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Abstract: Mitochondria are important organelles responsible for energy production, redox home-
ostasis, oncogenic signaling, cell death, and apoptosis. Deregulated mitochondrial metabolism and
biogenesis are often observed during cancer development and progression. Reports have described
the crucial roles of mitochondria in urothelial carcinoma (UC), which is a major global health chal-
lenge. This review focuses on research advances in the role of mitochondria in UC. Here, we discuss
the pathogenic roles of mitochondria in UC and update the mitochondria-targeted therapies. We aim
to offer a better understanding of the mitochondria-modulated pathogenesis of UC and hope that
this review will allow the development of novel mitochondria-targeted therapies.

Keywords: mitochondrial metabolism; redox homeostasis; apoptosis; tumorigenesis; urothelial
carcinoma

1. Introduction

Urothelial carcinoma (UC) is a malignancy of the urinary system lining. The majority
of UC cases (approximately 90–95%) arise in the urinary bladder. The remaining 5–10%
are upper tract urothelial carcinomas (UTUCs), which refer to malignancies that originate
from the renal calyceal system to the distal ureter [1,2]. Bladder cancer is indeed a major
health threat, with an estimated 573,278 incident cases and 158,785 deaths worldwide
in 2020 [3]. Although approximately 75% of newly diagnosed cases are non-muscle-
invasive, 70% of tumors will recur, and 20% of the recurrences will progress to muscle-
invasive disease that carries a high risk of tumor progression or metastasis. The 5-year
survival rate of patients with metastatic disease is only 5% [4–6]. UTUC and bladder cancer
are biologically similar and possess certain common risk factors, such as smoking and
occupational exposure. However, they represent distinct entities owing to anatomical and
practical differences [1,7–9]. The overall 5-year survival rate for UTUC is approximately
59–67% [10,11] and has been decreasing in recent years [12,13]. Depending on the type
of UC and the stage of the disease, the mainstay of treatment includes surgery, radiation
therapy, chemotherapy, and immunotherapy. Despite the great progress made in the
diagnosis and treatment of UC, especially the rapid advances in immunotherapy, targeted
therapy, and combinations [4,14–16], the high recurrence and mortality rates indicate that
there are unmet needs in the management of UC. Revisiting the pathogenesis of UC may
be a solution to the current bottleneck.

Mitochondria are important organelles responsible for energy production, redox
homeostasis, oncogenic signaling, cell death, and apoptosis. Mitochondrial metabolism
comprises pathways that generate adenosine triphosphate (ATP) and produce compo-
nents necessary for macromolecule biosynthesis. It has become clear that mitochondrial
metabolism plays an influential role in governing cell fate and function by controlling gene
expression through the release of metabolites and reactive oxygen species (ROS) [17]. The
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compartmentalization of mitochondrial protein complexes and enzymes is essential for the
maintenance of signaling pathways within the cell. The kidneys are second only to the heart
in terms of mitochondrial abundance. In addition to their crucial roles in renal physiology,
mitochondria have been recognized as key participants in kidney cancers [18–20]. Reduced
mitochondrial DNA (mtDNA) content has been observed in renal cell carcinoma (RCC) [21].
In addition, impaired mitochondrial respiratory capacity has been observed in clear cell
RCC [22]. Altered mitochondria-regulated apoptotic pathways have been reported in
UTUC [23,24].

This review focuses on research advances in the role of mitochondria in UC. We aimed
to offer a better understanding of the link between mitochondria and the pathogenesis of
UC. We hope that this review will facilitate the development of novel mitochondria-targeted
therapies for UC.

