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Abstract: Image deblurring has been a challenging ill-posed problem in computer vision. Gaussian
blur is a common model for image and signal degradation. The deep learning-based deblurring
methods have attracted much attention due to their advantages over the traditional methods relying
on hand-designed features. However, the existing deep learning-based deblurring techniques still
cannot perform well in restoring the fine details and reconstructing the sharp edges. To address this
issue, we have designed an effective end-to-end deep learning-based non-blind image deblurring
algorithm. In the proposed method, a multi-stream bottom-top-bottom attention network (MBANet)
with the encoder-to-decoder structure is designed to integrate low-level cues and high-level semantic
information, which can facilitate extracting image features more effectively and improve the
computational efficiency of the network. Moreover, the MBANet adopts a coarse-to-fine multi-scale
strategy to process the input images to improve image deblurring performance. Furthermore,
the global information-based fusion and reconstruction network is proposed to fuse multi-scale
output maps to improve the global spatial information and recurrently refine the output deblurred
image. The experiments were done on the public GoPro dataset and the realistic and dynamic scenes
(REDS) dataset to evaluate the effectiveness and robustness of the proposed method. The experimental
results show that the proposed method generally outperforms some traditional deburring methods
and deep learning-based state-of-the-art deblurring methods such as scale-recurrent network (SRN)
and denoising prior driven deep neural network (DPDNN) in terms of such quantitative indexes as
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) and human vision.

Keywords: image deblurring; Gaussian blur; deep learning; multi-stream bottom-top-bottom
attention network; fusion network; reconstruction network

1. Introduction

Image blurring is one of the major reasons for image quality degradation. It poses a great
challenge for understanding and analyzing the high-frequency components in the images [1]. Therefore,
deblurring has been a hot research field in image restoration [2–6]. Image deblurring is the process of
inferring the latent sharp images in the absence of degradation model information. The blur types can
be roughly divided into two categories. The first one is motion blur. For example, camera shake during
exposure will blur the captured image. The second one is defocus blur produced by such factors as
atmospheric turbulence and aberrations in the optical system. In most situations of practical interest,
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Gaussian blur is ubiquitous in optical imaging systems. Gaussian blur removal is highly significant in
many applications; thus, it has attracted much attention in the field of image deblurring.

Many existing deblurring methods generally describe the blur process as

B = Io
⊗ k + n (1)

where ⊗ denotes the 2D convolutional operator, B is the blurry input image, Io is the sharp image, k is
the blur kernel, and n is the noise.

To find the sharp image in Equation (1) is an ill-posed problem. Solutions to this ill-posed problem
can be divided into regularization methods and iterative schemes via updating and stopping rules.
In more detail, the image deblurring methods include the optimization-based and the learning-based
methods. Optimization-based algorithms firstly estimate the blur kernel and then realize non-blind
deconvolution by using various image priors such as L0 gradients [7], sparse gradients [8–10],
normalized sparsity [11], and patch priors [12] to regularize the solution space. For example,
the nonlocally centralized spare representation (NCSR) [13] model has been presented to improve the
performance of sparse representation-based image restoration by using the nonlocal self-similarity to
estimate the sparse coding coefficients. Expected patch log likelihood (EPLL) [14] uses the regularization
model based on the statistics of image patches for whole-image restoration. The block matching 3D
filtering (BM3D) [15] method utilizes the formalized image modeling to realize the iterative deblurring.
Michaeli and Irani [16] used self-similarity as an image prior to addressing the deblurring problem.
Shan et al. [17] used a piecewise function to fit the gradient distribution of multiple natural images and
then iteratively estimated the blur kernel function and the restored image. Pan et al. [18] presented the
dark channel prior to image deblurring. This method can perform well in deblurring both natural
images and text, face, and low-illumination images under the premise that the dark pixels can be
extracted from an image. Chen et al. [19] proposed a deblurring method based on local maximum
gradient prior and an effective optimization scheme. Yan et al. [20] proposed a novel image prior named
extreme channels prior (ECP) by combining the bright channel prior with the dark channel one to
improve the deblurred results. Although these methods have demonstrated good performance in some
cases, they involve complicated computation and heuristic parameter-tuning [21]. Meanwhile, due to
the utilization of hand-crafted priors that are generally designed based on the limited observations,
these methods are not robust enough and may be ineffective for deblurring Gaussian blurred images
with the complicated features.

