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Abstract

In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes
for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between
brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of
information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis
of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces
several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a
robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free
exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while
crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this
particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only
relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in
detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on
local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple
delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields
dealing with network dynamics.
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Introduction

Many phenomena in the world around us, such as traffic

systems, gene regulatory networks, neural circuits and the Internet

can be best understood in terms of complex networks. Under-

standing such networks requires knowledge about the existence

and direction of the interactions in the network. Often, the

network function also depends on the interaction timing. For

example, understanding of the railway system is incomplete if only

the location of train tracks and the direction in which they are used

is known. At least information on train travel times is necessary to

catch a glimpse of how the network serves its purpose, and only a

timetable enables one to use this network efficiently. As in this

example, interaction delays may have a pivotal role in under-

standing the function of complex networks.

In neuroscience, interaction delays arise mainly due to

propagation of action potentials (‘spikes’) along axonal processes

and can amount to several tens of milliseconds. The presence of

axonal delays is of particular importance for coordinated neural

activity (e.g. synchronization, Hebbian learning) because they add

an intrinsic component to the relative timing between spikes. For

example, two neurons projecting to a downstream neuron will be

observed to spike simultaneously by this downstream neuron only

when their relative timing of spikes compensates the difference in

their axonal delays and in the dendritic delays to the soma of the

target neuron. Indeed, disruption of coordinated activity by the

pathological modification of axonal delays is thought to account

for some deficits in diseases such as multiple sclerosis [1],

schizophrenia [2], and autism [3]. Thus, the estimation of both,

interaction delays and interaction strengths from multichannel

brain recordings are needed to better resolve the dynamic

coordination between different areas. In this paper we propose

an extension of an information-theoretic functional, transfer

entropy, to determine both the information transfer and interac-

tion delays between processes.

In the following, we review the key concepts of Wiener causality

and transfer entropy, and describe the outline of the paper.

Causality, Transfer Entropy, and the Estimation of
Interaction Delays

Ideally, in explorative analyses both the presence of directed

interactions between two physical systems, as well as their timing
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should be detected without any a priori knowledge of the coupled

systems or their specific interaction mechanism, i.e. a model free

analysis is required. To keep our analysis as model-free as possible,

we assume that the coupled physical systems X ,Y produce the

observed time series fx1, . . . ,xTg,fy1, . . . ,yTg via measurements

at discrete times t[1:::T . These time series are understood as

realizations xt,yt of stationary random processes X ,Y for

mathematical treatment. The stationarity assumption for the

random processes is convenient here as it allows to replace

ensemble averages by time averages, but the proposed method will

also work for ensemble averaging. In the remainder of the text,

upper case letters X ,Y refer to these random processes, Xt,Yt to

the random variables the processes are composed of, while lower

case letters with subscript indices xt,yt refer to scalar realizations of

these random variables. Bold case letters X,Y,Xt,Yt,xt,yt refer to

the corresponding processes, random variables, and their realiza-

tions in a state space representation (see the methods section for

the construction of these state spaces).

The structure of directed interactions can be analyzed by

assigning a causal influence from a process X to another one Y , if

knowledge about the past of realizations of X and Y together

allows one to predict the future of Y better than knowledge about

the past of Y alone. This is known as Norbert Wiener’s principle

of`causality’, and does not by itself entail a modeling approach.

Although this principle paved the way for a formal analysis of

directed interactions, we note that today for an analysis of truly

causal interactions more stringent requirements have to be met

[4,5]. If only Wiener’s principle is met, we speak of predictive

information transfer [6]. However, predictive information transfer

may often be exactly the quantity of interest when analyzing

directed interactions in networks, especially when these networks

actively process information [6,7].

Wiener’s principle can be directly translated into an informa-

tion-theoretic framework by reformulating it as the question:

‘‘What information does the past of X provide about the future of Y , that the

past of Y did not already provide?’’. Schreiber [8] formalized this

question in terms of a conditional mutual information I(:; :D:)
between the involved quantities:

TE(X?Y )~I(Yz; X{DY{), ð1Þ

where Yz is a future random variable of the process Y , whereas

X{ and Y{ denote suitably reconstructed past state variables of the

processes X and Y , respectively. The corresponding quantity has

been described several times in the literature (e.g. [8,9]) and is

most often refered to as transfer entropy [8].

The use of transfer entropy or related methods [10,11] for

model free analyses of directed interactions has seen a dramatic

surge of interest recently, both in neuroscience [9,12–31],

physiology [32–34], as well as in the general theories of

computation [7,24,35] and causality [5]. For specific application

scenarios transfer entropy has proven to be clearly superior

compared to alternative analyses of interactions [22].

Schreiber originally defined the transfer entropy functional for

random processes X and Y , with discrete-valued time index t, as

[8]:

TE(X?Y )~I(Ytz1; XtDYt), ð2Þ

Yet, it was noted early on that in real world physical systems

information from X needs a finite time d to arrive at Y. Because of

this, past states variables Xt,Yt and future future random variables

Ytz1, that replace the abstract quantities X{,Y{ and Yz in the

functional from equation 1 in the calculation of a specific

estimator, such as in equation 2, have to be redefined appropri-

ately to reflect this fact. Therefore, two suggestions were made to

adapt transfer entropy:

N First, we and others suggested to use the following formula to

take efficiently into account the possibility of a non-vanishing

interaction delay [9,12,13,29],

TE(X?Y ,u)~I(Ytzu; XtDYt), ð3Þ

where the parameter u is the time which an influence needs to

propagate from X to Y [9,12,13,29]. A scanning approach for

the parameter u was suggested to recover the delay with the

largest predictive information transfer and, thereby, recover

the dominant interaction delay [12].

N Second, Pompe and Runge [36] suggested a similar scanning

approach to adjust the TE to consider transfer from a previous

source variable Xt to a future target variable Ytzu, while

conditioning on the source state variable Ytzu{1, and

additionally conditioning on the previous source state variable

Xt{1:

MIT(X?Y ,u)~I(Ytzu; XtDYtzu{1,Xt{1), ð4Þ

This measure is known as the momentary information transfer (MIT)

(see Methods section part on MIT for full details). While the idea

to scan u in order to maximize MIT is similar to the first approach,

the conditioning on a past source state was thought to ensure that

the specific delay was identified where the transferred information

appeared in the source first.

While the first approach in equation 3 seems like a natural

extension of transfer entropy, we will show in the next section that

equation 3 violates Wiener’s principle of causality. This is because

the above functional violates the requirement of an optimal self

prediction from the past of Y to the future of Y that is implicit in

Wiener’s principle. In short, using a state Yt that is not obtained

immediately prior to the future Ytzu – the state one is trying to

predict – ignores potentially relevant predictive information (see

below for details). We will provide a simple example where the

above functional (equation 3) from references [9,12,13,29] does

not recover the correct interaction delay.

We will also show by counter-example that the second

suggestion, the MIT, is not able to reconstruct the correct

interaction delay in a simple example in the presence of memory

in the source.

Therefore, we present in this study an improved transfer entropy

functional that honors the requirement of an optimal self prediction

and that successfully recovers the correct interaction delay. We

formulate a mathematical theorem that the improved transfer

entropy functional is maximal when its delay parameter coincides

with the underlying interaction delay and give the corresponding

proof. To further validate our approach on finite data we run

extensive simulations of stochastic and deterministic delay-coupled

systems. Local field potentials are also used to test the recovery of

interaction delays in electrophysiological recordings.

Furthermore, we will demonstrate below that our novel

approach allows to test the presence of self-feedback activity in a

single recorded signal. Finally, we discuss how information about

interaction delays can be used to enhance the power of effective

connectivity analyses.

Measuring Information-Transfer Delays
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Results

Comparison of Transfer Entropy Functionals in Relation
to Wiener’s Principle

Wiener’s principle asks for information about the future of Y
that the past of X can provide in addition to the information already

provided by the past of Y . If, however, this latter information is

underestimated, we may potentially obtain an erroneously high

value of predictive information transfer from X to Y . From this it

follows that information provided by the past of Y to the future of

Y must be estimated optimally, a fact that we will refer to as the

self prediction optimality (SPO) requirement from here on. Equiva-

lently, from an information-theoretic computational perspective,

we can view the ‘self prediction’ as an information storage by Y [37],

and so underestimating the information storage in Y ’s dynamics

can lead us to overestimate the information transfer from X to Y
[7,35].

For practical applications of Wiener’s principle this means that

we have to guarantee an optimal self prediction at least within the

limits of our respective prediction framework. For the most general

case of TE where no a priori model-based knowledge can be used,

this means we have to resort to model free prediction, as it is for

example provided by the local predictor [38,39].

We will first show that the transfer entropy functional given in

equation 3 is not self prediction optimal and then provide a new

transfer entropy functional that is self prediction optimal.

To show that the functional from equation 3 is indeed not self-

prediction optimal, we rewrite this equation by substituting t by

t{u:

TE(X?Y ,u)~I(Yt; Xt{uDYt{u): ð5Þ

We see that the self prediction of Y , or equivalently the

conditioning, is done based on the state Y at time t{u. Let us

define u0 as the value of the parameter u that optimizes self

prediction of Yt by Yt{u0
. If we now scan u in search of the

maximum predictive information transfer from Xt{u to Yt, we will

potentially condition our mutual information on states Yt{u with

u=u0, i.e. we condition on states that are not optimal for self

prediction. This suboptimal conditioning may artificially inflate

transfer entropy values in a u-dependent manner. Thus, maximum

transfer entropy values do not only depend on the true information

flow from X to Y and its delay, but also on the quality of the self-

prediction (conditioning). As a consequence, the maximal appar-

ent information transfer estimated by equation 5 may be found at

values of u that do not represent the true delay d, and the attempt

to identify the true interaction delay by maximizing predictive

information transfer with the functional in equation 5 may lead to

erroneous results.

