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Objective: Body weight is an important economic trait for a goat, which greatly affects

animal growth and survival. The purpose of this study was to identify genes associated

with birth weight (BW), weaning weight (WW), and yearling weight (YW).

Materials and Methods: In this study, a genome-wide association study (GWAS)

of BW, WW, and YW was determined using the GGP_Goat_70K single-nucleotide

polymorphism (SNP) chip in 1,920 Inner Mongolia cashmere goats.

Results: We discovered that 21 SNPs were significantly associated with BW on the

genome-wide levels. These SNPs were located in 10 genes, e.g., Mitogen-Activated

Protein Kinase 3 (MAPK3), LIM domain binding 2 (LDB2), and low-density lipoprotein

receptor-related protein 1B (LRP1B), which may be related to muscle growth and

development in Inner Mongolia Cashmere goats. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that

these genes were significantly enriched in the regulation of actin cytoskeleton and

phospholipase D signaling pathway etc.

Conclusion: In summary, this study will improve the marker-assisted breeding of Inner

Mongolia cashmere goats and the molecular mechanisms of important economic traits.

Keywords: Inner Mongolia cashmere goats, genome-wide association study, GGP_Goat_70K SNP chip, birth

weight (BW), weaning weight (WW), yearling weight (YW)

INTRODUCTION

Body weight is one of the most important economic traits for livestock that can be
measured during the entire animal lifetime from birth to slaughter. The early growth rate
of a goat has a strong implication on both reproductive and production performances.
Early growth performance traits, such as birth weight (BW) and weaning weight (WW),
are the basis for selection in genetic improvement programs for meat production (1). To
investigate the relationships between body weight and meat quality traits, PCR-restriction
fragment length polymorphism and PCR-single strand conformation polymorphism were applied
to suggest a low negative relationship between BW, meat quality, and genetic markers
(IGF-II and CAPN1) in chickens breeding for meat quality (2). However, conventional
breeding methods cannot make significant progress in a short period of time. To a
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large extent, it hinders the rapid industry development of
animal production.

Genome-wide association study (GWAS) is a tool of genome-
wide linkage disequilibrium to determine genetic marker
information (e.g., single-nucleotide polymorphism, SNP, loci,
and copy number) and related genes that genetically affect
complex phenotypic traits or important quantitative economic
traits throughout the genome (3–6). In 2005, the first GWAS
report of macular degeneration of the retina was published
in Science (7). With the completion of multi-species genome
sequencing, the continuous development of high-throughput
SNP chips, and genome typing technologies, GWAS has become
a popular solution to the genetic positioning of complex
human diseases and animal quantitative traits. For example,
great progress has been made in GWAS research on obesity
(8), coronary heart disease (9), diabetes (10), and other
diseases, successfully identifying complex diseases significant
SNPs. GWASs apply SNP arrays to accurately screen and identify
the major genes of important economic traits, which becomes a
prerequisite for rapid improvement for the molecular breeding
of domestic animals, e.g., cattle, pigs, chickens, and sheep. For
instance, AGWAS of fivemeat quality traits in 231 Yorkshire pigs
identified 344 significant SNPs associated with five meat quality
traits using PorcineSNP60 BeadChip, in which 323 SNPs were
located in the reported QTL regions and 21 were novel (11). In
a GWAS of the 600K Affymetrix Axiom Chicken Genotyping
Array, KCTD4, LIM domain binding 2 (LDB2), HEP21, and
PCASP2 were closely correlated with the spleen weight of Layer
chicken (12). Ghasemi et al. carried out a GWAS on the BW
of Lori-Bakhtiari sheep and identified three genes (RAB6B, Tf
serotransferrin, and GIGYF2) as candidate genes for this trait
(13). GWAS of body weight in two cattle populations from the
Russian Federation (Siberian region) was determined using the
GGP HD150 and identified five statistically significant SNPs and
theCCND2 genes as the candidate gene for body weight trait (14).

