA sequence
polymorphisms based on FUM1 often provide better resolutions among pathotypes [196,249–253].
For example, phylogenetic analysis of 38 F. proliferatum isolates originating from different hosts showed
that sequence variation among strains in the FUM1 gene was correlated with that of the host plants.
Specifically, phylogenetic analysis based on the partial FUM1 sequences differentiated the host-related
groups more clearly than that based on tef-1α sequences. The best distinguished group consists of
garlic-derived isolates and formed a separate branch on a FUM1-based dendrogram [196,254]. Similarly,
FUM1 sequence divergence analysis on F. proliferatum and F. verticillioides strains isolated from pea also
formed a distinct group when compared to strains derived from different host species [253].

Aside from gene differences among isolates from different host plants, variations of both toxigenic
potential and growth patterns may also differ between isolates derived from the same host plants.
While no difference was observed in FB levels measured among pea seeds, the FB productions differed
between selected strains of F. proliferatum in rice cultures [253]. Among all these test isolates of
F. proliferatum, the most varied group of isolates found so far were those isolated from maize [196,254].
Both the inter- and intra-specific variation in FBs synthesis level can at least partly be explained by the
sequence differences inside the FUM cluster.

In summary, the analyses so far suggested that the FUM gene cluster was responsible for fumonisin
biosynthesis. Mutation and deletion of some or all of the genes in the cluster could result in limited
or no production of fumonisin, leading to a weaker disease development of the pathogen on the
host plant. Sequence analyses showed that A. alternata has likely gained the ability for AAL-toxin
production due to HGT of the SAMs gene cluster from fumonisin-producing Fusarium species followed
by independent evolution in pathogen–host interaction. The divergent patterns of toxin biosynthesis
gene sequence divergence may explain the differences between fumonisins and AAL-toxins in both
their productions and their impacts on host–pathogen interactions.
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10. Detection Method of SAMs

A variety of methods have been developed to detect SAMs, including HPLC with
fluorescence/evaporative light scattering detection or mass spectrometry (MS), thin-layer
chromatography (TLC), ELISA, Fourier transform near infrared (FT-NIR) spectroscopy, and so
on [255–263]. While these traditional analytical methods were designed to detect and quantify
known compounds for which standards are available, there is clear evidence that many unknown
derivatives may exist in food and food products and some of these could be toxic to animals, including
humans [39]. In 2015, a semi-targeted method combining product ion filtering and rapid polarity
switching was designed for fast detection of all known fumonisins and AAL-toxins. Some new
structurally related emerging toxins were also discovered by this method [26].

Aside from method development that targets potentially novel SAMs not reported before,
there are also developments for efficient methods that target the detection of known SAMs. Indeed,
several new methods based on immunoassay were developed for simple, rapid, and ultrasensitive
on-site quantification of SAMs. For example, one method used chemiluminescent biosensors
integrating a competitive lateral flow immunoassay and a charge-coupled device camera to detect
FBs [264,265]. Another method uses gold nanoparticles or quantum dots nanobeads based on
monoclonal antibodies against fumonisin and allows rapid detection of this mycotoxin in one
step [266–268]. Furthermore, a loop-mediated isothermal amplification (LAMP) assay, based on the
detection of fum10, could specifically detect the genes involved in FB2 biosynthesis in Aspergillus
species that could be evaluated using the naked eye in a short time [269]. This method was also applied
to detect FB1 targeting the FUM1 gene in Fusarium [270]. The direct detection of genes involved in
the biosynthesis of SAMs in agriculture production systems allows broad evaluations of the potential
fumonisin-producing strains in food and feed products. To this end, multiplex PCR has shown great
promise for detection of multiple fumonisin-producing Fusarium and Aspergillus species [271–273].

While the current focuses are on the known SAMs with known toxicities, there is increasing
evidence that some of these toxins are masked and not easily detected or quantified. To ensure food
safety, both the free forms and the masked forms of mycotoxins should be detected and quantified.
The masked mycotoxins are usually modified forms of the mycotoxins by plant enzymes during
infection and are not typically detectable during routine analysis. For example, the masked mycotoxins
may conjugate with polar substances, store in the vacuole in the soluble form, or bind to macromolecules,
and thus change their physiological properties. While the masked mycotoxins are often less toxic
than the unmasked forms, they could be easily converted to the unmasked toxin forms, including
during food digestion [274,275]. The most representative masked mycotoxins are the modified forms
of Zearalenone (ZEN), DON, and fumonisins [276–279]. The so-called hidden fumonisins could form
non-covalent bonds with food macro-constituents such as those in starch-based products. In certain
situations, the masked fumonisins may be present in food at quantities much higher than the free
forms. Many factors could influence the relative portions of the SAMs in masked forms, including
crop growth conditions and food storage and processing techniques [279–282]. These hidden dangers
require that novel method(s) be developed to allow the detection and quantification of the masked
forms of SAMs as well as other mycotoxins.