From the above it follows that conditioning on the past state

Yt{u should always be done with respect to the optimal state

Yt{u0
. Hence, a modified functional reads:

TE’(X?Y ,u)~I(Yt; Xt{uDYt{u0
), ð6Þ

where u0 in principle would have to be identified by a model-free

prediction scheme, such as the one proposed by Ragwitz and

Kantz [39]. However, we can abbreviate this procedure and

formally prove that u0 must be 1 sample if equation 6 is to

represent a causal relationship (see next subsection). Furthermore,

using u0~1 properly eliminates any information storage from the past

of Y that could otherwise be mistaken as information transfer from

X . And finally, the use of u0~1 allows us to take a dynamical

systems view of the state transition Yt{1?Yt, and consider the TE

as measuring how much information Xt{u provides about this

state transition.

Result. The predictive information transfer from X to Y over a time

delay u is properly captured (aligning with Wiener’s principle) by:

TESPO(X?Y ,u)~I(Yt; Xt{uDYt{1): ð7Þ

This functional fulfills the self prediction optimality requirement

and we chose the subscript ‘SPO’ to reflect this. We note that in

the case u~1 TE(X?Y ,u~1) the old estimator (equation 3 ) is

equal to TESPO(X?Y ,u~1) (and this equality also holds for the

original formulation of the TE from equation 2 ); however, this

does not hold for other u in general and as such using equation 6

with uw1 and u0=1 does not satisfy Wiener’s principle. To see

this, we rewrite from equation 6 :

TE’(X?Y ,u)~I(Yt; Xt{u,Yt{u0
){I(Yt; Yt{u0

), which allows

us then to see explicitly that both, (1) the joint information term

I(Yt; Xt{u,Yt{u0
) supplied by the source and the past of the

target, and (2) the information storage term I(Yt; Yt{u0
), differ

under the cases u0~u (old delayed TE estimator, equation 3 ) and

u0~1 (new delay TE estimator, equation 7).

In the next section we provide a theorem that formally states

that TESPO is maximal when the parameter u is equal to the true

interaction delay d, and give a proof. Thus, TESPO can be used to

recover an interaction delay d in coupled systems as:

d~ arg max
u

(TESPO(X?Y ,u)): ð8Þ

A Theorem on the Identifiability of the True Delay d of an
Interaction

Part of this study is a proof of the fact that the new proposed

functional assumes its maximal value when the delay parameter u
in TESPO (equation 7) is equal to the true delay d. The main

finding can be summarized in the following theorem:

Theorem 1. For two discrete-time random processes X ,Y with a state

space representation X,Y, coupled from X to Y via a non-zero delay d,

TESPO(X?Y ,u)~I(Yt; Xt{uDYt{1) is maximal for u~d. This

also holds in the presence of additional coupling from Y to X .

The main ideas behind delay reconstruction via maximizing

TESPO are illustrated in Figure 1. By scanning the delay parameter

u we shift the considered state Xt{u of the source process X in

time. If this state Xt{u is in the relative future of the observation to

be predicted for Y , i.e. Yt, its influence has not arrived at Y yet.

As a consequence, the state is uninformative and we get low

TESPO. If the state has a time delay u~d, such that the influence

arrives exactly at Yt, then TESPO is maximal. If the state has too

long a delay, then its influence has arrived before Yt and is already

taken into account via conditioning on the past state Yt{1; again

we obtain low TESPO. In the following we will present our proof.

Since it is of a technical nature the reader may safely skip ahead if

not interested in this material.

Proof of Theorem 1
Outline. We start by showing that the three random variables

Xt{d{j, (Xt{d,Yt{1), and Yt form a Markov chain for Vj=0. To

this end we first demonstrate the d-separation of Xt{d{j and Yt by

(Xt{d,Yt{1) which is equivalent to conditional independence of

Xt{d{j and Yt, given (Xt{d,Yt{1) [4]. This, in turn, is equivalent

Measuring Information-Transfer Delays
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to Xt{d{j?(Xt{d,Yt{1)?Yt forming a Markov chain. Using the

decomposition property of conditional independence (e.g. [4]), we see

that this result also holds if we replace the state Yt by the

corresponding scalar observation Yt. We then use this Markov

chain for statements on the relation of mutual information terms

built from its variables and rearrange terms to arrive at the

statements on TE formulated in theorem 1.
d-separation. From figure 2, representing the causal graph

of the two random processes X ,Y , we see that:

N all sequential paths from Xt{d{j into Yt are blocked by the joint

random variable (Xt{d,Yt{1) (sequential paths of this kind

Figure 1. Illustration of the main ideas behind interaction delay reconstruction using the TESPO estimator. (A) Scalar time courses of
processes X ,Y coupled X?Y with delay d, as indicated by the blue arrow. Colored boxes with circles indicate data belonging to a certain state of
the respective process. The star on the Y time series indicates the scalar observation Y (t) to be predicted in Wiener’s sense. Three settings for the
delay parameter u are depicted: (1) uvd with – u is chosen such that influences of the state X(t{u1) on Y arrive in the future of the prediction point.
Hence, the information in this state is useless and yields no transfer entropy. (2) u~d – u is chosen such that influences of the state X(t{u2) arrive
exactly at the prediction point, and influence it. Information about this state is useful, and we obtain nonzero transfer entropy. (3) uwd – u is chosen
such that influences of the state X(t{u3) arrive in the far past of prediction point. This information is already available in the past of the states of Y
that we condition upon in TESPO Information about this state is useless again, and we obtain zero transfer entropy. (B) Depiction of the same idea in
a more detailed view, depicting states (gray boxes) of X and the samples of the most informative state (black circles) and noninformative states
(white circles). The the curve in the left column indicates the approximate dependency of TESPO versus u. The red circles indicates the value obtained
with the respectzive states on the right.
doi:10.1371/journal.pone.0055809.g001
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only exist for j§0, i.e. states of X that are further back in time

than the true interaction delay d.),

N whereas none of the convergent paths between Xt{d{j and Yt are

blocked, because we do not condition on Ytz1 or any other

future value of Y,

N and all of the divergent paths between Xt{d{j and Yt are

blocked by conditioning on Xt{d.

Hence, Xt{d{j and Yt are indeed d-separated by (Xt{d,Yt{1).
Conditional probability distributions and Markov chain

property. Given this d-separation, we can state for the corre-

sponding conditional and joint probability distributions p(:) that:

p(Xt{d{j,YtDXt{d,Yt{1)

~p(Xt{d{jD(Xt{d,Yt{1))p(YtD(Xt{d,Yt{1)),
ð9Þ

which is equivalent to Xt{d{j?(Xt{d,Yt{1)?Yt being a Markov

chain. From this it follows via the decomposition property of

conditional independence that the following is also a Markov

chain:

Xt{d{j?(Xt{d,Yt{1)?Yt: ð10Þ

From the markov chain property to delay
reconstruction. Building on equation 10 we see that the

Markov property still holds if we form a new random variable

from Xt{d{j by considering it jointly with Yt{1, and we obtain:

(Xt{d{j,Yt{1)?(Xt{d,Yt{1)?Yt ð11Þ

Using the data processing theorem, this leads to an inequality

for mutual information terms between the variables as:

I(Yt; Xt{d{j,Yt{1)ƒI(Yt; Xt{d,Yt{1) ð12Þ

By subtracting the active information storage [37], I(Yt; Yt{1), from

both sides of this inequality we get:

I(Yt; Xt{d{j,Yt{1){I(Yt; Yt{1)

ƒI(Yt; Xt{d,Yt{1){I(Yt; Yt{1)
ð13Þ

and, by using the chain rule for conditional mutual information:

I(Yt; Xt{d{jDYt{1)ƒI(Yt; Xt{dDYt{1)[ ð14Þ

TESPO(Xt?Yt,u~d{j)ƒTESPO(Xt?Yt,u~d) Vj[R ð15Þ

Hence, the value of TESPO is indeed maximal when the

parameter u is equal to the true delay d – q.e.d.

Remarks. Since the above derivation does not hold if we

replace the conditioning set of variables (Xt{d,Yt{1) by

(Xt{d,Yt{u0
) with u0=1 (because the relevant d-separation is

not maintained), then we must set u0~1 to obtain an estimator

with a potential causal interpretation.

Similarly, we note that the use of u0~1 is necessary to eliminate

information storage I(Yt; Yt{1) from the past of Y being

attributed to the predictive information transfer

TESPO(Xt?Yt,u).

Importantly, since this proof only relied on a proper condition-

ing of the probability distributions of the parents of Yt in the

causal graph, it also holds for bidirectional coupling, as the parents

of Yt in the causal graph do not change by adding coupling from

Y to X .