The Inner Mongolia cashmere goat is a local breed in China
with dual-purpose, producing both pleasant meat and excellent
cashmere. It is famous for its “white cashmere andmeat” in Inner
Mongolia. Besides, Inner Mongolia cashmere goats also provide
sufficient meat resources and have become one of the most
important livestock species for the herdsmen. However, there are
no GWAS studies focusing on the body weight traits of Inner
Mongolia cashmere goats. Therefore, in this study, we examined
BW, WW, and yearling weight (YW) by GGP_Goat_70K SNP
chip and GWASmethodology for Inner Mongolia cashmere goat
population of 1,920 individuals to identify significant SNPs and
the major candidate genes associated with body weight traits in
cashmere goats. This study may facilitate the potential use of
major genes involving in growth and production traits for genetic
improvement of productivity in cashmere goats.

MATERIALS AND METHODS

Ethics Statement
In this experiment, the breeding environment was in compliance
with the standards relevant to an ordinary animal laboratory
facility in China National Standard “Laboratory Animal

Environment and Facilities” (GB14925-2010). The feeding and
the experimental operations on animals were in accordance with
the animal welfare requirements.

Phenotypic Measurements and Sample
Collection
Goats used in the present study (n = 1,920, 2 years old from
six herds; 1 year old from three herds) were selected randomly
from the Arbas Stock Farm in Inner Mongolia, China. The BW,
WW (3.5 months), and YW (12months) were measured using an
electronic scale for all goats. BW was recorded within 0.5 h after
birth, while WW and YW were measured after 12 h of fasting.
Samples of ear tissue were collected by ear deficiency forceps and
quickly placed in a prepared cryopreservation tube containing
75% alcohol for storage at−80◦C until DNA extraction.

Statistical Analysis
Generally, the fixed effect of each trait in the model was identified
by General Linear Model (GLM) procedure using the Statistical
Analysis System (SAS) program. The influencing factors included
the year of production (three levels, 2018-2020), herd (six herds,
1–6), birth status (simple or twin), maternal ages (six levels, 3–
8), and sex (male and female, 1–2). Therefore, repeatability and
multivariate animal model was used with restricted maximum
likelihood method (AIREML) in the WOMBAT software to
estimate the variance components of each trait. Then heritability
for each trait was obtained under this model. The default
convergence criterion was 10−8. The formula for this model was
as follow:

yi = Xibi + Ziai + Yimi +Wipi + ei

Where yi is the vector of observation of animals for trait i; bi
is the vector of fixed effects for trait i; ai is the vector of direct
additive genetic effects of animal for trait i; mi is the vector of
randommaternal genetic effects of animal for trait i; and pi is the
vector of individual performant environmental effects for trait
i. Y i is maternal genetic effects for trait i, Xi, Zi, andWi are design
matrices of the corresponding effects, respectively. ei is the vector
of random residuals effects for trait i. The heritability (h2), was

calculated using the formula h2 =
σ
2
a

σ
2
p
.

Genotyping and Quality Control
Deoxyribonucleic acid was extracted from ear tissue with the
standard phenol-chloroform method according to the protocol
of the manufacturer. DNA integrity and purity were tested using
2% agarose gel electrophoresis and a NanoDrop 2000 ultraviolet
spectrophotometer (Thermo, Waltham, MA, USA).

The samples were genotyped using the Illumina Goat SNP
70K BeadChip panel that included 67,088 SNPs (Inner Mongolia
Agricultural University, China). The samples with call rates
<90% were removed from the analysis. The SNPs with GenCall
(GC) scores <0.6, genotype call rates <90%, minor allele
frequencies (MAF) < 0.01, and significant Hardy-Weinberg
(HWE) disequilibrium at 10−5 were removed from the analysis.
Plink 1.90 beta (15) and R software were used for quality control.
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TABLE 1 | Descriptive statistics and variance components of body weight traits in Inner Mongolia cashmere goats.

Traits N Mean SD Min Max CV (%) σ
2
a σ

2
c σ

2
m σ

2
e σ

2
p h2

T±SE

BW (kg) 1,917 2.75 0.48 1.70 4.20 17.45 0.02 0.01 0.02 0.14 0.19 0.11 ± 0.01

WW (kg) 1,868 17.52 10.15 16.50 29.50 57.93 1.57 0.91 0.88 2.51 5.87 0.27 ± 0.02

YW (kg) 1,892 36.10 13.71 24.00 49.50 37.98 0.19 0.14 - 1.55 1.88 0.10 ± 0.03

σ
2
a , direct additive genetic variance; α

2
c , individual permanent environment variance, σ

2
m, maternal genetic variance; σ

2
e , residual variance; σ

2
p , phenotypic variance; h

2
T , direct heritability;

SE, standard error; BW, birth weight; WW, weaning weight; YW, yearling weight; CV, coefficients of variation.