11. Concluding Remarks

SAMs are highly toxic fungal compounds that have attracted significant attention from broad
communities. They have toxicities to both plants and animals. These SAMs-producing pathogens
are widely distributed in nature and closely related to agricultural production. Since its discovery
in the mid-1980s, fumonisin has been among the mycotoxins with the greatest concern. As of now,
Scopus database citations of fumonisin are above 5000, including 500+ reviews. SAMs are a series of
compounds with structural similarity to sphingosine. As detection methods improve, additional new
analogs have been continuously discovered. Research so far has shown that the toxicity and activity of
SAMs are dependent on their structures. In this review, we summarized the detoxification method
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based on their structural properties using chemical, biological, and physical strategies. The toxicity
of SAMs is mostly due to their inhibitory effects on CerS, disruption on sphingolipid metabolism,
and initiation on PCD. Except for the adverse effect of SAMs on animals and humans, its phytotoxicity
(e.g., AAL-toxin) could potentially be used for herbicide development and a model for studying
the molecular mechanism of PCD in plants. Horizontal gene transfers on the SAMs biosynthesis
gene cluster seemed widespread in these toxin-producing fungi, especially among Fusarium spp.
Such phylogenetic distribution patterns suggest that there are potentially other fungi capable of
producing SAMs, including their various modified forms. These and other issues require continued
efforts from the scientific community on SAMs.
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on growth and fumonisins biosynthesis in Fusarium proliferatum. Toxins 2020, 12, 95. [CrossRef]

221. Johnson, L.; Harrison, J.H.; Hunt, C.; Shinners, K.; Doggett, C.G.; Sapienza, D. Nutritive value of corn silage
as affected by maturity and mechanical processing: A contemporary review. J. Dairy Sci. 1999, 82, 2813–2825.
[CrossRef]

222. Mansfield, M.A.; Archibald, D.D.; Jones, A.D.; Kuldau, G.A. Relationship of sphinganine analog mycotoxin
contamination in maize silage to seasonal weather conditions and to agronomic and ensiling practices.
Phytopathology 2007, 97, 504–511. [CrossRef]

223. Baker, S.E. Aspergillus niger genomics: Past, present and into the future. Med. Mycol. 2006, 44, 17–21.
[CrossRef]

224. Brown, D.W.; Baker, S.E. Mycotoxins: A fungal genomics perspective. Methods Mol. Biol. 2017, 1542, 367–379.
[CrossRef] [PubMed]

225. Noonim, P.; Mahakarnchanakul, W.; Nielsen, K.F.; Frisvad, J.C.; Samson, R.A. Fumonisin B2 production by
Aspergillus niger in Thai coffee beans. Food Addit. Contam. A 2009, 26, 94–100. [CrossRef] [PubMed]

226. Månsson, M.; Klejnstrup, M.L.; Phipps, R.K.; Nielsen, K.F.; Frisvad, J.C.; Gotfredsen, C.H.; Larsen, T.O.
Isolation and NMR characterization of fumonisin b2 and a new fumonisin B6 from aspergillus niger. J. Agric.
Food Chem. 2010, 58, 949–953. [CrossRef] [PubMed]

227. Palencia, E.R.; Mitchell, T.R.; Snook, M.E.; Glenn, A.E.; Gold, S.; Hinton, D.M.; Riley, R.T.; Bacon, C.W.
Analyses of black Aspergillus species of peanut and maize for ochratoxins and fumonisins. J. Food Prot. 2014,
77, 805–813. [CrossRef]

228. Desjardins, A.E.; Plattner, R.D.; Proctor, R.H. Linkage among genes responsible for fumonisin biosynthesis in
Gibberella fujikuroi mating population A. Appl. Environ. Microb. 1996, 62, 2571–2576. [CrossRef]

229. Ding, Y.; Bojja, R.S.; Du, L. Fum3p, a 2-Ketoglutarate-Dependent Dioxygenase Required for C-5 Hydroxylation
of Fumonisins in Fusarium verticillioides. Appl. Environ. Microb. 2004, 70, 1931–1934. [CrossRef]