2. Roles of Mitochondria in UC
2.1. Alterations of mtDNA in UC

MtDNA mutations tend to be induced by oxidative damage, defects in nuclear genes
in mtDNA stability and replication, altered nucleotide biosynthesis or transport, and ex-
ogenous sources (e.g., tobacco smoking, ionizing radiation, ozone, pesticides, and heavy
metals) [25,26]. mtDNA mutations have been identified in 64% of bladder cancers and
demonstrated in cancer tissue in the form of single-base deletions, point mutations, and
insertions in the non-coding D-loop region or deletions in the coding regions of proteins
involved in oxidative phosphorylation [27]. For example, among the mitochondrial genes
cytochrome B, ATPase6, ND1, and the D310 region, G14905A, G8697A, C15452A, and
A15607G polymorphisms were reported to be more frequent in UC patients than in con-
trols [28]. The tumorigenic role of mtDNA mutations in UC was demonstrated for the
21-bp deletion in the cytochrome B (CYTB) gene. This mutation was found in urine samples
and cancer tissues from patients with bladder cancer [27]. Overexpression of the 21-bp
deletion mutation of the CYTB gene induces rapid cell cycle progression through upreg-
ulation of the nuclear factor-kappa B2 signaling pathway and eventually leads to tumor
growth in vivo and in vitro [29]. Additionally, mtDNA mutations in the electron transport
chain (ETC) have been reported. Mutations in the NADH dehydrogenase subunit 4 (ND4)
gene have been identified in UTUC. Approximately 85% of mutated ND4 exists before the
development of UTUC [30].

2.2. MtDNA Copy Number in UC

MtDNA copy number has been examined in bladder cancer and adjacent normal
tissues using next-generation DNA sequencing. Compared with cells from normal tissues,
bladder cancer cells were found to have lower mtDNA content. However, this reduction
in mtDNA copy number was not accompanied by a reduction in mitochondrial gene
expression. This discrepancy suggests that the expression of mitochondrial genes is not
always correlated with mtDNA copy number and that mitochondrial activity may not be
suppressed in bladder cancer [31].

2.3. Impact of Altered Expression of Mitochondrial Proteins on UC

Lon protease is an ATP-dependent serine protease in the mitochondrial matrix that is
responsible for the degradation of abnormal proteins and maintenance of the mitochondrial
genome. In cancers, Lon protease is essential for the proliferation and survival of cancer
cells. Lon upregulation also contributes to metabolic reprogramming, facilitating the switch
from respiratory to glycolytic metabolism in the cancer microenvironment [32]. In patients
with bladder cancer, Lon protease expression is substantially higher in cancerous tissue
than in non-cancerous tissue and is directly related to cancer grade and stage [33]. The
mitochondrial GTPase mitofusin-2 (MFN2) is the key regulator of mitochondrial fusion at
the outer mitochondrial membrane. Mitochondrial fusion/fission machinery plays a crucial
role in mitochondrial quality control. Changes in mitochondrial fusion/fission machinery
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have been demonstrated in an increasing number of diseases including cancer [34,35]. The
downregulation of MFN2 expression has been demonstrated in bladder cancer. In bladder
cancer cell lines, MFN2 overexpression has been shown to inhibit cell proliferation by ar-
resting the cell cycle and inducing apoptosis via caspase-3 [36]. Mitochondrial transcription
factor A (TFAM) is a mitochondrial protein required for mtDNA stability, transcription, and
replication [37,38]. TFAM expression was significantly enhanced in bladder cancer cells and
directly related to cancer stage. In vitro studies have shown TFAM to induce bladder cancer
cell proliferation, migration, and colony formation [39]. Leucine-rich pentatricopeptide
repeat motif-containing protein (LRPPRC) is a multifunctional protein localized to the
mitochondria, endoplasmic reticulum, outer and inner nuclear membranes, nucleoplasm,
and cytoskeleton [40,41]. Besides being a prognostic factor, LRPPRC has recently been
demonstrated to enhance tumorigenesis in bladder cancer [42].

The mitochondrial fusion/fission machinery is regulated by other genes. MicroRNA-
98 (miR-98) regulates this fusion/fission machinery and affects mitochondrial membrane
potential (MMP) in cancers. MiR-98 is known to be upregulated in bladder cancer cell
lines and promote proliferation [43]. The role of miR-98 in chemoresistance depends on
longevity assurance homolog 2 of yeast LAG1 (LASS2). LASS2 is a potent tumor suppressor
that induces mitochondrial fusion and inhibits MMP. LASS2 consumption may lead to the
proliferation and invasion of bladder cancer cells [44], and LASS2 negativity is associated
with poor prognosis in bladder cancer [45].