With regard to the learning-based deblurring methods, deep learning has become very popular
in the field of image deblurring. Up to now, the different deep learning models, such as generative
adversarial network (GAN) and convolutional neural networks (CNN) (e.g., attentional convolutional
network [22]) have been proposed. These deep learning-based deblurring methods can be roughly
divided into three categories. The first one is to use the CNN to predict the blur kernel and then adopt the
traditional non-blind deconvolution methods to restore the images. Sun et al. [23] proposed to predict
the probabilistic distribution of motion blur for each patch using the CNN, and a deblurring model
using the patch prior was adopted to remove motion blur. Yan et al. [24] used two neural networks to
identify the blur type and then estimate its parameters, respectively. Cheng et al. [25] introduced the
hand-crafted priors and the implicit deep priors trained by the CNNs as the regularization for the kernel
estimation and used half-quadratic splitting optimization for image deconvolution. The performance of
these methods greatly depends on the estimation accuracy of blur kernel. The second kind is to directly
learn end-to-end mapping to output the deblurred results [26–28]. Tao et al. [21] presented a multi-scale
recurrent network (SRN) that directly deblurs the wild images by combining the multi-scale images.
Zhang et al. [29] presented the GAN-based image deblurring method in which spatial information
and temporal information were combined as a generator. Wu et al. [30] presented a dual attention
structure to dynamically aggregate the temporal cues for deblurring. These methods generally cannot
handle serious image blurring effectively. The last kind is to use the model-driven deep learning
methods for image deblurring. Dong et al. [31] presented an iterative deblurring method based on the
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denoising prior driven deep neural network (DPDNN). Distinctively, the alternating direction method
of multipliers (ADMM) [32] technique is used to convert the constrained optimization problem into
sub-problems, and the iterative process is unfolded into a deep neural network, which is composed
of multiple denoiser modules for exploiting the multi-scale redundancies of natural images and
back-projection modules for ensuring the observation consistencies.

Despite the advantage of the deep learning-based deblurring methods over the traditional ones,
they still cannot perform well in restoring fine details and reconstructing sharp edges. In particular,
small-scale details in the blurred image may be damaged seriously by the deblurring method in the case
of the serious image blurring. To address this issue, we proposed two deep learning models to produce
the deblurred image with the image details preserved well. For one, we proposed the multi-stream
bottom–top–bottom attention network (MBANet) to extract image features at different scales using
the multi-scale scheme. In the proposed MBANet, the multi-scale components of original images are
firstly extracted and fed into the encoder–decoder ResBlock network simultaneously, which integrate
high-level semantic information in the data stream with low-level spatial and channel-wise information.
Then, the multi-scale output maps are produced by the multi-stream network with the multi-scale
structure, which exploits the significant influence of multi-scales on Gaussian blur. On the other hand,
to realize the effective fusion of output maps produced by the MBANet and produce the satisfactory
deblurred image, the global information-based fusion and reconstruction network (GIFRNet) was
proposed. This network includes the two sub-networks, i.e., the global information-based fusion
network (GIFNet) and the global information-based reconstruction network (GIRNet). The GIFRNet
integrates multi-scale output maps to greatly improve the global spatial information and continuously
refine the outputs of GIFNet to compensate for the unwanted loss of image details in the deblurred
image, especially the small-scale ones. Experiments were done on two different dataset to demonstrate
the effectiveness and superiority of the proposed method to the state-of-the-art deblurring methods.

The main contributions of this study are summarized as follows:

1. We proposed a novel MBANet by combining the advantages of encoder-decoder structure and
attention mechanisms to extract multi-scale and multi-level features effectively, thereby providing
a solid foundation for recovering the fine details and reconstructing the sharp edges from the
blurry images.

2. The proposed global information-based fusion network can merge the channel-wise and
spatial information encoded in the bottom–top data stream at each scale effectively. Moreover,
the proposed reconstruction network based on the fused global information can gradually refine
the outputs of the GIFNet to finally produce the satisfactory deblurred images.

3. A new loss function was designed by combining the perceptual loss with the mean squared error
to accelerate the gradient descent of the network, thereby leading to effective network training.

The remainder of the paper is organized as follows. In Section 2, we present the details of MBANet
and the GIFRNet. In Section 3, the experimental results are provided. Finally, conclusions and future
research directions are given in Section 4.

2. The Structure of the Proposed Networks

The architecture of the proposed networks is illustrated in Figure 1. As shown in Figure 1,
the multi-scale images generated by the resizing operation are firstly fed into the MBANet,
which combines a modified encoder-decoder ResBlock network with an attention mechanism. Then,
the integration of backward and forward information is performed by the skipping connection.
Based on the global information, the squeeze-and-excitation network (SENet) [33] is introduced here to
implement the adaptive calibration of the channel-wise feature, highlight the important features in the
encoder, and pass them to the decoder. Following the decoder, the resizing operation is again adopted
to ensure that the generated multi-scale maps have the same resolution as the original input image.
Finally, the GIFRNet is utilized to integrate the global feature information at each scale and refine the
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output deblurred image. We will provide the detailed description of the construction of the MBANet
and the GIFRNet as well as the process of model training.Sensors 2020, 20, x FOR PEER REVIEW  4 of 19 
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Figure 1. The flowchart of the proposed method. Each colored box is considered to be a feature block, 
and the arrows between blocks represent the information stream. 
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With regard to the well-established multi-scale networks, there are two main types of network 
structures. The first one is to process images at different scales separately, which lead to the  
non-utilization of information between different scales. The second one is to cascade and share the 
weights among different scales. The integration of features by way of cascading makes network 
training easier and more stable, but its effectiveness greatly depends on the accuracy at the first scale. 
In this work, we proposed a parallel bottom-top-bottom network structure and introduced spatial 
and channel attention mechanisms. As opposed to other multi-scale methods, our method uses  
multi-scale images as the inputs of the network, so that the errors introduced by the first scale can be 
prevented from transmission to other scales. In order to greatly reduce training difficulty and increase 
stability, the network weights is shared across different scales. 