230. Plattner, R.D.; Desjardins, A.E.; Leslie, J.F.; Nelson, P.E. Identification and characterization of strains of
Gibberella fujikuroi mating population A with rare fumonisin production phenotypes. Mycologia 1996, 88,
416–424. [CrossRef]

231. Uhlig, S.; Busman, M.; Shane, D.S.; Rønning, H.; Rise, F.; Proctor, R. Identification of early fumonisin
biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides. J. Agric. Food Chem.
2012, 60, 10293–10301. [CrossRef]

232. Li, Y.; Lou, L.; Cerny, R.L.; Butchko, R.A.E.; Proctor, R.H.; Shen, Y.; Du, L. Tricarballylic ester formation
during biosynthesis of fumonisin mycotoxins in Fusarium verticillioides. Mycology 2013, 4, 179–186. [CrossRef]

233. Zaleta-Rivera, K.; Xu, C.; Yu, F.; Butchko, R.A.E.; Proctor, R.H.; Hidalgo-Lara, M.E.; Raza, A.; Dussault, P.H.;
Du, L. A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of
tricarballylic esters in the biosynthesis of fumonisins. Biochemistry 2006, 45, 2561–2569. [CrossRef]

234. Brown, D.W.; Cheung, F.; Proctor, R.H.; Butchko, R.A.E.; Zheng, L.; Lee, Y.; Utterback, T.; Smith, S.;
Feldblyum, T.; Glenn, A.E.; et al. Comparative analysis of 87,000 expressed sequence tags from the
fumonisin-producing fungus Fusarium verticillioides. Fungal Genet. Biol. 2005, 42, 848–861. [CrossRef]
[PubMed]

235. Susca, A.; Proctor, R.H.; Morelli, M.; Haidukowski, M.; Gallo, A.; Logrieco, A.F.; Moretti, A. Variation
in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in
Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins. Front. Microbiol.
2016, 7. [CrossRef] [PubMed]

236. Yamada, O.; Machida, M.; Hosoyama, A.; Goto, M.; Takahashi, T.; Futagami, T.; Yamagata, Y.; Takeuchi, M.;
Kobayashi, T.; Koike, H.; et al. Genome sequence of Aspergillus luchuensis NBRC 4314. DNA Res. 2016, 23,
507–515. [CrossRef] [PubMed]

237. Akagi, Y.; Akamatsu, H.; Otani, H.; Kodama, M. Horizontal chromosome transfer, a mechanism for the
evolution and differentiation of a plant-pathogenic fungus. Eukaryot. Cell 2009, 8, 1732–1738. [CrossRef]

238. Akagi, Y.; Taga, M.; Yamamoto, M.; Tsuge, T.; Fukumasa-Nakai, Y.; Otani, H.; Kodama, M. Chromosome
constitution of hybrid strains constructed by protoplast fusion between the tomato and strawberry pathotypes
of Alternaria alternata. J. Gen. Plant Pathol. 2009, 75, 101–109. [CrossRef]

http://dx.doi.org/10.3390/toxins11050289
http://www.ncbi.nlm.nih.gov/pubmed/31121925
http://dx.doi.org/10.3390/toxins12020095
http://dx.doi.org/10.3168/jds.S0022-0302(99)75540-2
http://dx.doi.org/10.1094/PHYTO-97-4-0504
http://dx.doi.org/10.1080/13693780600921037
http://dx.doi.org/10.1007/978-1-4939-6707-0_24
http://www.ncbi.nlm.nih.gov/pubmed/27924551
http://dx.doi.org/10.1080/02652030802366090
http://www.ncbi.nlm.nih.gov/pubmed/19680876
http://dx.doi.org/10.1021/jf902834g
http://www.ncbi.nlm.nih.gov/pubmed/20028011
http://dx.doi.org/10.4315/0362-028X.JFP-13-321
http://dx.doi.org/10.1128/AEM.62.7.2571-2576.1996
http://dx.doi.org/10.1128/AEM.70.4.1931-1934.2004
http://dx.doi.org/10.1080/00275514.1996.12026669
http://dx.doi.org/10.1021/jf302967b
http://dx.doi.org/10.1080/21501203.2013.874540
http://dx.doi.org/10.1021/bi052085s
http://dx.doi.org/10.1016/j.fgb.2005.06.001
http://www.ncbi.nlm.nih.gov/pubmed/16099185
http://dx.doi.org/10.3389/fmicb.2016.01412
http://www.ncbi.nlm.nih.gov/pubmed/27667988
http://dx.doi.org/10.1093/dnares/dsw032
http://www.ncbi.nlm.nih.gov/pubmed/27651094
http://dx.doi.org/10.1128/EC.00135-09
http://dx.doi.org/10.1007/s10327-009-0149-1