2.4. Mitochondria Regulate Energy Metabolism in UC

Mitochondria participate in the metabolic reprogramming of cancer cells (Figure 1).
The Warburg effect, which was first reported by Otto Warburg in 1926, describes that tumor
cells uptake substantial glucose and undergo glycolysis as an energy supplement, even
with sufficient oxygen. Aerobic glycolysis results in increased production of cytosolic
lactate [46]. Non-neoplastic cells produce energy by glucose oxidation via mitochondria,
which oxidizes pyruvate to acetyl-co-enzyme-A under aerobic conditions. In this situation,
pyruvate dehydrogenase (PDH) enables pyruvate to enter mitochondria. Carcinogenesis
is preferred in hypoxic tissues because glucose consumption is low. Hypoxia-inducible
factor (HIF) 1α is then activated together with upregulated glucose transporters (GLUTs)
and pyruvate dehydrogenase kinase (PDK). The activation of PDK leads to the inhibition
of PDH, and thus, the inhibition of glycolysis. In UC, PDK3 overexpression has recently
been linked to poor oncological outcomes. Together with the overexpression of PDK3,
these co-upregulated genes were associated with DNA repair and replication. These results
suggest that PDK3 plays a crucial role in the development and proliferation of UC [47].

The mitochondrial matrix hosts the tricarboxylic acid (TCA) cycle. In UC, the mito-
chondrial TCA cycle produces reducing equivalents to fuel ETC and generate biosynthetic
intermediates that are necessary for cell proliferation [48,49]. In addition to lactate, other
substrates, including glutamine, are known to fuel the TCA cycle and participate in en-
ergy production when coupled with oxidative phosphorylations [50–52]. By interacting
with heterogeneous nuclear ribonucleoprotein (hnRNP) I/L to upregulate glutamate pyru-
vate transaminase (GPT2) expression, long non-coding RNA urothelial cancer associated
1 (UCA1) has recently been demonstrated to promote glutamine-driven anaplerosis in
bladder cancer [53].



Biomedicines 2022, 10, 2453 4 of 13Biomedicines 2022, 10, x FOR PEER REVIEW 4 of 13 
 

 
Figure 1. Mitochondria regulate metabolic reprogramming in UC. The major pathways of meta-
bolic reprogramming in UC are enhanced aerobic glycolysis and glutaminolysis. Aerobic glycoly-
sis leads to increased cytosolic lactate production. Glutaminolysis supports cancer cells by 
providing energy and pools of TCA cycle intermediates for biosynthesis of proteins, lipids, and 
nucleotides Abbreviations: GLUT, glucose transporter; GPT, glutamate pyruvate transaminase; 
MCT, monocarboxylate transporter; OAA, oxaloacetate; PDH, pyruvate dehydrogenase; PDK, 
pyruvate dehydrogenase kinases; TCA, tricarboxylic acid. The figure was created with BioRen-
der.com. 

2.5. Altered Mitochondrial ROS Production and ETC Activity in UC 
Redox homeostasis is a crucial mechanism in the progression and development of 

cancers [54]. Mitochondria generate ROS, which serve as toxic species for cellular mac-
romolecules and regulate metabolic pathways [48]. Mitochondrial ROS are produced at 
the ETC by the leakage of electrons at the ubiquinone-binding sites of Complex I and 
Complex III [18,55]. Increased levels of ROS are related to increased metabolic activities 
and altered antioxidant capacities, which are often found in malignant conditions and 
interact with tumor growth and expansion [26,56]. Huang et al. investigated the urinary 
bladder of Sprague–Dawley rats after administering N-butyl-N-(4-hydroxybutyl) ni-
trosamine (BBN), a carcinogen, for eight weeks to evaluate tumorigenesis [57]. They 
measured the activities of components of the ETC, including NADH cytochrome c re-
ductase (NCCR, Complex I+III), succinate cytochrome c reductase (SCCR, Complex 