Figure 2. Causal graph for two coupled systems X?Y. Illustration of d-separation of Xt{d{j and Yt by (Xt{d,Yt{1). Arrows indicate a causal
influence (directed interaction). Solid lines indicate a single time step, broken lines an arbitrary number of time steps. The black circle is the state to
be predicted in Wiener’s sense, the red circles indicate the states that form its set of parents in the graphs. These states are also the ones conditioned
upon in the novel estimator TESPO . The blue circle indicates the state in the graph for which we want to determine that forms a Markov chain:
Xt{d{j?(Xt{d,Yt{1)?Yt . For j=0 all sequential paths from Xt{d{j into Yt are blocked, as are the divergent paths between these nodes. All
convergent paths (e.g. via Yt{d in (B)) are not blocked. This holds for jw0 (A) and jv0 (B).
doi:10.1371/journal.pone.0055809.g002
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We also note that some constraints apply: (a) If the two systems

cannot be directly observed, but only noisy observations ~XX , ~YY of

the true systems dynamics are available, theorem 1 cannot be

proven for these noisy observations ~XX , ~YY , but may hold for many

cases – see the examples given int the results section. We can also

provide a proof (not given here) for autoregressive, linearly,

unidirectionally coupled systems, where at most one of the two

observations is noisy, i.e. we have X , ~YY . However, counter

examples can be found for very pathological structures of the

noise on the two systems, that are not expected in physical systems

(multi modal combinations of d-distributions). (b) Simulations

show that for Gaussian noise of low amplitude, delays can still be

identified correctly. (c) If the bidirectional coupling leads to full

synchronization of the two systems, such that the probability

distributions in equation 17 are delta distributions, transfer

entropy is not defined. (d) There must be no other indirect

sequential paths Xt{d{j?Zt{v?Yt (for some dzjwv§1) via

some other variable Z which are not blocked by (Xt{d,Yt{1) since

this would violate the d-separation here. Extensions of the proof to

this situation are conceivable, but are the topic of future studies.

Inability of Momentary Information Transfer to
Reconstruct Coupling Delay

In order to contrast TESPO(Y?X ,u) with the momentary

information transfer (MIT) MIT(X?Y ,u)~I(Yt; Xt{uD
Yt{1,Xt{u{1) [36], we next examine two test cases. Case (Ia)

contains noisy short-term source memory which leads to an

erroneous delay estimation by MIT; in contrast, case (Ib) is an

example that was reported to produce erroneous results in TESPO

in [36], but we show here that this was due to the use of a symbolic

preprocessing step in [36] and that TESPO is perfectly capable to

reconstruct the correct delay.

As explained in the methods section, in test case (Ia) Yt is a

direct function of Xt{1, while Xt{1 itself is a noisy mapping from

Xt{2 (with noise parameter g, also see table 1 ). As such, u~1
should be identified as the correct interaction delay here, although

the source memory makes u~2 a potential candidate for an

incorrect identification. The dynamics for test case (Ia) were run to

provide 106 observations for estimating the required probability

distribution functions. The estimation of the modified transfer

entropy functional and the momentary information transfer was

performed for this test case with the open-source ‘‘Java Informa-

tion Dynamics Toolkit’’ [40] as detailed in the Methods section.

Figure 3 shows the results of measuring TESPO(Y?X ,u) and

MIT(X?Y ,u), with delays u~1 and 2, as a function of the

source noise parameter g. We see that, in line with our earlier

proof regarding this situation of unidirectional coupling,

TESPO(Y?X ,u) consistently identifies the correct delay u~1,

since TESPO(Y?X ,u~1)wTESPO(Y?X ,u~2) for all gw0.

On the other hand, for a significant range of g, MIT(X?Y ,u) is

deceived by the source memory into incorrectly identifying u~2
as the relevant delay.

Certainly MIT(X?Y ,u) fulfills its design in identifying the lag

to the time step of the source where the relevant information in the

target first appeared. As we see in this example however, the

existence of some information regarding the target variable in the

source at a certain lag does not mean that this relevant information

was transferred to the target at that particular lag. Here, the

memory in the source makes the source strongly correlated to the

target over lag u~2. This drives both measures to high values for

u~2 with low noise g, yet while TESPO(Y?X ,u~1) remains

higher still, MIT(X?Y ,u~1) conditions out this correlated

information and so falls below MIT(X?Y ,u~2). MIT returns

the wrong result here because the conditioning on previous source

state is not necessary and removes relevant information.

Finally, we examine test case (Ib), a bidirectionally coupled

logistic map, for which Pompe and Runge [36] found that the

TESPO(X?Y ,u) incorrectly identified the interaction lag as u~1
instead of u~2, when this quantity was estimated using symbolic

mapping (capturing ordinal relationships). In contrast to the

findings in [36], our analysis described in the methods section

using Kraskov-Grassberger-Stögbauer estimators [41] is able to

accurately identify the correct lag u~2 as having larger

TESPO(X?Y ,u) (2.123 bits for u~2 as compared to 0.826 bits

for u~1). This result is in line with our proof that

TESPO(X?Y ,u) is maximized at the correct delay even in the

case of bidirectional coupling. It is also in line with the more

detailed empirical results we obtained for bidirectionally coupled

processes as presented below. The opposite finding in [36] appears

to simply be an artifact of their symbolic mapping approach:

symbolic mapping may be a useful technique to handle small data

sets, but it certainly removes parts of the information about the

processes, and this information may well be relevant. Certainly,

this is the case with coupled logistic maps, where examining

ordinal relationships will miss many of the subtleties regarding

how consecutive states are updated by the map.

Estimating Interaction Delays from Simulated Data
Here, we test the capability of TESPO to detect the interaction

delays from a series of simulated and experimental time series. The

different cases cover stochastic, deterministic and real time series,

representing different interaction configurations and delay ranges,

and are described in detail in the methods section. The estimation

of the modified transfer entropy functionals in these test cases (II-

IX) was performed with the open-source MATLAB toolbox

TRENTOOL [42] as detailed in the Methods section. State space

reconstruction was performed using the Ragwitz criterion [39] in

TRENTOOL, to obtain states that allow optimal self prediction,

given the data. Throughout this section the estimated delays are

Table 1. Definition of stochastic self-mapping updates f with memory and noise for variable X in test case (Ia).

X(t{1) p(X(t)~f (X(t{1)))

X(t)~0 X(t)~1 X(t)~2 X (t)~3

0 (1{g)=2 g=2 (1{g)=2 g=2

1 (1{g)=2 g=2 (1{g)=2 g=2

2 g=2 (1{g)=2 g=2 (1{g)=2

3 g=2 (1{g)=2 g=2 (1{g)=2

doi:10.1371/journal.pone.0055809.t001
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indicated by d̂d, whereas the true, simulated delays are indicated by

d.

Overview of simulated test cases II-IX. Figure 4 presents

the general structure of test cases (II-VII,IX). All these cases

comprise two systems labeled as X ,Y , which are either both

autoregressive order 10 processes (AR(10), equation 29), or both

Lorenz systems (Lorenz, equation 32). For the Lorenz systems, the

second coordinate (V - see equation 32) was used as the observable

producing the time series used for analysis. The systems may

interact in the direction X?Y , with either a single delay dXY , or a

set of delays fdXYg, with coupling strengths cXY or fcXYg,
respectively. In the reverse direction Y?X we only consider the

case of single interactions with parameters dYX , and cYX .

Additionally, in some of the cases delayed self feedback is present

from process X to process X , with delay dXX , and strength cXX .

All simulated interactions, including self-feedback, were non-linear

(quadratic) functions. One additional case (VIII) investigates delay

reconstruction from a unidirectionally coupled ring structure of

three Lorenz systems; the last case (IX) simulates the effects of

observation noise on delay reconstruction. Details of the test cases

are presented in table 2. For each test cases 50 data segments

(trials) of 3000 sampling points each were simulated, resulting in a

total of 150.000 data points. A full description of the generating

equations for the system dynamics and the simulation details can

be found in the subsection on the test cases in the methods section.

In the following, we present results for these eight test cases (II-IX),

with test case (V) serving as an example for the inability of the ‘old’

estimator [9,12,13,29] to recover the correct interaction delays.

Recovery of a single interaction delay. In test case (II) we

investigated two unidirectionally coupled autoregressive (AR)

processes where a single interaction delay dXY ~20 was present.

We investigated TESPO as a function of the assumed interaction

delay u. Figure 5 shows the results of computing TESPO and its

statistical significance (with a null hypothesis of no source-target

coupling, see Methods) for the two possible directions of

interaction, X?Y and Y?X . TEX?Y
SPO shows a maximal value

for u~20 units, which matches the nominal value of 20 sampling

steps. TEX?Y
SPO is statistically significant across a certain interval of

delays around the maximum (14 to 23 sampling points) even when

corrected for multiple comparisons. This blurring of the statistical

significance of the predictive information transfer can be partly

explained by memory in the source X (via autoregressive terms)

meaning the predictive value of the actual directly influential

scalar observation xtz1{d of the source is detectable in states

xtz1{u of X both before and after the actual delay u~d (compare

the extension of sources states indicated by shaded boxes in

figure 1). An additional factor here is that examination of the

source states xt{u (instead of scalar observations xt{u) means that

full information about the directly influential observation xtz1{d is

contained in several source states after xtz1{d. Crucially, the

opposite direction (Y?X ) reveals a flat profile with no statistical

significance, in correspondence with the absence of a directed

interaction from process Y to X .