GWAS
The correlations between the SNPs and the traits were tested
usingmixed linearmodels in GEMMA software version 0.98 (16–
18). Therefore, herd and age were combined as fixed effects, as
they all significantly related to body weight traits. The statistical
analysis model used in this study was y = Xα + Zβ + Wµ +

e, where y is the phenotypic trait, X is a matrix of fixed effects,
α is the estimation parameter of the fixed effects, Z is a matrix
of SNPs, β is the effect of the SNPs, W is a matrix of random
effects, µ is the predicted random individuals, and e is the
random error, with the distribution e∼N (0, δ2e). The significance
threshold for the GWAS was defined using the Bonferroni
correction method. The suggestive genome-wide association
significance threshold was P < 9.92 × 10−7 (0.05/50383), and
the chromosome-wide significance level threshold was P <

2.88 × 10−5 (0.05/50,383/29). Chromosome-wide significance
level SNPs were defined to call chromosome-wide significance
associations, with a suggestive association corresponds cutoff P
< 10−4 (19). The quantile–quantile (Q–Q) plots were visualized
by plotting the distribution of obtained vs. expected log10 (P-
value) with inflation factors (λ). The association map and the
significant SNPs were visualized in the Manhattan plot with a
threshold line. TheManhattan and Q–Q graphics were generated
with R v. 3.5.2.

Bioinformatics Analysis
Genes associated with significantly correlated SNP loci
were annotated with the goat reference genome (ARS1,
GCF_001704415.1). The genes were used as input for Cytoscape
that analyzes and visualizes Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (20, 21). GO
terms and KEGG pathways with adjusting P < 0.05 were
statistically significant.

RESULTS

Descriptive Statistics and Heritability for
Weight Traits of Cashmere Goats
Observed phenotypes were analyzed by first descriptive statistics
(Table 1). The BW, WW, and YW ranged from 1.7 to 4.2,
16.5 to 29.5, and 24.0 to 49.5 kg, respectively. The coefficients
of variation (CV) for BW, WW, and YW were 17.45, 57.93,
and 37.98%, respectively. The results indicate that substantial
phenotypic variation of these three traits exists in the population
of Inner Mongolia cashmere goats. The heritability estimates for
BW, WW, and YW were 0.10, 0.27, and 0.10, respectively.

Quality Control of Genotyping
The body weight traits of the 1,920 Inner Mongolia
cashmere goats measured in this study included BW,
WW, and YW. A total of 67,088 SNPs were genotyped.
Subsequently, 2,655 SNPs were excluded from our dataset
as they did not pass the HWE, while 10,446 SNPs were
excluded from our dataset as they did not pass the HWE
MAF tests (–MAF 0.01–HWE 1e−5). After the quality
control (QC) was performed on the raw genotypes, a
total of 1,909 animals and 50,383 SNPs were obtained
and were distributed over the 29 goat chromosomes
(Supplementary Figure 1). The descriptive statistics of
the studied traits are listed in Table 1. All traits are
normally distributed. The PCA result demonstrated that
there were no genetic differences between the samples
(Supplementary Figure 2).

GWAS
Based on the 50,383 SNPs, GWAS was then performed with
a mixed linear model for the BW, WW, and YW. A total
of 21 SNPs reached the genome-wide significance levels
for BW traits and 50 SNPs reached the chromosome-wide
significance levels for the three traits (Figure 1). For BW, 21
genome-wide significance levels correlated SNPs were detected
on the chromosomes Chr1, Chr2, Chr3, Chr4, Chr6, Chr7,
Chr8, Chr9, Chr10, Chr12, Chr14, Chr18, Chr21, Chr25, and
Chr29, these SNPs were electively annotated to 10 genes, e.g.,
Mitogen-Activated Protein Kinase 3 (MAPK3), LDB2,low-
density lipoprotein receptor-related protein 1B (LRP1B;
Figure 1A, Table 2).