Figure 1. Mitochondria regulate metabolic reprogramming in UC. The major pathways of metabolic
reprogramming in UC are enhanced aerobic glycolysis and glutaminolysis. Aerobic glycolysis leads
to increased cytosolic lactate production. Glutaminolysis supports cancer cells by providing energy
and pools of TCA cycle intermediates for biosynthesis of proteins, lipids, and nucleotides Abbrevia-
tions: GLUT, glucose transporter; GPT, glutamate pyruvate transaminase; MCT, monocarboxylate
transporter; OAA, oxaloacetate; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase
kinases; TCA, tricarboxylic acid. The figure was created with BioRender.com.

2.5. Altered Mitochondrial ROS Production and ETC Activity in UC

Redox homeostasis is a crucial mechanism in the progression and development of
cancers [54]. Mitochondria generate ROS, which serve as toxic species for cellular macro-
molecules and regulate metabolic pathways [48]. Mitochondrial ROS are produced at the
ETC by the leakage of electrons at the ubiquinone-binding sites of Complex I and Complex
III [18,55]. Increased levels of ROS are related to increased metabolic activities and altered
antioxidant capacities, which are often found in malignant conditions and interact with
tumor growth and expansion [26,56]. Huang et al. investigated the urinary bladder of
Sprague–Dawley rats after administering N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN),
a carcinogen, for eight weeks to evaluate tumorigenesis [57]. They measured the activities
of components of the ETC, including NADH cytochrome c reductase (NCCR, Complex
I+III), succinate cytochrome c reductase (SCCR, Complex II+III), and cytochrome c oxidase
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(CCO, Complex IV). The activities of all the NCCR, SCCR, and CCO were elevated by
exposure to BBN, indicating a positive correlation with tumorigenesis. However, NCCR
and SCCR activities reduced rapidly when BBN was discontinued, whereas CCO activity
plateaued at 18 weeks despite the withdrawal of BBN. These results demonstrated that,
compared with NCCR and SCCR, the CCO enzyme is more relevant to the progression
of tumorigenesis in bladder cancer [57]. Figure 2 depicts the ETC in UC to facilitate the
understanding of the altered ETC activity discussed above.
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Figure 2. Schematic diagram of ETC in UC. ETC is located on the inner mitochondrial membrane and
composed of five protein complexes. Mutations in the ND4 subunit of Complex I are found in UC.
Complex IV is associated with progression and tumorigenesis UC. Abbreviations: CCO, cytochrome
c oxidase; ND4, NADH dehydrogenase subunit 4. The figure was created with BioRender.com.

The majority of intracellular ROS are produced by mitochondria. Although the sources
of ROS have not been specified in some studies, a few proteins have been reported to in-
crease ROS generation in UC. The expression of membrane-associated leukotriene B4
receptor 2 (LTB4R2) is upregulated during the progression of bladder cancer. LTB4R2
enhances the expression of NADPH oxidase-1 and -4 (NOX-1 and NOX-4), which are
members of the NADPH oxidase family known to generate ROS. The increased produc-
tion of ROS and the activation of NF-κB further promote the invasion and metastasis of
bladder cancer both in vivo and in vitro [58,59]. In addition, human alkylated DNA repair
protein alkB homolog 8 (ALKBH8) is reported to be associated with the tumorigenesis
of bladder cancer. In in vitro studies, silencing of ALKBH8 reduced ROS production via
downregulation of NOX-1 and induced apoptosis via subsequent activation of p38 and
c-Jun NH(2)-terminal kinase (JNK) [60].