The proposed end-to-end MBANet can be viewed as a regression network. From the perspective 
of network structure, there are several advantages. Firstly, the network is deep enough to generate a 
large receptive field for extracting different levels of features. Secondly, the combination of spatial 
and channel-wise information can facilitate the utilization of the global information to highlight the 
important features. Finally, the network combines the low-level cues and the high-level semantic 
information to improve the fineness of the deblurred image. 

2.1.1. Structure of Bottom-Top-Bottom Attention Network 

We chose the encoder-decoder model as the basic structure of the bottom-top-bottom [34] 
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Figure 1. The flowchart of the proposed method. Each colored box is considered to be a feature block,
and the arrows between blocks represent the information stream.

2.1. MBANet

With regard to the well-established multi-scale networks, there are two main types of network
structures. The first one is to process images at different scales separately, which lead to the
non-utilization of information between different scales. The second one is to cascade and share the
weights among different scales. The integration of features by way of cascading makes network
training easier and more stable, but its effectiveness greatly depends on the accuracy at the first scale.
In this work, we proposed a parallel bottom-top-bottom network structure and introduced spatial and
channel attention mechanisms. As opposed to other multi-scale methods, our method uses multi-scale
images as the inputs of the network, so that the errors introduced by the first scale can be prevented
from transmission to other scales. In order to greatly reduce training difficulty and increase stability,
the network weights is shared across different scales.

The proposed end-to-end MBANet can be viewed as a regression network. From the perspective
of network structure, there are several advantages. Firstly, the network is deep enough to generate a
large receptive field for extracting different levels of features. Secondly, the combination of spatial
and channel-wise information can facilitate the utilization of the global information to highlight the
important features. Finally, the network combines the low-level cues and the high-level semantic
information to improve the fineness of the deblurred image.
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2.1.1. Structure of Bottom-Top-Bottom Attention Network

We chose the encoder-decoder model as the basic structure of the bottom-top-bottom [34] attention
network and modified it to realize accurate feature extraction and combination. The encoder-decoder
network [35] has a symmetric structure in which the input images are progressively transformed into
feature maps with more channels and smaller sizes, and then the feature maps are transformed back to
the resolution of the original input images. The skip connections between corresponding feature maps
are the operations that combine the forward information, i.e., the extracted features in the encoder. It is
easy to understand that the encoder is merely implemented using a series of convolutional (Conv) layers
and the decoder contains several deconvolutional (Deconv) layers to further increase the network depth.
However, the direct utilization of the existing encoder-decoder structure cannot ensure satisfactory
performance. The reason is that we need to add more convolutional layers in the encoder/decoder
blocks for deblurring tasks, which makes the network converge slowly. Moreover, it is difficult to obtain
the spatial information from the middle feature maps with the small size for reconstruction. Hence, we
chose to transform the encoder-decoder model into an encoder-decoder ResBlock network, as shown
in Figure 2, which acts as our bottom-top backbone structure. Each backbone structure is comprised of
one convolutional layer with a stride of two followed by several ResBlocks. The number of kernels at
the convolutional layers is doubled for the successive backbone structure. Each ResBlock includes
two convolutional layers with the same number of kernels. The network structure of the decoder
is symmetric to that of the encoder. Therefore, the resolution of output images for the transformed
encoder-decoder ResBlock network is the same as that of the original input images. It is highly
significant to produce a large receptive field for extracting more feature information while making
network training simpler. The encoder and the decoder are connected by the SENet, which can realize
the information exchange between the channels, enhance the useful features, and suppress the features
that are not important for the current task, thereby facilitating extraction of the key information in
the feature maps at different channels with a reduction ratio of 64. For the SENet, its core operations
include squeeze and excitation. The function of the squeeze operation is to encode the spatial features
on a channel into a global feature, thereby allowing information from the global receptive field to be
used by different layers. The aggregation is followed by an excitation operation, which adopts a simple
self-gating mechanism to produce a collection of per-channel modulation weights. The learned channel
weights are multiplied by the original input features to generate the channel feature Xn

c . It is given by

Zn
c =

1
W f eature ×H f eature

W f eature∑
i = 1

H f eature∑
j = 1

Mn
c (i, j) (2)

Sn
c = σ(W2θ(W1Zn

c )) (3)

Xn
c = Mn

c · S
n
c (4)

where Zn
c represents the global spatial information of the n-th scale image at the c-th channel; Mn

c
is the feature map produced by the encoder; W f eature and H f eature are the width and height of Mn

c ,

respectively; W1 ∈ R
c

rse ×c and W2 ∈ Rc× c
rse are the full connection operations with rse denoting the

channel reduction ratio; θ means rectified linear unit (ReLu) activation [36]; σ denotes the sigmoid
activation function; and Sn

c is the channel-wise weight. From Equation (4), it can be seen that the
channel-wise multiplication between Sn

c and Mn
c generates Xn

c .
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Figure 2. The architecture of the bottom–top–bottom attention network. Figure 2. The architecture of the bottom–top–bottom attention network.