In addition, 46 correlated SNPs were identified at
chromosome-wide significance levels. For WW, two
chromosome-wide significance levels correlated SNPs identified
on Chr18 were related to two genes, CRISPLD2 and TUB-
like protein 2 (TULP2, Figure 1B, Table 2). For YW, two
chromosome-wide significance levels correlated SNPs were
detected on Chr4 and Chr11, corresponding to one gene,
progestogen-associated endometrial protein (PAEP; Figure 1C,
Table 2). The Q–Q plot showed that the genomic inflation
factors (λ) of BW, WW, and YW were 0.983, 0.990, 1.017,
respectively (Figure 2), indicating no genome expansion. Based
on the observed and expected P-values in the Q–Q plots of the
three body weight traits, there were no population stratification
phenomena. However, this phenomenon was significant for
the SNPs, which were highly correlated with the three body
weight traits.
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FIGURE 1 | Manhattan plots of body weight traits for Inner Mongolia cashmere goats. (A) Birth weight (BW); (B) weaning weight (WW); and (C) yearling weight (YW).

Functional Enrichment Analysis of GO and
KEGG
In an attempt to better understand the biological functions
and signaling pathways of the trait-associated genes, we
performed GO and KEGG enrichment analysis for 13
genes near the SNPs of the three body weight traits,
and uncovered enriched 23 GO terms, i.e., 11 biological
processes, 8 cellular components, and 4 molecular functions
(Figures 3, 4), which are closely correlated to growth and
organ formation.

DISCUSSION

Body weight is an important economic trait in goat production.

Therefore, it is important to understand the underlying

molecular mechanisms behind goat body weight and identify

important functional genes that influence cashmere goat

production and breeding. However, compared with reported

GWAS results for sheep body weight (6, 13, 22), the goat
candidate genes of body weight are not well-studied. Therefore,
in this study, genome-wide associations of BW, WW, and YW
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TABLE 2 | Significant single-nucleotide polymorphisms (SNPs), associated traits,

and candidate genes identified in genome-wide association studies (GWASs).

Trait SNP ID Chr Position (bp) P-Value Gene

BW 26,093,025 25 26,093,025 1.69E-15 MAPK3

snp2971 14 6,287,060 4.72E-15 –

snp36371 1 1,476,313,984 1.69E-11 –

96,351,932 7 96,351,932 2.15E-11 ADGRE2

snp11977 6 112,102,568 2.92E-10 LDB2

snp6911 2 81,102,675 3.10E-07 LRP1B

WW snp41865 18 12,415,004 1.92E-05 CRISPLD2

snp18295 18 56,522,928 2.45E-05 TULP2

YW 102,722,042 11 102,722,042 1.71E-05 RAEP

snp20004 4 30,271,648 2.16E-05 –

BW, birth weight; WW, weaning weight; YW, yearling weight.

were determined using the GGP_Goat_70K SNP chip in 1920
Inner Mongolia cashmere goats.

In this study, the heritability ofWW is moderately high (0.27),
which is similar to the values estimated by Ma et al. (23). The
heritabilities of BW and YW (0.11, and 0.10, respectively) are
lower than the values estimated by Hossein and Mohammad
et al. (24) (0.22 and 0.25, respectively), and Ma et al. (23) (0.647
and 0.571, respectively). The differences between studies are
probably caused by the source of goat breeds, model design, and
data structure.

Maternal age only has significant effects on BW and WW
in early traits, but not YW, indicating great influences of
maternal effects on lamb BW and WW. Studies discovered
that with the increase of the age of mother, BW and WW
also increase, suggesting lower BW and WW of lambs born
to primiparous ewes than that of adult ewes. The reason is
that the physical maturity and physical maturity of primiparous
ewes are not well-developed. In short, lactating lambs have
a strong dependence on the ewe, strengthen the feeding and
management, improve the nutritional status, and promote
lactation, which is conducive to the normal development
of lamb.

To correct the effects of population structure and individual
kinship relationships, a population genetic structure is
considered as a fixed effect while an individual kinship is
thought of as a random effect. Therefore, the GWAS of BW,
WW, and YW of 1,920 Inner Mongolia cashmere goats was
performed using a mixed linear model in this study. The Inner
Mongolia cashmere goats that we chose are mainly grazing
animals and the nutritional level of their pastures varies among
the seasons, which will further affect gene expressions (25, 26).