2.6. Mitochondria Regulate Cell Death in UC

Mitochondria are involved in apoptosis, necrosis, and necroptosis [48]. Proteins of the
B-cell lymphoma-2 (BCL-2) family bind voltage-dependent anion channels to accelerate the
release of cytochrome c and induce apoptosis [61]. Myeloid leukemia cell differentiation
protein-1 (MCL1) and BCL-xL are found in various mitochondrial subcompartments and
unleash the antiapoptotic activities by competing with proapoptotic members of the BCL-2
family [48]. The BCL-2/BAX ratio is correlated with cytochrome c and apoptosis-inducing
factors (AIFs), which determine the capability for mitochondria-mediated apoptosis [29].
The functional roles of BCL-2 in UC have also been studied. BCL-2 overexpression is
associated with poor prognosis, early recurrence of bladder cancer [62–64], and resistance
to gene therapy and chemotherapy [65,66]. In patients with bladder cancer receiving intrav-
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esical chemotherapy after tumor resection, early relapse can be observed in patients with a
BCL-2/BAX ratio > 1 and a p53 gene mutation [62]. Patients with BCL-2-positive bladder
cancer have significantly worse survival than those with BCL-2-negative tumors [63]. Re-
cently, apoptotic protease-activating factor 1 (APAF1) in UC has been reported to be the
direct target gene of miR-1270, which could induce apoptosis and enhance the cisplatin
chemosensitivity of cancer cells [67]. In addition, in UC, the expression of X-linked inhibitor
of apoptosis (XIAP) is higher at a later TMN stage [68]. The second mitochondria-derived
activator of caspases (SMAC) competitively binds to XIAP, leading to the release of caspases
and allowing the execution of apoptosis [69,70]. Figure 3 illustrates mitochondria-regulated
apoptosis in UC.
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Figure 3. Mitochondria regulate apoptosis in UC. Abbreviations: APAF1, apoptotic protease-
activating factor 1; BAK, Bcl-2 homologous antagonist/killer; BAX, Bcl-2-associated X protein; BCL,
B-cell lymphoma; BH3, Bcl-2 homology domain 3; BID, BH3 interacting domain death agonist; FADD,
Fas-associated via death domain; MCL1, myeloid leukemia cell differentiation protein-1; MOMP,
mitochondrial outer membrane permeabilization; SMAC, the second mitochondria-derived activator
of caspases; XIAP, X-linked inhibitor of apoptosis. The figure was created with BioRender.com.

2.7. Mitochondria Regulate Cell Proliferation in UC

A distinguished feature of cancers is their sustained cellular proliferation resulting
from altered expression of constitutive telomerase that determines the maintenance of
telomere length. It is known that telomerase reverse transcriptase (TERT) shuttles from
the nucleus to the mitochondria upon oxidative stress, preserving mitochondrial functions
and decreasing oxidative stress, thus protecting mtDNA and nuclear DNA (nDNA) from
oxidative damage to avoid apoptosis [71,72]. In a recent report, mutations in the TERT
promoter accounted for 84% of UC patients [73]. A meta-analysis further elucidated
that bladder cancer patients carrying TERT promoter mutations have a greater risk of
recurrence [74]. Using algorithmic inference from cross-sectional data, Hayashi et al.
suggested that TERT promoter mutations play a role in the tumorigenesis of bladder
cancer [75].
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3. Therapeutic Strategies Targeting Mitochondria in UC
3.1. Targeting the TCA

Dichloroacetate (DCA) is a PDK inhibitor that can activate PDH, promote glucose
oxidation, and further decrease tumor growth and angiogenesis. It has been demonstrated
to decrease proliferation rates, increase pyruvate oxidation, and increase mitochondrial
activity in UC [76]. Recently, metformin was shown to work synergistically with DCA to
inhibit proliferation and reduce metabolic activity in a canine UC cell line [77].

Vitamin K2 has also been shown to exert anticancer effects. Recently, vitamin K2
was reported to promote glycolysis in UC cells by enhancing glucose consumption and
lactate production and inhibiting the TCA cycle by reducing the amount of acetyl-CoA.
This vitamin K2-induced metabolic stress triggers AMPK-dependent autophagic cell death
in UC cells [78].