Recovery of multiple interaction delays. In the test case

(III), we investigated two unidirectionally coupled AR processes

where multiple interaction delays dXY were present,

Figure 3. Test case (Ia), comparison of MIT and TE. Analytic and empirical measurements of (a) Transfer entropy TESPO(X?Y ,u) and (b)
Momentary information transfer MIT(X?Y ,u) as a function of memory noise parameter g for the discrete-valued process with short-term source
memory and a delay d~1. Each measure is plotted for delays u~1 (red) and 2 (green). The correct causal interaction delay coorsponds u~1 and
therefore we expect an appropriate measure to always return a higher value with u~1 than with u~2, i.e the red curve should always be at higher
values than the green curve. Nevertheless, there is potential for u~2 to be identified erroneously as the delay due to the presence of memory in the

source X , and MIT indeed finds this result for a range of the memory noise parameter g (below ~00.1).
doi:10.1371/journal.pone.0055809.g003

Figure 4. Overview over the structure of simulated test cases II-
IX. Note that not all combination of links and parameters are always
investigated. For details refer to table 2.
doi:10.1371/journal.pone.0055809.g004
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dXY ~15,20,25,30,35. Figure 6 reveals that they can be readily

detected by scanning TESPO. Well separated peaks indicate the

presence of multiple delays around values of , 14, 19, 25, and 30

sampling units for the direction of interaction X to Y . The curve

displays an additional shoulder at u~35. Nominal delays in the

simulations were 15, 20, 25, 30 and 35, and thus all but the longest

delay were correctly detected. The longest delay is most likely not

detected because much information from the relevant source state

xtz1{d has already been communicated to the target over several

shorter delays, due to the inherent memory of the AR(10) process,

and there is no longer enough novel information provided by the

source given the past state of the target to evoke a clear peak.

However, the transfer entropy values TEX?Y
SPO indeed were

statistically significant up to an assumed delay of 35 units, in line

with the maximal delay simulated.

A more complex case (IV) is encountered when dealing with a

smooth distribution of delays. Figure 7 demonstrates that in this

case, a peak of TESPO is attained near to the mean of the

distribution of delays. The width of the peak is proportional to the

width of the delay distribution. However, an exact estimation of

the range of delays is difficult since single delays are also associated

with broad peaks in the TESPO versus assumed delay curves (see

figure 5, but note the different scale of the time axes). We note that

the peak of TESPO is skewed towards the shorter of the actual

interaction delays, and this may be due to: (a) the longer delays

providing less novel information from the source given that it is

already contained in the target state from the shorter delays (as

discussed in the above paragraph); and/or (b) the persistence of

information of the current influential component xtz1{d of the

source state xtz1{d in several following source states (as discussed

in the preceding subsection).

Recovery of delays of bidirectional interactions. For the

analysis of two bidirectionally coupled Lorenz systems in test case

(V), with dXY ~45 and dXY ~75, transfer entropy values peaked at

u~46 and u~76 samples for the interaction from process X to Y ,

Table 2. Parameter settings used to create the simulated test cases II-IX.

Testcase System fdXYg dYX dXX fªXYg ªYX ªXX

II AR(10) 20 n.a. n.a. 0.1 0 0

III AR(10) {15,20,25,30,35} n.a. n.a. 0.1 0 0

IV AR(10) {18,19,20,21,22} n.a. n.a. 0.1 0 0

V Lorenz 45 75 n.a. 0.1 0.1 0

VI Lorenz 75 n.a. 45 0.3 0 0.3

VII Lorenz 45 n.a. 75 0.3 0 0.3

VIII Lorenz (Ring) 20 dYZ~30 dZX ~40 0.15 cYZ = 0.15 cZX = 0.15

IX Lorenz+Noise 45 75 n.a. 0.1 0.1 0

Lorenz = chaotic Lorenz system; AR = autoregressive processes. For the meaning of the coupling and delays constants fd::g and c:: refer to figure 4.
doi:10.1371/journal.pone.0055809.t002

Figure 5. Test case (II). Transfer entropy (TESPO) values and
significance as a function of the assumed delay u for two unidirection-
ally coupled autoregressive systems. For visualization purposes all
values were normalized by the maximal value of the TE between the
two systems, i.e. max (TEX?Y

SPO (u),TEY?X
SPO (u)). Red and blue color

indicate normalized transfer entropy values and significances for
interactions X?Y and Y?X , respectively. The nominal interaction
delay dXY used for the generation of the data was 20 sampling units
from the process X to Y . Asterisks indicate those values of u for which
the p-value v 0.05 once corrected for multiple comparisons. Missing
points for TEY?X

SPO (u)) are because the analyses for these u’s failed to
pass the shift test (a conservative test in TRENTOOL to detect potential
instantaneous cross-talk or shared noise between the two time series,
see [42]).
doi:10.1371/journal.pone.0055809.g005

Figure 6. Test case (III). Transfer entropy (TESPO) values and
significance as a function of the assumed delay u for two unidirection-
ally coupled autoregressive systems with multiple delays. The simulated
delays fdXYg were 15, 20, 25, 30 and 35 sampling points. The rest of the
parameters and criteria used are the same as those in Figure 5.
doi:10.1371/journal.pone.0055809.g006
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and Y to X , respectively (Figure 8). These values differed only by

one sample from to the true interaction delays used for simulation.

Moreover, the relation between the transfer entropy values for the

two coupling directions reversed with increasing delay parameter

u: for delay values up to 65, transfer entropy values were larger for

the direction from process X to Y , for values of u larger than 65

the opposite was the case. This is an important finding as the

difference of the transfer entropies in both directions, also called

the net transfer entropy, is often used as an indicator of the

effective or dominating interaction structure. However, in our

example, this net information transfer changed sign with changing

delay parameter u. As an additional result, we show that the cross

correlation function between the signals of the two systems was flat

(Figure 9), as expected for a quadratic coupling.

Failure of the traditional estimator to recover the correct

delays. We also analyzed the case (V) of bidirectionally coupled

Lorenz systems with the ‘old’ estimator (u0~u) from references

[9,12,13,29] (figure 10). As expected on theoretical grounds, this

type of estimator did not recover the simulated delays for the two

coupling directions (dXY ~45 and dYX ~75), but instead delivered

erroneous estimates (d̂dXY ~28 and d̂dYX ~61).

Recovery of the delay of a feedback loop. We consider

here the cases (VI) and (VII) where a feedback loop is affecting the

dynamics of a node. In particular, we investigate first how the

presence of feedback can be detected, and second how a feedback

loop in a node affects estimation of transfer entropy to a different

node.

We note that feedback loops do not pose a principal conceptual

problem. Mathematically, a perfect state space reconstruction (see

Methods for an explanation of state space reconstruction.) would

subsume the feedback activity into the node’s dynamics. In

practical terms, however, long self-feedback delays – in comparison

to the intrinsic dynamics of the node – can not be covered

practically in Taken’s classical state space reconstruction [43]. The

reasons for this are twofold: (1) Self prediction performance may

become unstable in high dimensional state spaces necessary to

recover the delayed self-feedback. Algorithms determining optimal

embedding parameters by optimal self prediction may get stuck in

local minima this way. (2) Computational cost quickly diverges

with a growing number of dimensions in state space. Hence, one

may not even include the necessary number of dimensions and the

necessary range of embedding delays in the parameter ranges that

are searched to get the optimal embedding values. Given an

imperfect state space reconstruction, even our new estimator is no

longer self-prediction optimal, then. In the following we show that

this estimator is nevertheless useful to detect self-feedback under

conditions of long self-feedback delays.

Thus, we start by considering the dynamics of a single Lorenz

system (process X in test case (VI)) subject to a non-linear delayed

feedback loop. This is, its own past output is fed back after it has

undergone a nonlinear (quadratic) transformation (see the section

‘test cases’ in Methods). To detect the presence of feedback activity

we evaluate TESPO(X?X ,u) between the system’s original time

series and its own past u time steps back. To this end we choose

embedding parameters such that the reconstructed states do not

Figure 7. Test case (IV). Transfer entropy (TESPO) values and
significance as a function of the assumed delay u for two unidirection-
ally coupled autoregressive systems with multiple delays. The simulated
delays fdXYg were 18, 19, 20, 21 and 22 sampling points. The rest of the
parameters and criteria used are the same as those in Figure 5.
doi:10.1371/journal.pone.0055809.g007

Figure 8. Test case (V). Transfer entropy (TESPO) values and
significance as a function of the assumed delay u for two bidirectionally
coupled, chaotic Lorenz systems. The simulated delays were dXY ~45
and dYX ~75, and the coupling constants were cXY ~cYX ~0:1. The

delays were recovered as d̂dXY ~46 and d̂dYX ~76. For more parameters
see table 2.
doi:10.1371/journal.pone.0055809.g008

Figure 9. Test case (V). Crosscorrelation function for the two
quadratically coupled chaotic Lorenz systems from figure 8.
doi:10.1371/journal.pone.0055809.g009
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cover the feedback delay. The results are shown in Figure 11.

Clear peaks are observed at u~45, which corresponds to the

simulated feedback delay dXX , and its integer multiples. This

corresponds to information being fed back via multiple rounds of

the feedback loop.

The presence of feedback loops can challenge the reliable

detection of information transfer between nodes. For example, if a

node subject to feedback is unidirectionally coupled to another

node, the direct computation of transfer entropy between the two

nodes as a function of a delay parameter can lead to wrong

inferences. To illustrate this point, we computed the self prediction

optimized transfer entropy between the Lorenz system (X ) with a

feedback loop and another Lorenz (Y ) which receives its output.

First, we consider test case (VI) in which the feedback loop time

(dXX ~45) is shorter than the interaction delay between the systems

(dXY ~75). As shown in Figure 12, TEX?Y
SPO has the highest peak at

u~75, corresponding to the simulated interaction delay. However,

it also shows clear peaks at u~30 and u~120, values which amount

to the difference between the interaction and feedback delays, and

their sum respectively. In general, peaks were observed at

u~dXYzndXXw0; n[Z, corresponding to different combinations

of cycles around the feedback loop plus the interaction delay.