J. Fungi 2020, 6, 312 32 of 34

239. Akamatsu, H.; Otani, H.; Kodama, M. Characterization of a gene cluster for host-specific AAL-toxin
biosynthesis in the tomato pathotype of Alternaria alternata. Fungal Genet. Rep. 2003, 50, 355. [CrossRef]

240. Zhu, X.; Vogeler, C.; Du, L. Functional complementation of fumonisin biosynthesis in FUM1-disrupted
Fusarium verticillioides by the AAL-toxin Polyketide synthase gene ALT1 from Alternaria alternata f. sp.
Lycopersici. J. Nat. Prod. 2008, 71, 957–960. [CrossRef]

241. Takao, K.; Akagi, Y.; Tsuge, T.; Harimoto, Y.; Yamamoto, M.; Kodama, M. The global regulator LaeA controls
biosynthesis of host-specific toxins, pathogenicity and development of Alternaria alternata pathotypes. J. Gen.
Plant Pathol. 2016, 82, 121–131. [CrossRef]

242. Vaquera, S.; Patriarca, A.; Cabrera, G.; Fernández Pinto, V. Temperature and water activity influence on
simultaneous production of AAL toxins by Alternaria arborescens on tomato medium. Eur. J. Plant Pathol.
2017, 148, 1003–1009. [CrossRef]

243. Kroken, S.; Glass, N.L.; Taylor, J.W.; Yoder, O.C.; Turgeon, B.G. Phylogenomic analysis of type I polyketide
synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. USA 2003, 100, 15670–15675.
[CrossRef]

244. Condon, B.J.; Leng, Y.; Wu, D.; Bushley, K.E.; Ohm, R.A.; Otillar, R.; Martin, J.; Schackwitz, W.; Grimwood, J.;
MohdZainudin, N.A.I.; et al. Comparative Genome Structure, Secondary Metabolite, and Effector Coding
Capacity across Cochliobolus Pathogens. PLoS Genet. 2013, 9. [CrossRef] [PubMed]

245. Kim, H.S.; Lohmar, J.M.; Busman, M.; Brown, D.W.; Naumann, T.A.; Divon, H.H.; Uhlig, S.; Proctor, R.H.
Identification and distribution of gene clusters required for synthesis of sphingolipid metabolism inhibitors
in diverse species of the filamentous fungus Fusarium. BMC Genom. 2020, 21. [CrossRef]

246. Sultana, S.; Kitajima, M.; Kobayashi, H.; Nakagawa, H.; Shimizu, M.; Kageyama, K.; Suga, H. A natural
variation of fumonisin gene cluster associated with fumonisin production difference in Fusarium fujikuroi.
Toxins 2019, 11, 200. [CrossRef] [PubMed]

247. Fumero, M.V.; Villani, A.; Susca, A.; Haidukowski, M.; Cimmarusti, M.T.; Toomajian, C.; Leslie, J.F.;
Chulze, S.N.; Moretti, A. Fumonisin and Beauvericin Chemotypes and Genotypes of the Sister Species
Fusarium subglutinans and Fusarium temperatum. Appl. Environ. Microb. 2020, 86. [CrossRef] [PubMed]

248. Glenn, A.E.; Zitomer, N.C.; Zimeri, A.M.; Williams, L.D.; Riley, R.T.; Proctor, R.H. Transformation-mediated
complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production
and pathogenicity on maize seedlings. Mol. Plant Microbe Interact. 2008, 21, 87–97. [CrossRef]

249. Geiser, D.M.; Jiménez-Gasco, M.D.M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.;
Kuldau, G.A.; O’Donnell, K. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur.
J. Plant Pathol. 2004, 110, 473–479. [CrossRef]

250. Kristensen, R.; Torp, M.; Kosiak, B.; Holst-Jensen, A. Phylogeny and toxigenic potential is correlated in
Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycol. Res.
2005, 109, 173–186. [CrossRef]

251. Wang, J.; Wang, X.; Zhou, Y.; Du, L.; Wang, Q. Fumonisin detection and analysis of potential
fumonisin-producing Fusarium spp. in Asparagus (Asparagus officinalis L.) in Zhejiang province of China.
J. Sci. Food Agric. 2010, 90, 836–842. [CrossRef]

252. Jurado, M.; Marín, P.; Callejas, C.; Moretti, A.; Vázquez, C.; González-Jaén, M.T. Genetic variability and
Fumonisin production by Fusarium proliferatum. Food Microbiol. 2010, 27, 50–57. [CrossRef]
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