3.2. Restoring Mitochondria-Driven Apoptosis

Induction of apoptosis is a principal anticancer strategy used to eliminate cancer cells.
Understanding apoptotic signaling pathways may assist in the discovery of novel thera-
peutic targets [79,80]. To date, three signaling mechanisms involving apoptosis have been
discovered: the death-receptor-mediated extrinsic pathway [81], mitochondria-mediated
intrinsic pathway [82], and endoplasmic reticulum (ER) stress-mediated pathway [83].
Mitochondria play an important role in apoptosis. AIF is the first caspase-independent
cell death effector that interacts with DNA and induces nuclear condensation and DNA
fragmentation. To explore novel and effective therapies for UC, a plethora of studies on the
potential mechanisms of apoptosis have been performed.

Taking advantage of antisense oligodeoxynucleotides (AS-ODNs) to downregulate
BCL-2 can partially sensitize bladder cancers to cisplatin and radiotherapy [84,85]. Studies
have shown that BCL-2, BAX, and p53 contribute to drug sensitivity and apoptosis status
and may help predict disease progression or recurrence [62,64]. In advanced bladder
cancer, quantifying BCL-2 may help select target patients who may benefit from neoadju-
vant chemotherapy [63]. For example, cisplatin is an important chemotherapeutic agent
that is used to treat UC. Cisplatin induces apoptosis in a mitochondria-dependent and
death-receptor-independent manner. BCL-2 overexpression inhibits cisplatin-induced BAX
translocation and downstream events. Small interfering RNA (siRNA) targeting BCL-2 may
help reverse cisplatin resistance in bladder cancer [66]. Bolenz et al. studied the application
of AS-ODNs targeting BCL-2 and BCL-xL and revealed an effective improvement in the
cytotoxicity of chemotherapeutic agents, not merely cisplatin but also gemcitabine, mito-
mycin C, and paclitaxel. The combined treatment resulted in notably higher death rates in
nearly all cell lines [85].

Silibinin, a natural flavonoid, inhibits the growth of UC cells and induces caspase-
dependent and caspase-independent apoptosis, which is associated with disruption of
MMP and selective release of AIF and cytochrome c from mitochondria. In addition to
inducing apoptosis via caspase activation in human UC cells, silibinin has been proven to
be an intravesical chemotherapy for the inhibition of carcinogenesis and the progression
of bladder cancer [86]. Additionally, the orally-fed silibinin has been reported to prevent
N-butyl-N-(4-hydroxybutyl) nitrosamine (OH-BBN)-induced bladder carcinogenesis in
mice. Accumulating evidence indicates that silibinin is an effective agent for chemotherapy
against bladder tumor cells [86–89], as well as prostate [90,91], breast [92,93], skin [94],
colon [95], lung [96], and kidney [97,98].

Baicalein is a flavone derived from the herb Huangqin, which is used in traditional
Chinese medicine as an anti-inflammatory agent [99]. It induces apoptosis through a
mitochondria-dependent caspase activation pathway in bladder cancer cells [100]. Wu
et al. demonstrated that baicalein inhibits bladder cancer proliferation and migration
in a dose-dependent manner via the reduction of phosphorylated NF-κB and MMP-2/9
expression [101].
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Resveratrol is a polyphenolic compound naturally found in peanuts, mulberries,
and grapes. It is an ingredient of red wine and exerts cardio- and neuroprotective ef-
fects [102,103]. In in vitro studies of UC, resveratrol has been shown to disrupt the MMP,
increase ROS production, reduce ATP concentrations, provoke the release of cytochrome c
from mitochondria to the cytosol, activate caspase-9 and caspase-3, and eventually induce
apoptosis in cancer cells [104,105].

CXC195 also induces apoptosis by activating JNK, DP5, and PUMA, inhibiting BCL-2
and BCL-xL, and consequently inducing mitochondrial- and caspase-dependent apopto-
sis [79]. CXC195 is a tetramethylpyrazine (TMP) analog that displays antioxidant activity
and antiapoptotic effects by inhibiting NADPH oxidase and iNOS expression and regulat-
ing the PI3K-AKT-GSK3b pathway. CXC195 is thought to be a promising anticancer drug
that inhibits cell proliferation and inflammatory responses in bladder cancer [79].