TESPO from Y to X , the direction in which no coupling was

simulated, also exhibits several weak but significant peaks, i.e. we

find false positive results in this case. Peaks were present at

multiples of the delay feedback time minus the propagation time

between the two Lorenz systems (u~ndXX {dXY w0; n[Z). These

peaks in TESPO from Y to X appear because the feedback loop in

process X results in recurrent information in the dynamics of X

that can be predicted by the process Y , because thew process Y

also receives a copy of them via the connection X?Y . This

information is useful to predict the state of X when the assumed

delay u in TESPO from Y to X is at least as big as u~ndXX {dXY ,

with n chosen such that u is positive. Notice that the size of the

peaks decreases with larger n.

Second, we considered test case (VII) in which the feedback

delay dXX is longer than the interaction delay time dXY (see

Figures 13 and 14). In this case structure similar to test case (VI) is

observed for the location of the peaks of TESPO. However,

TEY?X
SPO shows higher and more false positive peaks than in case

(VI). This occurs since when dXX wdXY , process Y can predict the

Figure 10. Test case (V) analyzed with the old estimator.
Transfer entropy (TE) values and significance estimated by the old
estimator from references [9,12,13,29] as a function of the assumed
delay u for two bidirectionally coupled, chaotic Lorenz systems. The
simulated delays were dXY ~45 and dYX ~75. These delays were

recovered erroneously as d̂dXY ~28 and d̂dYX ~61. For more parameters
see table 2.
doi:10.1371/journal.pone.0055809.g010

Figure 11. Test case (VI) - self-feedback analysis. Transfer entropy
(TESPO) values between past and present of one of two Lorenz systems
(X ) and significances as a function of the assumed delay u. The
analyzed chaotic Lorenz system was subject to a feedback loop with
delay dXX ~45, and an outgoing interaction X?Y with delay dXY ~75,
but no incoming interaction. The recovered delay for the self feedback

was d̂dXX ~43, with a sidepeak at around two times this value. For the
interaction analysis X?Y see figure 12. For more parameters see
table 2.
doi:10.1371/journal.pone.0055809.g011

Figure 12. Test case (VI). Transfer entropy (TESPO) values and
significance as a function of the assumed delay u for a unidirectionally
coupled chaotic Lorenz systems. The first Lorenz is subject to a
feedback loop (dXX ~45) and unidirectionally couples to a second
Lorenz with a interaction delay of dXY ~75 samples. Recovered delays

were d̂dXX ~43 (see figure 11), and d̂dXY ~73. Sidepeaks were observed

for d̂dXY close to dXY+n:dXX . Spurious interactions were observed in

the reversed direction at d̂dYX ~n:dXX {dXY , as it is expect for a system
with self feedback [45]. Considering the positive test for self-feeback
(figure 11) and the recovery of the self-feedback delay, the true system
connectivity can be derived by combining the analysis of self-feedback
and interaction delays.
doi:10.1371/journal.pone.0055809.g012
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transitions that will occur in X already after a single delay loop,

because even for n~1 the condition u~ndXX {dXY w0 is

fulfilled, – in contrast to a prediction of two delay loops ahead

as in the previous case above. This situation is related to the so-

called anticipative synchronization in which a slave system (Y ) can

anticipate the dynamics of the master system when this is subject

to a long feedback loop [44,45].

To be clear: these observations are not a theoretical problem

with TEY?X
SPO but are a practical issue in estimation (due to the

impracticality of adequately forming Taken’s embedding of X in

the presence of the long delay loop, as described above).

Ring of Lorenz systems. In a network of three Lorenz

systems coupled into a unidirectional ring, test case (VIII), our

method identified the three simulated delays dXY ~20, dYZ~30,

dZY ~40 with reasonable precision as d̂dXY ~21, d̂dYZ~28,

d̂dZX ~38 (figure 15). Analysis of self-feedback (as it is in principle

present in a ring structure) for system X resulted in no significant

peak at the expected sum of all three simulated delays (90),

indicating that the information originally transfered from system 1

into the ring is effectively wiped out by the chaotic dynamics of the

next nodes in the ring, a phenomenon well known in from coupled

chaotic laser systems [46].

Effects of observation noise. In test case (IX) we simulated

two bidirectionally, quadratically coupled Lorenz systems with

delays dXY ~45, dYX ~75, and added independent, Gaussian,

white noise to the time series of the V -coordinate (see equations

32, 33 for details) before the reconstruction of delays. Observation

noise did degrade the precision of delay reconstruction to a certain

degree: with 1%, 2% and 9% of the total signal variance

contributed by noise, the estimated delays were d̂dXY ~45,40,42,

and d̂dYX ~70,72,70 (figure 16). Note that noise amplitude and

delay reconstruction error do not seem to be systematically related,

suggesting that the effects of particular realizations of finite data

cause the reconstruction errors.

Local Field Potential Data
To demonstrate that interaction delays can be reconstructed

from biological time series with sufficient precision, we analyzed

recordings of the electroretinogram (R) and local field potentials

from the tectum (T ) of the turtle brain (Pseudemys scripta elegans,

figure 17). These data were recorded during stimulation (S) with

light flashes at time points determined by a random process and

with a duration drawn from a uniform random distribution; this

ensured stationarity of the time series. In this experiment, direct

physical interactions existed from the light source to the retina and

from the retina to the tectum (S?R?T ). In addition, there was

an indirect interaction from the light source to the tectum,

mediated by the retina. This opens the possibility to check the

precision of the delay reconstruction despite the fact the we have

no precise knowledge of the true biological interaction delays. The

evaluation of reconstruction precision is possible because the

interaction delays reconstructed from S?R and from R?T
should sum up to the interaction delay reconstructed from S?T if

reconstruction is precise.

We reconstructed the interaction delays the same way as in all

previous test cases by scanning u. Indeed, the reconstructed delays

were: d̂d(S,R)~30ms, d̂d(R,T)~12ms, d̂d(S,T)~44 ms, meaning that

the reconstructed delays between light source and retina and

between retina and tectum added up to the reconstructed delay

between light source and tectum with an error of 2 ms or 4.5%.

Discussion

Transfer Entropy Estimation without Violating Wiener’s
Principle

We have laid out in the introduction why the earlier formulation

of transfer entropy with an explicit time-delay as given in equation

3 and as used in [9,12,13,29] is not a precise formulation of

Figure 13. Test case (VII) - self-feedback analysis. Transfer
entropy (TESPO) values between past and present of one of two Lorenz
systems (X ) and their significances as a function of the assumed delay u
for a single chaotic Lorenz system subject to a feedback loop with delay
dXX ~75, and an outgoing interaction X?Y with delay dXY ~45. The

recovered delay for the self feedback was d̂dXX ~74, with a sidepeak at
two times this value. For the interaction analysis X?Y see figure 14.
For more parameters see table 2.
doi:10.1371/journal.pone.0055809.g013

Figure 14. Test case (VII). Transfer entropy (TESPO) values and
significance as a function of the assumed delay u for a unidirectionally
coupled chaotic Lorenz systems. The first Lorenz is subject to a
feedback loop (dXX ~75) and unidirectionally couples to a second
Lorenz with a interaction delay of dXY ~45 samples. Recovered delays

were d̂dXX ~74 (see figure 13), and d̂dXY ~44. Sidepeaks were observed

for d̂dXY close to dXY+n:dXX . Spurious interactions were observed in

the reversed direction at d̂dYX ~n:dXX {dXY , as it is expect for a system
with self feedback [45]. Considering the positive test for self-feeback
(figure 13) and the recovery of the self-feedback delay, the true system
connectivity can be derived by combining the analysis of self-feedback
and interaction delays.
doi:10.1371/journal.pone.0055809.g014
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Wiener’s principle of causality in information-theoretic terms, as it

violates the requirement of optimal self-prediction of the target

time series. Accordingly, we were able to construct a test case were

this functional gives a wrong estimate of the interaction delay in a

system (figure 10), while the novel functional proposed here

(equation 7), gives the correct result (figure 8). We therefore

suggest to use this novel functional wherever interaction delays are

expected. Accordingly, the new functional has been implemented

in version 2.0 of our open source toolbox for transfer entropy

estimation, TRENTOOL [42], and has been made the default

option.

Interaction Delay Reconstruction by Maximizing
Predictive Information Transfer

In this study we demonstrated that it is possible to reconstruct

the delays of interactions between two systems by finding the

maximum of the predictive information transfer estimated by a

novel transfer entropy functional, TESPO, with a parametric

dependence on the interaction delay. Our work complements

earlier, anecdotal reports of delay-sensitivity of the predictive

information transfer [12,13,42], by presenting a new formulation

of the transfer entropy functional rigorously based on Wiener’s

principle of causality and backed by a formal proof (see results section).

Crucially, our experimental results identify the precise interaction

delay for coupled systems with a single interaction delay, validating

the formal proof which was constructed under these conditions.

Furthermore though, we show that the reconstruction of

interaction delays is possible for a large range of coupling types,

multiple interaction delays, complex dynamics of the subsystems,

for ring, and bidirectionally coupled systems. This last point is of

great importance, as up to now, the analysis of bidirectionally

coupled systems has often been discouraged, at least implicitly.