2.1.2. Structure of Multi-Stream Bottom-Top-Bottom Attention Network

Considering that Gaussian blur is sensitive to scale, we duplicated the designed bottom–top–bottom
attention network in parallel. Specifically, the multi-scale versions of the input blurry images generated
by the resizing operation are first encoded in the bottom–top stream. Then, for each input image,
its scaled version Bn replicates the first scale from the bottom layer to the top layer with a series of
residual blocks, and a multi-stream output feature map On (n = 1, 2, . . . , Ns with Ns denoting the
number of scales) with the same resolution to Bn is produced. Finally, these maps are resized to the
same resolution to the original input image for the next network (see Figure 1).

2.2. GIFRNet

The GIFRNet consists of two sub-networks: GIFNet and GIRNet. The GIFNet integrates the maps
generated by the MBANet to produce the feature map R f inal. Then, the GIRNet gradually refines R f inal

to produce the final deblurred image I f inal.

2.2.1. GIFNet

The detailed structure of the GIFNet is shown in Figure 3a. As shown in Figure 3a, the dense
spatial information of source images is combined with the multi-stream output maps, which are
produced by the multi-stream network with the multi-scale structures to further increase the correlation
of the concatenated maps. The original image B and the multi-stream output maps

(
O1, O2, . . . , ONs

)
are

firstly concatenated into a feature map F0 with 3Ns + 3 channels. Then we add the global context block
(GCBlock) [37], which can help establish a connection between two pixels with a certain distance to
capture the spatial information in the feature images, thereby facilitating the fusion of the multi-stream
information with the original image. The architecture of the GCBlock is shown in Figure 3c. It includes
the context modeling module and the transform. The context modeling module groups the features
of all positions together via weighted averaging to extract the global information. In order to reduce
the calculation complexity, the channel compression transform is adopted. Furthermore, the layer
normalization (LayerNorm) normalizes the mean and variance of all summed inputs to the neurons in
one layer to improve the training speed, accuracy, and robustness of the model. The output features
are fed to a series of convolutional and ReLU layers. In the convolutional layers, the kernel size is set
to 3 × 3, and the channel number is set to 64, 128, 64, and 3, respectively. A merged map R f inal with the
same resolution as the original image is produced as the final output. The GIFNet can be expressed as

F0 = cat(O1, O2, . . . , ONs, B) (5)

F1 = GCBlock(F0) (6)

Ft = ReLu(Wt · Ft−1 + bt
)

(7)

R f inal = WT · FT−1 + bT (8)

where cat denotes the concatenation operator; F1 means the feature information produced by the
GCBlock with the channel compression ratio set to 2; Ft denotes the feature image generated at the
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t-th (t = 2, 3, . . . , T) convolutional layer; Wt and bt represent the convolutional filter and bias of t-th
convolutional layer, respectively; and the GIFNet fully utilizes the dense spatial information of the
original image and nonlinearly fuses the multi-stream output maps.Sensors 2020, 20, x FOR PEER REVIEW  7 of 19 

 

Conv_1

Conv+ReLU_64

Conv+ReLU_64

Conv+ReLU_128

Cat_(3Ns+3)

GCBlock

Conv_1

Conv+ReLU_64

Conv+ReLU_64

Conv+ReLU_128

GCBlock

Cat_(3+3)

Conv(1×1)

Softmax

Conv(1×1)

Conv(1×1)

LayerNorm,ReLU

Context Modeling

Transform

(C, H, W)

(1, H, W)

(C, 1, 1)

(C/r, 1, 1)

(C/r, 1, 1)

(C, H, W)

(C, 1, 1)

...

 
(a) (b) (c) 

Figure 3. The architecture of the sub-network models. (a–c): GIFNet, GIRNet, and GCBlock, 
respectively. Here, ( ), ,C H W  means a feature map with the number C of channels, height H , 

and width W ; r  denotes channel compression ratio; ⊗  represent matrix multiplication; ⊕  
means broadcast element-wise addition. 

2.2.2. GIRNet 

Although the GIFNet can integrate the feature maps at different scales effectively and improve 
spatial correlation by introducing the source image, errors may be introduced into the restored image. 
In order to address this issue, we introduced the GIRNet to further refine the output deblurred image. 
Figure 3b shows the network structure of the GIRNet, which has the same structure to the GIFNet 
but with different parameters. At each iteration, we feed both the original image and the input map 
through the GIRNet to produce the refined map, which in turn serves as the input map at the next 
iteration. The final restored image finalI  can be expressed as 

( ( ( ; , , ) ))final final
m mI R BW b= ⋅⋅⋅ ⋅⋅⋅    (9) 

where finalR  is the preceding integrated map as the first input map. The operator  means a 

recursive composition function. mW  and mb  represent the convolutional filter and the bias of the 
GIRNet, respectively. The final restored image is produced by continuously correcting its previous 
errors until the last iteration is implemented. 