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL; Apo-2L) is
a member of the TNF family and has recently gained attention because of its ability to
induce apoptosis in cancers [106]. TRAIL induces apoptosis through a caspase-dependent
mechanism, which can be strengthened by the release of cytochrome c and the loss of
MMP [107]. TRAIL is a potent antitumor agent in preclinical studies; however, it has
some limitations in potency. Combining TRAIL with other agents may improve cancer cell
responsiveness. Histone deacetylase inhibitors have been shown to modulate the sensitivity
of TRAIL-resistant bladder cancer cells [106].

3.3. Targeting Mitochondrial Turnover

Mitochondrial fusion, fission, and mitophagy have been examined as potential anti-
cancer targets. Dynasore is a GTPase inhibitor of dynamin-related protein 1 (DRP1) [108].
Inhibition of mitochondrial fission by dynasore suppresses cancer cell proliferation and in-
duces apoptosis. It inhibits migration and/or invasion in various cancer cell lines, including
the bladder cancer cell line [109]. Radiation therapy may also play a role in UC treatment
by causing mitochondrial damage. Shea et al. used cultured MGH-U1 (human urinary
bladder carcinoma) cells and treated them with doxycycline and long-wave ultraviolet A
(UVA) radiation. The cells were found to have mitochondrial damage when the UVA dose
reached 1 J/cm2 and above [110].

3.4. Targeting Other Mitochondrial Modulators

Some proteins can indirectly modulate the mitochondrial function. NBR1 (a neighbor
of the BRCA1 gene, an autophagy cargo receptor) is overexpressed in human UC cells.
Rapamycin targeting the mammalian target of rapamycin (mTOR) kinase can regulate au-
tophagy and has therapeutic effects in patients with cancer. In NBR1-knockdown UC cells,
sensitivity to rapamycin-associated apoptosis and mitochondrial defects was enhanced.
Loss of NBR1 expression changes cellular responses to rapamycin, leading to impaired ATP
homeostasis and increased ROS levels. Therefore, NBR1 may be a potential therapeutic
target for treating UC [86]. Table 1 summarizes mitochondria-targeted therapies for UC.

Table 1. Mitochondria-targeted therapies for UC.

Therapies Strategies Targets References

DCA inhibit PDK and activate PDH mitochondrial TCA [76]
vitamin K2 promote the glycolysis mitochondrial TCA [78]

AS-ODNs improve drug sensitivity
induce apoptosis BCL-2, NRB1 [84,85]

siRNA improve drug sensitivity
induce apoptosis BCL-2, NRB1 [66]

metformin induce apoptosis mitochondria [77]
silibinin induce apoptosis mitochondria [86]
baicalein induce apoptosis mitochondria [100]
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Table 1. Cont.

Therapies Strategies Targets References

resveratrol induce apoptosis mitochondria [104,105]
CXC195 induce apoptosis TMP analog [79]
TRAIL induce apoptosis mitochondria [106]
UVA damage mitochondria mitochondria [110]

AS-ODNs, antisense oligodeoxynucleotides; siRNA, small interfering RNA; TMP, tetramethylpyrazine; TRAIL,
tumor necrosis factor (TNF)-related apoptosis-inducing ligand; DCA, dichloroacetate; PDK, pyruvate dehydroge-
nase kinase; PDH, pyruvate dehydrogenase; UVA, ultraviolet A.

4. Conclusions and Perspectives

UC is a common but complex disease. By reviewing the available literature, we
revisited the pathogenic role of mitochondria in UC. The main mechanisms by which
mitochondria participate in tumorigenesis and progression of UC include mtDNA muta-
tions, altered expression of mitochondrial proteins, metabolic reprogramming, deregulated
mitochondrial ROS production and ETC activity, and mitochondria-regulated proliferation
and death in cancer cells. The interplay between these different mechanisms often exists
and complicates the whole process. Therapeutic strategies targeting these mitochondria-
centered mechanisms are promising. They could be complementary to the current treatment
modalities, including surgery, chemotherapy, and immunotherapy. Notably, the evidence
summarized in this review is largely based on in vitro and animal studies. Advanced and
detailed in vivo studies are required to facilitate future clinical research and clinical trials.
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