Hesitation to analyze bidirectionally coupled systems is based on

two observations - on the one hand, bidirectional coupling often

leads to complete synchronization and in these cases an analysis of

interactions is indeed not possible - on the other hand, it has been

shown that the quantification of causal effect size is not always

possible in these systems [47]. With our finding that in cases where

Figure 15. Test case VIII. Transfer entropy (TESPO) values and significance as a function of the assumed delay u for three unidirectionally coupled
chaotic Lorenz systems. The First Lorenz couples with the second Lorenz with an interaction delay of dXY ~20 samples, the second Lorenz is
unidirectionally coupled with the third Lorenz at a delay of dYZ~30 samples and the third Lorenz is unidirectionally coupled with the first Lorenz at

an interaction delay of dZX ~40 samples. The reconstruction of the simulated delays were: (A) self feedback, d̂dXX ~2, this value may be due to

insufficient embedding, (B) d̂dXY ~21, (C) d̂dYZ~28, and (D)d̂dZX ~38.
doi:10.1371/journal.pone.0055809.g015
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there is no complete synchronization we can reconstruct at least

the individual delays of bidirectional coupling (again backed by

our formal proof), we hope to revive the analysis of such systems -

that are abundant in nature and technology.

Formally identical functionals to TESPO have been indepen-

dently introduced several times in the literature, first by Nichols

and colleagues [48], then by Overbey and Todd [49] – both in the

field of structural integrity analysis of mechanical systems. In

addition, Ito and colleagues used a formally identical functional to

increase the detectability of interactions in spiking neural data

[50]. In none of these studies the use of the functional for explicit

delay reconstruction has been recognized and as a consequence no

proofs for this property have been given. Ito and colleagues did

indeed state that the delay parameter in their equation is there to

account for finite delays, but they simply assumed maximality of

the functional at the correct delay, without proof.

Note that the successful reconstruction of the true interaction

delay between two coupled systems depends on reliable and

precise enough estimates of the corresponding information-

theoretic quantities (see methods section for the algorithms applied

here). Obtaining these estimates may become a problem for small

sample sizes. In this case, additional statistical testing against the

null hypothesis of no coupling should be included when scanning

delays and only maxima that show statistically significant coupling

should be evaluated.

In addition, stationarity of the time series entering the analysis

must be given, because transfer entropy between two random

processes is typically defined via a time average that can only be

used instead of the proper ensemble average for random processes

if stationarity is given. If stationarity cannot be assumed a priori for

the time series under investigation, appropriate testing should be

performed (see [51,52] and references therein). If at least

cyclostationarity can be guaranteed, the proposed method could

be used as functional within the ensemble averaging framework

described in [53]. Reliably repeated non-stationarities may also be

removed using the mathematical methods presented in [54]. In

this case, however, additional testing for remaining non-stationa-

rities is recommended. Note that for the local field potential data

Figure 16. Test case IX. Transfer entropy (TESPO) values and significance as a function of the assumed delay u for two bidirectionally coupled,
chaotic Lorenz systems. The simulated delays were dXY ~45 and dYX ~75. Observation noise with different amplitude was added to the simulated

time series of the processes. The delays were recovered as (A) d̂dXY ~45 and d̂dYX ~70 for S=N~45:88db (blue), d̂dXY ~40 and (B) d̂dYX ~72 for

S=N~37:74db (red) and d̂dXY ~42 and d̂dYX ~70 for S=N~23:84db (green).
doi:10.1371/journal.pone.0055809.g016

Figure 17. Interaction delay reconstruction in the turtle brain.
(A) Electroretinogram (green), and LFP recordings (blue), light pulses are
marked by yellow boxes. (B) Schematic depiction of stimulation and
recording, including the investigated interactions and the identified
delays.
doi:10.1371/journal.pone.0055809.g017

Measuring Information-Transfer Delays

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e55809



analyzed here, approximate stationarity was guaranteed by

stimulation at multiple randomly chosen time points within each

epoch of the experiment time series (i.e. ‘‘trial’’), with stimulation

durations also drawn from a random distribution.

Comparison to the Momentary Information Transfer
As detailed in the methods section, momentary information transfer

(MIT) [36] is an alternate approach to reconstructing the

interaction delay, again using a scanning approach to maximize

MIT as a function of delay u. Both TESPO and MIT condition on

the immediately previous target state (which is correct in

comparison to the old TE estimator), and given that TESPO uses

an embedded source state Xt{u, both measures include synergistic

information that is jointly contributed by fXt{u,Xt{u{1g (as

opposed to TE computed using only a single source observation). Yet

a stark difference is the extra conditioning by MIT on Xt{u{1,

which removes redundant information that was already contained in

the source. This prevents any of this information from being

attributed to transfer at the lag u.

A major conceptual difference between the Pompe and Runge

study and ours is that no formal proof of the maximality of their

functional MIT at the correct interaction delay is given, and as we

argue below cannot be given.

Indeed, we provide a counter-example here – in test case (Ia) –

where the momentary information transfer is not necessarily

maximized at the correct interaction delay, in direct contrast to

our proof of this property for TESPO. As such, MIT is not always

reliably inferring the correct interaction delay.

The intention of the MIT in removing the self-redundant

information in the source was to find the delay at which the

relevant information about the target’s state update first appeared

in the source. However, the availability of such information in the

source at a specific time point does not mean that it is being

transferred at that instant, and the presence of memory in the source

inevitably leads the MIT to underestimate the influence of the

source at the actual interaction delay (because of the removal of

redundant, though potentially transferred, information). We dem-

onstrated for these reasons that the MIT failed to identify the

correct interaction delay in test case (Ia) on a simple, unidirectional

coupling, single-interaction delay example with source memory,

whereas our TESPO estimator functioned correctly.

As argued in [55], when investigating effective connectivity, the

removal of redundant information by prematurely conditioning on

other potential sources reduces our ability to infer connections.

Conditioning on the source at another delay(s) should only be

performed once one has already established the primary (or

additional) coupling delay (see further discussion below and in

[34,55]).

Furthermore, the actual MIT analysis in [36] was carried out on

a symbolic mapping of the time series (to vectors capturing the

ordinal relationships between the variables). This approach, while

potentially useful for short time-series realizations in magnifying

certain relationships in the data, removes information on absolute

values of the variables involved. While this loss of information may

be harmless in climatology – the field of research MIT was aimed

at –, it might be crucial to retain this information in other fields,

such as neuroscience. Indeed, for the example in their study ([36],

Section V.A) where the TESPO was not able to infer the correct

interaction delay but MIT was, we have shown in test case (Ib)

that this result is an artifact of the symbolic mapping in [36] rather

than the measures themselves. Specifically, when we estimated in

the continuous domain (retaining much information that the

symbolic mapping removed), TESPO correctly identifies the

interaction lag in this coupled logistic map process.

Interaction Delay Fingerprints in Systems with Self-
feedback

The phenomenon of self feedback is present in many complex

networks. This self feedback can arise genuinely in the nodes of the

network, e.g. by mechanisms such as autapses in neural networks

[56], or because the systems receives (transformed) self-feedback

via an unobserved part of the network. The analysis of interaction

delays via TESPO may offer valuable hints with respect to the

presence of absence of relevant self-feedback.

Here we showed that TESPO can detect the presence of

feedback loops when applied to the time series of a single system

and its own past – even if the system is chaotic and the feedback

loops entail nonlinear transformations of the systems output. The

information on the delay of a feedback loop can then be used to

disentangle the potentially complex delay fingerprints, consisting

of multiple peaks, that arise if such a system with self-feedback is

coupled to other systems.

In principle, the multiple spurious peaks in the direction X?Y
in our example, and all of the peaks in the direction Y?X should

vanish, given a state space reconstruction with states long enough

to cover the delay feedback time. However, very long reconstruc-

tion lengths might lead to instable estimates due to the ‘curse of

dimensionality’ [57]. In such a case, where the practically feasible

reconstruction lengths for states are too short to cover the full

dynamics of a system, the identification of feedback loops by

TESPO helps to better interpret the estimated pairwise information

transfers between the nodes of a network. Time points around the

self-feedback delay could in addition be included into the

embedding states of a non-uniform, data-efficient embedding scheme

[34], which would assist in removal of information storage and

more accurate assessment of the transfer entropy as per the

principles outlined in subsection on Wiener’s principle above.

TESPO differs from a simple application of the lagged auto-

mutual information functional (AMIF) in that active information

storage I(Xt; Xt{1) [37] contained in the most recent reconstruct-

ed state Xt{1 is removed. This will accentuate the presence of

peaks in the delay spectrum compared to AMIF.

Information Transfer Delays from Noisy Time Series
The proof for the identifiability of the true delay in the

information transfer between two time series holds strictly only for

the case of zero observation noise. Indeed the fundamental

differences between time series obtained from Markov systems

and those obtained from hidden Markov systems (i.e. from noisy

observations) make it difficult to extend our proof without

specifying the noise explicitly in each case. Nevertheless, our

simulations of typical noise influences – such as independent,

Gaussian, white noise – show that our approach works well in

practice. While noise does indeed degrade precision, the random

relation between observation noise amplitude and delay recon-

struction error suggest that these errors are due to the combined

effects of finite data and noise, and can be alleviated by increasing

sample size.

Relation to Linear Granger Causality and Corresponding
Time Delay Reconstruction Procedures

Recently, Barnett and colleagues [19] demonstrated that

transfer entropy and linear Granger causality are equivalent for

the case of data with a Gaussian distribution. This result greatly

simplifies the computation of interactions for data of this class.

Neural data, however, do most likely not have a Gaussian

distribution. This can for example be seen when comparing brain

electrical source signals from physical inverse methods with the
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time course of corresponding ICA components [58]. Given that

ICA components are as non-Gaussian as possible by definition,

and given the fact that ICA components and brain source signals

extracted by inverse methods closely match, we can interpret this

as evidence for a non-Gaussian nature of brain signals. For these

signals, TE may have an advantage for the analysis of directed

interactions. On the other hand, the methodology presented here

should be transferable to the domain of linear Granger causality in

Gaussian data by virtue of the proof by Barrett and colleagues.