Body weight growth is closely related to the growth of obesity,
fat, and muscle. The candidate genes identified in this study
were also closely correlated with growth and tissue development.
For instance, the TULP2 gene is located on chromosome 18
and is correlated with WW. TULP2 is a member of the tubby
gene family, and gene SNPs in the 19q13.33–13.43 chromosomal
region are significantly related to severe obesity in French
Caucasians (27). Jackson et al. demonstrate that CRISPLD2 is

FIGURE 2 | Quantile–quantile plots of body weight traits using a mixed linear

model approach. Blue dots represent the –log10 (P-value) of the entire study,

and the red line represents the expected values under the null hypothesis of no

association. (A) Birth weight (BW); (B) weaning weight (WW); and (C) yearling

weight (YW).

a circulating adipokine that may regulate adipocyte remodeling
during weight loss (28).

The LDB2 gene is located on chromosome 6 and correlated
with BW. LDB2, also known as CLIM-1, was identified as a LIM
domain-associated cofactor and functions as a transcriptional
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FIGURE 3 | Gene ontology (GO) enrichment analysis for the regional candidate genes with chromosome-wide significant association.

regulatory factor (29–31). The LIM domain-binding factor 2
(LDB2) gene in the chicken chromosome 4 (GGA4) region
∼8.6Mb in length (71.6–80.2Mb) had the strongest association
with body weight for weeks 7–12 and with average daily gain for
weeks 6–12 (32). Liu et al. identify LDB2 genes on chicken (Gallus
gallus) chromosome 4 associated with Carcass Weight (CW) and
Eviscerated Weight (EW) traits, GWASs were conducted using
the Illumina 60K SNP Bead chip to genotype 724 Beijing-You
chickens (33). In Wang’s et al. they performed a new GWAS
using specific locus amplified fragment sequencing (SLAF-seq)
technology to discover that the LDB2 gene in this region had a
very strong association with body weight (34).Wei et al. indicated
that a 31-bp indel located in the second intron region of the
LDB2 gene was significantly correlated with some growth traits
and carcass traits of chickens (35).

The LRP1B gene is located on chromosome 2 and correlated
with BW. Houde et al. found epigenetic variations at
LRP1B, a gene associated with the development of obesity
or cardiometabolic complications, are involved in fetal metabolic
programming (36). Wang et al. performed a GWAS in 82
sows with an extreme SD of BWs within the first parity to

identify LRP1B may contribute to the BW variability trait
(37). LRP1B gene encodes LRP1B and mediates cellular
cholesterol uptake (38). Dietrich et al. reported that knockout
of LRP1B in mice results in early embryonic lethality (39).
Association analysis identified LRP1B as a determinant of rat
cholesterol concentrations in low-density lipoproteins (LDL)
and a significant association with child body mass index (BMI)
in humans (40). CNR1 is involved in the growth cone (GO:
0030426). CNR1 can affect the regulation of leptin signaling
to regulate BW, food intake, and metabolism (41). Besides,
the genes associated with SNP are involved in the biological
process. MAPK3 is involved in fundamental cellular processes,
such as membrane trafficking, actin cytoskeleton remodeling,
cell proliferation and cell survival, animal organ formation, and
glucose metabolism. In this study, Prominin 1 (PROM1), FBXL3,
and LOC102176015 genes are new candidate genes related to
BW. PROM1 is a protein-coding gene, which plays a role in cell
differentiation, proliferation, and apoptosis. FBXL3 encodes a
member of the F-box protein family, which plays a key role in
the maintenance of both the speed and the robustness of the
circadian clock oscillation.
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FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for the regional candidate genes with the chromosome-wide significant

association.

CONCLUSION

In summary, the first GWAS of Inner Mongolia cashmere goats

was performed to identify gene-associated to three body traits.

We identified 21 SNPs that reached the genome-wide significance
levels and 50 SNPs that reached the chromosome-wide
significance levels for the three traits in a population of 1,920
Inner Mongolia cashmere goats. MAPK3, LDB2, and LRP1B
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genes are key candidate genes for BW. PROM1, FBXL3, and
LOC102176015 genes are new genes related to BW and can be
given to follow-up priority research. The candidate genes in this
study were closely correlated to BW development. These findings
will make a significant contribution to the understanding
of the mechanisms underlying BW traits and facilitate
genetics improvement of productivity in Inner Mongolia
cashmere goats by providing essential genes related to goat
BW traits.
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