2.3. Loss 

We used Euclidean loss and perceptual loss [38] as the total loss to measure the difference 
between the network output and the ground truth. Here, the Euclidean loss is the classic mean square 
error (MSE) loss. Unlike the pixel-level MSE loss, the perceptual loss utilizes high-dimensional 
features obtained from high-performance convolutional neural networks and can help restore more 
details for the deblurred images. The proposed total loss is defined as 

2

2
final o

MSEL I I= −  (10) 

Figure 3. The architecture of the sub-network models. (a–c): GIFNet, GIRNet, and GCBlock, respectively.
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channel compression ratio; ⊗ represent matrix multiplication; ⊕means broadcast element-wise addition.

2.2.2. GIRNet

Although the GIFNet can integrate the feature maps at different scales effectively and improve
spatial correlation by introducing the source image, errors may be introduced into the restored image.
In order to address this issue, we introduced the GIRNet to further refine the output deblurred image.
Figure 3b shows the network structure of the GIRNet, which has the same structure to the GIFNet
but with different parameters. At each iteration, we feed both the original image and the input map
through the GIRNet to produce the refined map, which in turn serves as the input map at the next
iteration. The final restored image I f inal can be expressed as

I f inal = 4(4(· · · 4 (R f inal; B, Wm, bm) · ··)) (9)

where R f inal is the preceding integrated map as the first input map. The operator 4means a recursive
composition function. Wm and bm represent the convolutional filter and the bias of the GIRNet,
respectively. The final restored image is produced by continuously correcting its previous errors until
the last iteration is implemented.

2.3. Loss

We used Euclidean loss and perceptual loss [38] as the total loss to measure the difference between
the network output and the ground truth. Here, the Euclidean loss is the classic mean square error
(MSE) loss. Unlike the pixel-level MSE loss, the perceptual loss utilizes high-dimensional features
obtained from high-performance convolutional neural networks and can help restore more details for
the deblurred images. The proposed total loss is defined as

LMSE = ‖I f inal
− Io
‖

2
2 (10)
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Lc = ‖φk,l(I f inal) −φk,l(Io)‖
2
2 (11)

Ltotal = LMSE + λ · Lc (12)

where λ is the parameter to balance LMSE and Lc, and φk,l denotes the feature extractor for extracting
the image features at the l-th convolutional layer (after activation) before the k-th pooling layer in
the VGG16 network pre-trained on the ImageNet dataset. The features extracted by φk,l are used to
measure the difference between the high-level semantic information of images I f inal and Io. The Adam
optimizer [39] is adopted to minimize the cost function.

2.4. Model Training

To train the proposed networks, we used the realistic and dynamic scenes (REDS) dataset [40],
in which each image was of size 720 × 1280. It was recorded by the GoPro HERO6 Black camera at
120 fps. There were 300 sequences in total, and each one included 100 pairs of sharp and blurry frames.
We randomly selected 1120 sharp images as the ground truth for training and manually synthesized the
blurry images by convolving the sharp images with Gaussian blur kernels of size 17 × 17. The standard
deviations of the blur kernels were changed from 1.6 to 2.4 with steps of 0.2 to generate 5 blur kernels.
The blurry images are sampled and randomly cropped into 256 × 256 image patches as training images.
The ground-truth patches were generated in the same way. In total, 1,120,000 patches were generated
for training.

We realized the proposed networks with TensorFlow 1.9.0. The proposed MBANet and GIFRNet
were jointly trained on a Ubuntu 16.04 with an Intel I7-6950 CPU and 96G RAM. The NVIDIA 1080Ti
GPU with CUDA 10.0 was used for acceleration. For the proposed networks, the initial learning
rate was set to 0.0001, and it was exponentially decayed to 1 × 10−6 at 1000 epochs using power 0.3.
At each iteration, we fixed the batch size to be 10. All trainable variables were initialized by Xavier [41].
The training took approximately 1.5 days.

3. Experimental Results and Discussion

In this section, we carried out experiments on the chosen REDS dataset and GoPro dataset [42] to
determine the key parameters in the proposed networks and evaluate their performance. The testing
data were generated in the same way as the training data. For each type of dataset, 10 images were
randomly selected as testing images. To evaluate the deblurring performance of the proposed networks,
we adopted such indexes as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [43],
which are defined as follows:

PSNR = 10 log10


2552

1
W·H

W∑
i = 1

H∑
j = 1

(
I f inal(i, j) − Io(i, j)

)2

 (13)

SSIM =

(
2I

f inal
I
o
+ C1

)(
2δI f inalIo + C2

)
(
(I

f inal
)

2
+ (I

o
)

2
+ θ1

)(
δ2

I f inal + δ2
Io + θ2

) (14)

where W and H are the width and height, respectively, of the deblurred image I f inal. δI f inal and δIo

are the standard deviations of I f inal and Io, respectively. I
f inal

and I
o

are the mean of I f inal and Io,
respectively; δI f inalIo is the covariance of I f inal and Io. C1 and C2 are the small constants to stabilize SSIM.