Hence, the approach presented here may be seen as an alternative

to earlier attempts to infer timing delays via linear Granger

causality by inspecting time-dependent model-coefficients and

using large model orders of 200 and more. For Gaussian data the

scanning approach presented here would be equivalent to setting

the first n model coefficients to zero without having to estimate

them, and scanning n, estimating the k next model coefficients,

where k is the embedding dimension, resulting from optimization

via the Ragwitz criterion [39].

Relation of Delay Reconstruction and Multivariate TE
Analyses

In systems composed of more than two interacting subsystems a

pairwise, bivariate transfer entropy analysis as given by equation 7

may lead to wrong inferences with respect to the presence of an

interaction between two subsystems. This happens when either a

third subsystem drives the two subsystems under investigation with

differential delays (‘common drive’), or when the two subsystems

under investigation are connected indirectly via a third system

acting as a relay (‘cascade effect’). The potential presence of

interaction configurations of this kind can be detected by looking

at timing relations across the graph of bivariate interactions. Here,

this was demonstrated by our reconstruction of delays in LFP data

in the turtle, where the interaction delay between light source and

tectum was equal to the sum of delays on a route connecting the

same end points (light source to tectum, via the retina). While both

a common drive (light source ? retina, light source ? tectum) or

cascade scenario (light source ? retina ? tectum) could explain

the manifestations of these delays, what is important here is that

this result is consistent with the known biological indirect

interaction via the retina. If the concern is just to avoid false

positive detection of interactions, a simple delay analysis approach

may be a data efficient alternative to fully multivariate treatments

of TE [7,34,35,55]. That said, such multivariate treatments could

yield further insights, e.g. if the conditional TE [7,35] from the

retina to the tectum conditioned on the light source (with

appropriate delays incorporated) were statistically non-zero, then

this would eliminate the possibility that the inferred retina ?
tectum relationship was a result of common drive by the light

source. Combining delay analysis with multivariate treatments is

feasible but more complicated (delays must be determined in an

appropriate order, in the same way that the self-conditioning delay

u0 was determined here before the source delay u was explored -

see some relevant discussion in [34,55]); and will be the subject of

a future publication.

Delay Estimation Versus Significance Testing
We would like to stress here that inference on the presence of

information transfer is a task separate from reconstructing the

delay of the information transfer. For the former task we employed

nonparametric permutation testing of TESPO against surrogate

data obtained from exchanging data epochs in the source. For the

latter we searched the peak of TESPO. Our simulation results

demonstrate that the existence of information transfer can

typically be assessed over a wide range of assumed delays. On

the one hand, this fact underlines the robustness of the TESPO-

functional against misspecification of the delay parameter. On the

other hand it is a warning not to conclude from the presence of

significant information transfer at a certain delay parameter that

the true delay is close to the assumed delay, if no scanning of the

delay parameter was performed.

A Practical Note on the Combination of Delay
Reconstruction and Shift Testing

In practical applications, linear mixing or instantaneous cross-

talk between signals occurs and may bias interaction measures

based on Wiener’s principle [12,59]. To detect such crosstalk, we

have proposed a so-called shift-test [12,13,42]. This test deter-

mines if shifting the source time series into the past by the time that

represents the assumed delay, u, increases TE. This way two

predictive information transfer terms get compared: on the one

hand the predictive information transfer from the past of the

source to the target, on the other hand the instantaneous

information transfer from source to target. This procedure works

very well as demonstrated in [42], but gives rise to minor a

technical problem for real world data, because in these data

instantaneous cross-talk is never truly zero. For assumed delays u
that are much larger than the true delay, the information transfer

will be arbitrarily small, due to the combined effects of

conditioning on the past of the target and the finite memory of

the source. In contrast, cross-talk will always be non-zero. Hence,

in situations with some finite cross-talk, there will a largest delay

parameter umax, beyond which the presence of crosstalk will

always be reported by the shift test. This, however, can be easily

seen by comparing TE values at large u to those at smaller u. In

contrast to a mere nuisance effect, relevant cross-talk should

outweigh TESPO even at the optimal delay.

Conclusion
We present a novel transfer entropy functional, which is a

rigorous formulation of Wiener’s principle of causality in

information-theoretic terms, respecting the condition of optimal

self-prediction of the target time series from its own past. This

functional has an explicit parametric representation of interaction

delays between interacting systems. Scanning this parameter in

search of the maximal predictive information transfer allows one

to reconstruct interaction delays from a wide variety of systems.

Methods

Ethics Statement
Local field potential data were taken from experiments

published elsewhere [42]. These animal experiments were

approved by the German local authorities (Regierungspraesidium,

Hessen, Darmstadt).

Practical Transfer Entropy Estimation
In this section we outline the particular estimator of the

TESPO functional as provided in our toolbox TRENTOOL

[42], and used in all analysis in this study. This realization relies

on three steps: (1) state space reconstruction from scalar time

series, (2) reformulation of the conditional mutual information in

terms of four Shannon entropies, and (3) subsequent entropy

estimation by a modified Kraskov-Stoegbauer-Grassberger

estimator [41,42].

As causality and interactions are defined as properties of

systems, not scalar time series, we first have to reconstruct the

corresponding state space of the interacting systems from the

scalar time series. For this purpose we used Takens delay
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embedding [43] and optimized embedding parameters (d and t,

see below) according to Ragwitz’ criterion [39] for the target signal

of each interaction pair. The use of Ragwitz’ criterion yields delay

embedding states that provide optimal self prediction for a large

class of systems, either deterministic or stochastic in nature. Delay

embedding states of the systems under investigation can be written

as delay vectors of the form:

xd
t ~(xt,xt{t,xt{2t,:::

,xt{ d{1ð Þt),
ð16Þ

where d and t denote the embedding dimension and Taken’s

embedding delay, respectively.

Using the states obtained by delay embedding we can rewrite

transfer entropy as:

TESPO X?Y ,uð Þ~
P

yt ,y
dy
t{1

,x
dx
t{u

p yt,y
dy
t{1,xdx

t{u

� �

log
p yt Dy

dy
t{1

,x
dx
t{u

� �

p yt Dy
dy
t{1

� � ,

ð17Þ

or, using a representation in the form of four Shannon (differential)

entropies, as:

TESPO X?Y ,uð Þ~S y
dy
t{1,xdx

t{u

� �
{S yt,y

dy
t{1,xdx

t{u

� �

zS yt,y
dy
t{1

� �
{S y

dy
t{1

� �
:

ð18Þ

Thus, TESPO estimation amounts to computing a combination of

different joint and marginal differential entropies. Shannon

differential entropies can be estimated by nearest-neighbor

techniques that exploit the statistics of distances between

neighboring data points in a given embedding space in a data

efficient way. This efficiency is necessary to estimate entropies in

high-dimensional spaces from limited real data [60,61]. Nearest-

neighbor estimators are as local as possible given the available

data. The assumption behind nearest-neighbor estimators is only a

certain smoothness of the underlying probability distribution.

Nearest-neighbor estimators can therefore be considered as non-

parametric techniques, as desired for a model-free approach to

transfer entropy estimation. Unfortunately, it is problematic to

estimate TE by simply applying a nearest-neighbor estimator (e.g.

Kozachenko-Leonenko estimator) separately to each of the terms

appearing in equation 5. The reason is that the dimensionality of

the spaces involved in equation 18 can differ largely across terms.

Thus, fixing a given number of neighbors for the search will set

very different spatial scales (range of distances) for each term.

Since the error bias of each term is dependent on these scales, the

errors would not cancel each other but accumulate. We therefore

used the Kraskov-Grassberger-Stögbauer estimator which handles

this problem by only fixing the number of neighbors k in the

highest dimensional space and by projecting the resulting distances

to the lower dimensional spaces as the range to look for neighbors

there [41]. After adapting this technique to the TE formula [53],

the estimator we use can be written as

TE X?Y ,uð Þ~y kð ÞzSy n
y
dy
t{1

z1

� �

{y n
yty

dy
t{1

z1

� �

{y n
y
dy
t{1

x
dx
t{u

z1

� �
Tt ,

ð19Þ

where y denotes the digamma function, while the angle brackets

(S:Tt) indicate an averaging over different time points. The

distances to the k-th nearest neighbor in the highest dimensional

space (spanned by yt,y
dy
t{1,xdx

t{u) define the radius of the spheres

for the counting of the number of points n(:) in these spheres

around each state vector in all the marginal spaces (:) involved.

Non-parametric Statistical Testing Against Surrogate
Data

Even using Kraskov’s kernel estimation techniques as described

above does not guarantee zero bias of the resulting estimator.

Thus, the obtained TE values have to be compared against

suitable surrogate data using non-parametric statistical testing to

infer the presence or absence of directed interactions [12]. In

short, the surrogate data must be produced under a null hypothesis

of no source-target coupling, while retaining as many other

statistical properties as possible (in particular the state transition

probabilities p(ytDy
dy

t{1)). To this end we simulated and recorded

data in an epoch based way and constructed surrogate data by

shifting the time series of one of the two signals of each pair by one

epoch, trying to preserve as many data features as possible (see

detailed descriptions of the statistical routines in [42]). TE values

were quantified as excess TE values with respect to surrogate data:

DTESPO X?Y ,uð Þ~TESPO X?Y ,uð Þ{TESPO X ’?Y ,uð Þ, ð20Þ

where X ’ denotes the surrogate data. With respect to these

surrogate data we also obtained significance values using

permutation testing against suitable surrogate data as detailed in

[42], to minimize the potential effects of bias introduced by noise

and small sample size. Note that we assess statistical significance

and quantify the excess transfer entropy DTESPO in both possible

directions of interactions (X?Y ,Y?X ), although interactions in

some cases were unidirectional. By testing both directions

nevertheless, we can also characterize the behavior of the

proposed estimator with respect to false positive detection of

interactions.