3.1. Parameter Setting

As for the parameters in the proposed networks, they mainly include the number of scales (Ns)
in the MBANet, the iterative times (Tr) in the GIRNet, the regularization parameter λ for balancing
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the content loss, and the perceptual loss and parameters k and l at the feature layer related to the
perceptual loss. In the loss function of the proposed networks, the content loss and the perceptual loss
are of the same order of magnitude. Following the selection method of parameters in the loss function
in other deep learning models for image deblurring, we set λ = 1 and k = l = 3. Here, we discuss how
to determine the two parameters Ns and Tr.

3.1.1. Number of Scales

As for the number of scales in the MBANet, it is easy to understand that too large an Ns value
brings much calculation burden while too small a value is disadvantageous for extracting the effective
features from the input images. Here, we trained the proposed model using three different scales for
comparison to analyze the contributions of Ns. The PSNR and SSIM of the three models performed on
the REDS dataset and GoPro dataset are shown in Figures 4 and 5, respectively. Clearly, the three-scale
model and the two-scale model could only perform well on the REDS dataset and GoPro dataset,
respectively. However, the four-scale model could obtain better or competitive results on both the
REDS dataset and GoPro dataset in terms of PSNR and SSIM. Therefore, we chose four scales as
a compromise.
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3.1.2. Iterative Times

For the iterative times Tr in the GIRNet, we found that too large a Tr increased the training time
of the proposed networks greatly, while one that was too small could not ensure the satisfactory
deblurring performance. To demonstrate the influence of Tr, we trained the proposed model using
three different iterative times. The quantitative results are shown in Figures 6 and 7. From Figures 6
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and 7, we can see that the proposed model with Tr = 2 performed the worst on the REDS dataset,
and our model with Tr = 1 performed the worst on the GoPro dataset. By comparison, our model
with Tr = 3 could achieve satisfactory performance on the two datasets. Based on the above analysis,
we chose Tr = 3 in the proposed networks.
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3.2. Comparison with Different Network Structures

In order to verify the effectiveness of the structure in the proposed networks, we removed
GCBlock from GIFNet and GIRNet. The resultant networks were named as fusion network (FNet)
and reconstruction network (RNet), respectively. Here, we compare the three models, i.e., MBANet
with FNet (MBANet + FNet), MBANet with FNet and RNet (MBANet + FNet + RNet), and MBANet
with GIFNet and GIRNet (MBANet + GIFNet + GIRNet). We also used ten images chosen from the
REDS dataset as the sharp images for testing. The quantitative results of PSNR and SSIM for the three
models are shown in Figure 8. It can be seen from Figure 8 that MBANet + GIFNet + GIRNet achieved
the best performance among the three models, which indeed indicates that the adoption of attention
mechanism and reconstruction network structure improved the deblurring performance effectively.
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3.3. Comparison with State-of-the-Art Deblurring Methods

To demonstrate the advantage of the proposed method, we compared it with five state-of-the-art
image deblurring algorithms including three well-known model-based deblurring methods such as
EPLL [14], NCSR [13], and ECP [20], and two deep learning methods such as SRN [21] and DPDNN [31].
For the compared algorithms, we firstly followed the parameter settings suggested by the authors
and then tuned them to ensure the best results for the corresponding testing images based on the
comprehensive consideration of PSNR and SSIM as well as subjective human vision. For fairness,
unless noted otherwise, all experiments were conducted for the evaluated methods on the same dataset
with the same parameter configuration.

3.3.1. Comparison on REDS Dataset

Experiments were done on the color images in the REDS dataset. Tables 1 and 2 list the PSNR
and SSIM values of all evaluated methods. From Table 1, we can see that the deep learning methods
outperformed the ECP, EPLL, and NCSR methods by providing significantly higher PSNR. Compared
with the SRN and DPDNN methods, the proposed algorithm, on average, provided PSNR improvements
by 0.42 dB and 0.27 dB, respectively. Table 2 shows that the SSIM values of the conventional model-based
methods were lower than those of the deep learning methods. Meanwhile, the proposed method could
provide slightly higher SSIM than the SRN and DPDNN methods.

Table 1. The PSNR results of deblurred images for all evaluated methods.

Methods
Standard Deviation Average

1.6 1.8 2.0 2.2 2.4

ECP 29.72 29.48 29.26 28.94 28.18 29.12
EPLL 33.25 32.29 31.45 30.73 30.12 31.57
NCSR 33.90 32.66 31.66 30.85 30.16 31.85
SRN 36.55 35.53 34.66 33.85 33.05 34.73
DPDNN 36.93 35.78 34.76 33.89 33.04 34.88
Proposed 37.03 36.00 35.05 34.23 33.40 35.14
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Table 2. The SSIM results of the deblurred images for all evaluated methods.

Methods
Standard Deviation Average

1.6 1.8 2.0 2.2 2.4

ECP 0.8905 0.8656 0.8483 0.8387 0.8171 0.8520
EPLL 0.9311 0.9168 0.9025 0.8882 0.8743 0.9026
NCSR 0.9363 0.9196 0.9038 0.8884 0.8736 0.9043
SRN 0.9622 0.9518 0.9417 0.9313 0.9198 0.9414
DPDNN 0.9643 0.9540 0.9431 0.9324 0.9211 0.9430
Proposed 0.9650 0.9557 0.9457 0.9357 0.9245 0.9453

Figures 9–16 show the deblurred results and the corresponding difference images of all evaluated
methods. Here, we used the red boxes to indicate where the proposed method was visually superior to
other state-of-the-art methods. As shown in Figures 9 and 11, it can be seen that our proposed method
could recover the thin lines in Figure 9 and the boundaries of stone steps in Figure 11 better than
the other compared methods by providing more complete and sharper edges for them. It is shown
in Figure 12 that the multi-scale deblurring approaches such as the proposed method and the SRN
method gained an obvious advantage over other methods in recovering small-scale details such as
the vertical thin iron rod marked with one red box. For example, the DPDNN method damaged the
thin iron rod so seriously that it was almost invisible in the deblurred image while it was preserved
significantly better by the SRN method and the proposed method. Furthermore, the proposed method
outperformed the SRN method by providing a sharper restored result for the complex structures
marked with another red box. As seen in Figure 14, the textures were so complicated and densely
arranged that their restoration was very challenging. Clearly, the other compared methods led to the
loss of textures in the deblurred images to some extent. However, the proposed method could still
recover the textures effectively. Moreover, Figure 15 shows that in the case of large deviations of blur
kernels, our method could preserve such image details as the number on the car more effectively than
other evaluated methods. Furthermore, from the difference images between the original image and the
deblurred images shown in Figures 10, 13 and 16, we can see that the traditional methods performed
worse than the deep learning-based methods because there was too much structural information
in their difference images. Compared with the SRN and DPDNN methods, the proposed method
performed better in that it produced less obvious structural information, which further proves the
superiority of the proposed method.
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Figure 9. Deblurred results for test image with 17 × 17 Gaussian blur kernel of deviation 1.6. The first
row shows the sharp image and deblurred images for the evaluated methods. The second row shows the
enlarged views of the region marked with the green box in the original image and the deblurred images.
(a) Original image [37]; (b) ECP; (c) EPLL; (d) NCSR; (e) SRN; (f) DPDNN; (g) proposed method.
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Figure 11. Deblurred results for test image with 17 × 17 Gaussian blur kernel of deviation 1.8. The first
row shows the sharp image and deblurred images for the evaluated methods. The second row shows the
enlarged views of the region marked with the green box in the original image and the deblurred images.
(a) Original image [37]; (b) ECP; (c) EPLL; (d) NCSR; (e) SRN; (f) DPDNN; (g) proposed method.
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row shows the sharp image and deblurred images for the evaluated methods. The second row shows the
enlarged views of the region marked with the green box in the original image and the deblurred images.
(a) Original image [37]; (b) ECP; (c) EPLL; (d) NCSR; (e) SRN; (f) DPDNN; (g) proposed method.
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In order to further verify the robustness of the proposed method, we selected four different 
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Figure 14. Deblurred results for test image with 17 × 17 Gaussian blur kernel of deviation 2.2. The first
row shows the sharp image and deblurred images for the evaluated methods. The second row shows the
enlarged views of the region marked with the green box in the original image and the deblurred images.
(a) Original image [37]; (b) ECP; (c) EPLL; (d) NCSR; (e) SRN; (f) DPDNN; (g) proposed method.
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row shows the sharp image and deblurred images for the evaluated methods. The second row shows the
enlarged views of the region marked with the green box in the original image and the deblurred images.
(a) Original image [37]; (b) ECP; (c) EPLL; (d) NCSR; (e) SRN; (f) DPDNN; (g) proposed method.
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In order to further verify the robustness of the proposed method, we selected four different
levels of Gaussian blur kernels with standard deviations ranging from 1.7 to 2.3 with a step of 0.2.
These blurred images were not used as training sets for model training. The PSNR and SSIM values of
all evaluated methods are listed in Tables 3 and 4. It can be seen that the deep learning-based methods
still performed better than the traditional methods. Compared with the SRN and DPDNN methods,
the proposed method provided slightly higher SSIM values and it, on average, provided improvements
of PSNR by 0.52 dB and 0.6 dB, respectively. The above comparison indeed demonstrated good
robustness of the proposed method.
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Table 3. The PSNR results of deblurred images for all evaluated methods.

Methods
Standard Deviation Average

1.7 1.9 2.1 2.3

ECP 29.55 29.40 29.07 28.36 29.10
EPLL 32.09 31.28 30.56 29.94 30.97
NCSR 33.24 32.15 31.24 30.49 31.78
SRN 35.00 34.34 33.63 32.91 33.97
DPDNN 34.99 34.13 33.61 32.81 33.89
Proposed 35.61 34.98 34.17 33.20 34.49

Table 4. The SSIM results of the deblurred images for all evaluated methods.