Momentary Information Transfer
Pompe and Runge [36] recently proposed to reconstruct

interaction delays using an information-theoretic functional, called

momentary information transfer (MIT). In their functional the

interaction delay between two systems is also introduced in the

form of a parameter of a conditional mutual information term. As

for TESPO this parameter is scanned in order to maximize the

value of their functional, MIT . In contrast to our approach,

conditioning of the mutual information in the method of Pompe

and Runge is done with respect to the joint history of the two

variables in question:

MIT(X?Y ,u)~I(Yt; Xt{uDYt{1,Xt{u{1), ð21Þ
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That is, while it retains the conditioning on the immediately

previous state of the target Yt{1 that we use in TESPO, it

additionally conditions on the state of the source Xt{u{1 previous to

the scalar source observation under consideration. The essence of

Pompe and Runge’s argument is that their conditioning on

Xt{u{1 seeks to find the delay over which the transferred

information is first available in the source, though we note that, as

explored in earlier sections, the availability of such information in

the source does not equate to it being transferred at that point. We

note, that for our study, MIT was measured using discrete

probability distribution functions, not the symbolic mapping

(capturing ordinal relationships) that it is often associated with in

the case of continuous data.

Test Cases
We used simulated data and electrophysiological recordings to

test the ability of the described methodology to detect interaction

delays. The generation and characteristics of the studied time

series are described below; note that we chose a bracket (x(t))
instead of a subscript notation (xt) for time dependencies for this

section to avoid cluttered subscripts. All analyses were performed

in TRENTOOL (version 2.0.3, [42]) unless otherwise noted. The

Ragwitz criterion [39] was used to determine the embedding

dimension d and lag t. We used a significance level of 0.05, and

corrected for multiple comparisons via false discovery rate (FDR

[62]), to assess significance of the coupling. To identify interaction

delays, we scanned the source delay parameter u from 10 up to

150 time steps in steps of 1 sample.

Discrete-value process with short-term source

memory. Test case (Ia) is formed from coupled discrete-valued

processes X ,Y , where X[f0,1,2,3g and Y[f0,1g, which were

generated according to the equations:

Y (tz1)~X (t)mod2, ð22Þ

X (t)~f (X (t{1),g), ð23Þ

where f is a noisy self-mapping of X to its next value defined in

Table 1 with noise parameter g. Note that f incorporates some

randomness and some stochastic short-term memory in the next

state. The update function f can be explained very simply if we

consider X as a joint variable of upper and lower bits fX2,X1g,
and understand that X2(t) is randomly determined at each time

step, while X1(t) is a copy of X2(t{1) with probability 1{g,

otherwise it is the inverse of X2(t{1). Using this interpretation, we

have Y (tz1)~X1(t).

Here, the true causal delay X?Y is 1 time step, though the

source memory in X means that X and Y will be strongly

correlated over a 2 time step delay also. In this case, we only

examined these two candidate delays. Clearly, the Ragwitz

criterion is satisfied here with embedding dimension d~0 (there

is no auto-correlation between values of Y ).

As this system is discrete valued, MIT was measured using

discrete probability distribution functions here, not the symbolic

mapping (capturing ordinal relationships) that it is often associated

with for continuous data.

Bidirectionally coupled logistic map. Test case (Ib) is

taken from Section V.A of [36]. It is formed from the

bidirectionally coupled logistic map processes X ,Y , where we

have X and Y[½0,1�, which were generated according to the

equations:

X (t)~f (gy?xmod1), ð24Þ

gy?x~cy?xY (t{dy?x)z(1{cy?x)X (t{1), ð25Þ

Y (t)~f (gx?ymod1), ð26Þ

gx?y~cx?yX (t{dx?y)z(1{cx?y)Y (t{1), ð27Þ

f (a)~4a(1{a): ð28Þ

The process is run using the same parameters as in [36]:

T~512 samples, 1000 repeated trials (results averaged over trials),

dy?x~5, dx?y~2, cy?x~0:2 and cx?y~0:5. We run the system

from random initial states and discard 100T samples before

collecting T observations for our measures, to ensure the removal

of transient effects. The embedding dimension d~1 and lag t~1
are selected to match those used in [36].

We examine TESPO(X?Y ,u) for delays u~1 and 2; clearly the

correct delay should be measured as u~dx?y~2. All calculations

for test cases (Ia) and (Ib) were made using the open-source ‘‘Java

Information Dynamics Toolkit’’ [40]; the results here can be

reproduced using the demos/octave/DetectingInteractionLags

demo of this toolkit. TE was measured using a Kraskov-

Grassberger-Stögbauer estimator here, to contrast the results with

those obtained for TE from symbolic mapping (capturing ordinal

relationships) in [36] (which incorrectly inferred u~1 as the

interaction delay).

Autoregressive (AR) processes. Coupled autoregressive

processes X ,Y were generated according to the equations:

X (tz1)~
Xm

k~0
akX (t{k)zsgX (t) , ð29Þ

Y (tz1)~
Xm

k~0
bkY (t{k)zsgY (t) ð30Þ

z
cXY

DfdXYgD
X

d[fdXY g
X 2(tz1{d): ð31Þ

where m = 10 is the order of the autoregressive processes, s~0:1 is

the dynamic noise amplitude of uncorrelated, unit-variance, zero-

mean Gaussian noise terms gX (t) and gY (t), DfdXYgD denotes the

number of elements in the set of delays fdXYg, and specific values

for the delays (dXY ) and coupling strengths (cXY ) are listed in

table 2 for test cases II-IV; the values for ak and betak where

constructed from roots of the characteristic polynomial of the the

AR process, that were chosen at random on the unit circle to

guarantee a stationary AR process.

Chaotic dynamical systems. As a more complex case we

investigated two Lorenz systems with non-linear (quadratic)

coupling and potential self-feedback according to:
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_UUi(t)~s(Vi(t){Ui(t)) _VVi(t)~

Ui(t)(ri{Wi(t)){Vi(t)z
X

i,j~X ,Y

cijV
2
j (t{dij), _WW i(t)~

Ui(t)Vi(t){bWi(t) ,

ð32Þ

with i,j~X ,Y (i,j~X ,Y ,Z for teat case IX); parameters as

indicated in table 2 for test cases IV-IX; s, r and b, are the Prandtl

number, the Rayleigh number, and a geometrical scale; cij represent

the coupling strengths from system i to j, with i~j indicating

(delayed) self-feedback. Note that always cYY ~0 (no self-feedback

Y?Y ). The dij are the respective delays of the coupling or of the

self-feedback. Numerical solutions to these differential equations

were computed using the dde23 solver in MATLAB and results

were resampled such that the delays amounted to the values given

in table 2. For analysis purposes we analyzed the V -coordiantes of

the systems.
Noisy Lorenz systems. While the proof for our approach

holds strictly only for noise-free systems, in practice the proposed

procedure works well for the noise profile encountered in many

technical or life-sciences applications. To demonstrate this, we

simulated coupled Lorenz systems as in equation 32 and

afterwards added independent,Gaussian, white observation noise

of varying amplitude according to:

~VVi(t)~X (t)zjigVi
(t) i~X ,Y , ð33Þ

where Vi was simulated as above, gVi
(t) was unit variance

Gaussian white noise and ji chosen such that 1%, 2% and 9% of

the final signal variance were contributed by noise.
Ring of Lorenz systems. We also coupled three Lorenz

systems into a uni-directional ring using equations 32 above,

however, this time setting dXY ~20, dYZ~30, dZX ~40, and

cXY ~cYZ~cZX ~0:15.

Electrophysiological data. In the last test case we used data

which were recorded from the turtle (Pseudemys scripta elegans) to

determine interaction delays between brain areas. This experiment

was described previously in [42].

Preparation. Experiments were approved by the German

local authorities (Regierungspraesidium, Hessen, Darmstadt). One

turtle (Pseudemys scripta elegans) was anesthetized with 15 mg

Ketamine, and 2 mg Medetomidinhydrochloride and decapitated.

The entire brain with the eyes attached was removed as described

in [63]. The brain was placed in a petri dish and superfused with

oxygenated ringer. The ringer consisted of (in mM) 96.5 NaCl,

2.6 KCl, 2.0 MgCl2, 31.5 NaHCO3, 20 D-glucose, 4 CaCl2 at

pH 7.4 and was administered at room temperature (220C).

Electrophysiological recordings. The electroretinogram

was recorded with a chlorided silver wire in a Vaseline well that

was built around the right eye. The contralateral tectal signal was

recorded in a superficial layer at the center of the left tectum with

a quartz/platinum-tungsten electrode (Thomas Recordings, Gies-

sen, Germany) with impedance 1 MV at 1 kHz. Data were

amplified and filtered (1 Hz to 6 kHz) before being digitized at

32 kHz. For the analysis, the continuous data were low-pass

filtered with 240 Hz, down-sampled to 500 Hz and cut into 60

trials with 50 s each.

Visual stimulation. A sequence of red LED light pulses with

random duration (uniform distribution between 1 ms and 2 s) and

random inter pulse interval (uniform distribution between 1 ms

and 5 s) was triggered via the parallel port using MATLAB and

the Psychophysics Toolbox extension [64,65]. A light guide

projected the full field flashes onto the retina.
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