Methods
Standard Deviation Average

1.7 1.9 2.1 2.3

ECP 0.8705 0.8575 0.8419 0.8217 0.8479
EPLL 0.9239 0.9095 0.8951 0.8810 0.9024
NCSR 0.9279 0.91157 0.8959 0.8810 0.9041
SRN 0.9497 0.9409 0.9312 0.9216 0.9359
DPDNN 0.9513 0.9409 0.9315 0.9213 0.9363
Proposed 0.9563 0.9478 0.9385 0.9293 0.9430

3.3.2. Comparison with State-of-the-Art Methods on the GoPro Dataset

To further evaluate the performance of the proposed method, we used the GoPro dataset, which is
different from the REDS dataset, to compare it with other deblurring methods. The quantitative results
computed on the 10 images selected from this dataset are listed in Tables 5 and 6. The results show that
the deep learning-based algorithms still performed better than the traditional algorithms in PSNR and
SSIM. The SRN performed worse than the DPDNN and the proposed method. Although the proposed
method provided slightly lower PSNR and SSIM results than the DPDNN when the deviation was 2.4,
it produced higher average PSNR and SSIM than the latter.

Table 5. The PSNR results of the deblurred images in the GoPro dataset.

Methods
Standard Deviation Average

1.6 1.8 2.0 2.2 2.4

ECP 32.07 32.08 32.09 31.51 31.29 31.81
EPLL 32.24 31.52 30.68 29.96 29.36 30.75
NCSR 36.53 34.67 33.19 31.96 30.96 33.46
SRN 37.17 34.97 34.52 32.99 32.02 34.33
DPDNN 37.58 36.49 35.10 33.82 33.08 35.21
Proposed 37.99 36.48 35.16 34.04 32.99 35.33

Table 6. The SSIM results of the deblurred images in the GoPro dataset.

Methods
Standard Deviation Average

1.6 1.8 2.0 2.2 2.4

ECP 0.8861 0.8588 0.8494 0.8297 0.8154 0.8479
EPLL 0.9611 0.9548 0.9458 0.9347 0.9228 0.9438
NCSR 0.9742 0.9636 0.9514 0.9377 0.9235 0.9501
SRN 0.9777 0.9687 0.9648 0.9529 0.9430 0.9614
DPDNN 0.9808 0.9760 0.9691 0.9598 0.9549 0.9681
Proposed 0.9829 0.9760 0.9699 0.9619 0.9524 0.9686
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Figure 17 shows the visual comparisons of the deblurred images for three deep learning-based
deburring methods performed on the GoPro dataset, where the standard deviation of the Gaussian blur
kernel in the test image was 2.2. From Figure 17, it can be seen that the SRN and the DPDNN produced
the unwanted artefacts around the horizontal lines in the red box to different extents. By comparison,
our method could generate more similar deblurred result as the unblurred sharp image without
introducing the artefacts due to the combination of the features from the original image with the global
context information. Indeed, the visual comparison demonstrated the superiority of the proposed
method to other deep learning-based methods in recovering image details.
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Figure 17. Deblurred results for three deep learning methods performed on the GoPro test image with
17 × 17 Gaussian blur kernel of deviation 2.2. The first row shows the sharp image and deblurred
images by the evaluated methods. The second row shows the enlarged views of the region marked with
green box in the original image and the deblurred images. (a) original image [39]; (b) SRN; (c) DPDNN;
(d) proposed method.

3.4. Discussion

In this work, we proposed the novel multi-stream bottom–top–bottom attention network as well
as the global information-based fusion and construction network for restoring Gaussian blurred images.
From the above experimental results, it can be seen that the proposed method gains an advantage over
other compared methods in terms of deblurring performance and robustness. However, this work
has some limitations. Firstly, the proposed networks are only used for the deblurring of Gaussian
blurred images. Future work will be focused on extending our method to address other kinds of blur
such as motion blur and the hybrid blur. Such extension will involve the modification of network
structure such as the introduction of dense blocks. Secondly, the training of the proposed networks is
very time-consuming. The model training time can be shortened by simplifying the network structure.
Finally, the loss function we used is relatively simple, and thus there may be possibilities for further
improvement of deblurred results. The effective structural preserving loss item can be explored and
additionally introduced to address this problem.

4. Conclusions

In this paper, we proposed the novel multi-stream bottom–top–bottom attention network as
well as the global information-based fusion and construction network for restoring Gaussian blurred
images. Distinctively, the proposed network fully combines high-level semantics with low-level image
features and channel-wise information to generate the deblurred images. Besides, the multi-stream
mechanism fully takes advantage of multi-scale information, and this structure is easier to train by
sharing the parameters. Additionally, the reconstruction network can further refine the restored image
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by combining the global context information. Experimental results show that the proposed method
can provide better deblurring performance than other state-of-the-art algorithms both quantitatively
and qualitatively.
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