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Abstract

The 1/f spectral slope of the electroencephalogram (EEG) estimated in the g frequency range has been pro-
posed as an arousal marker that differentiates wake, nonrapid eye movement (NREM) sleep, and rapid eye
movement (REM) sleep. Here, we sought to replicate and extend these findings in a large sample, providing a
comprehensive characterization of how slope changes with age, sex, and its test-retest reliability as well as
potential confounds that could affect the slope estimation. We used 10,255 whole-night polysomnograms
(PSGs) from the National Sleep Research Resource (NSRR). All preprocessing steps were performed using an
open-source Luna package and the spectral slope was estimated by fitting log-log linear regression models
on the absolute power from 30 to 45Hz separately for wake, NREM, and REM stages. We confirmed that the
mean spectral slope grows steeper going from wake to NREM to REM sleep. We found that the choice of
mastoid referencing scheme modulated the extent to which electromyogenic, or electrocardiographic artifacts
were likely to bias 30- to 45-Hz slope estimates, as well as other sources of technical, device-specific bias.
Nonetheless, within individuals, slope estimates were relatively stable over time. Both cross-sectionally and
longitudinal, slopes tended to become shallower with increasing age, particularly for REM sleep; males tended
to show flatter slopes than females across all states. Our findings support that spectral slope can be a valua-
ble arousal marker for both clinical and research endeavors but also underscore the importance of considering
interindividual variation and multiple methodological aspects related to its estimation.
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Significance Statement

In a large sample, we validate the electroencephalogram (EEG) spectral slope as a practical and scalable
neurobiological marker of cortical arousal across wake, nonrapid eye movement (NREM), and rapid eye
movement (REM) sleep states. We report sources of intraindividual and interindividual variability, including
changes across the lifespan. The slope during REM (when it is steepest, consistent with higher cortical inhi-
bition) showed the greatest age-related flattening, suggesting that sleep-based biomarkers may be particu-
larly sensitive to age-related physiological change, including cognitive decline. We also highlight critical
methodological and sample issues. Our findings support alternative parameterizations of the EEG as being
valuable for clinical and research endeavors, but also underscore the importance of accounting for interindi-
vidual and technical sources of variation.
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Introduction
Building on prior work (Pereda et al., 1998; Shen et al.,

2003; Freeman and Zhai, 2009; Gao et al., 2017; Miskovic
et al., 2019), Lendner et al. (2020) recently reported an
electrophysiological marker of arousal level in humans:
the 1/f spectral slope of the electroencephalogram (EEG)
estimated in the range of 30–45Hz. When calculated so
as to avoid frequencies with strong oscillatory compo-
nents (such as spindle activity during N2 sleep), the linear
slope of the log-log power spectrum (the so-called “spec-
tral noise” exponent) can be interpreted as an index of the
aperiodic, scale-free component that reflects aggregated
neural dynamics (Voytek and Knight, 2015). Furthermore,
it has been suggested that the spectral slope might re-
flect the ratio of neural excitation and inhibition (E/I
balance; Gao, 2016; Gao et al., 2017; Lombardi et al.,
2017). Lendner and colleagues found significantly
steeper slopes (consistent with greater cortical inhibi-
tion) in rapid eye movement (REM) compared with non-
REM (NREM) sleep, and in NREM sleep compared with
wake, concluding that the spectral slope represents a
biomarker of human arousal, that might have applica-
tions in intraoperative neuromonitoring or automatic
sleep stage classification, for example.
Here, we initially sought to replicate Lendner and col-

leagues’ core result concerning scalp EEG spectral slope
and sleep state, leveraging a collection of over 15,000
whole-night polysomnograms (PSGs) from the National
Sleep Research Resource (NSRR). Whereas Lendner and
colleagues’ analyses were restricted to a small sample
(N=20 for the primary scalp sleep EEG dataset) albeit one
complemented with additional imaging and intracranial
EEG recordings, our analyses of multiple, diverse cohorts
were intended to provide high statistical power, robust-
ness and generalizability across populations. Althogh only
two central scalp EEG channels (C3 and C4) were available
accross studies in our sample, Lendner and colleagues re-
ported broad effects across the scalp including central
sites and source localization was not a focus of this report.
To address potential role of spectral slope in automated
sleep staging, we also asked whether the spectral slope
predicted sleep state (epoch by epoch) with greater accu-
racy than traditional (e.g., band power) metrics.
Lendner and colleagues employed various checks for

potential methodological confounds, including referenc-
ing scheme and analytic approach. Although they did not

look at contralateral mastoid (CM) referencing (i.e., in the
present context, C4-M1 and C3-M2), slope estimates
were broadly consistent across the different referencing
schemes considered [linked mastoid (LM), average,
Laplacian and bipolar]. We initially adopted CM referenc-
ing, which is recommended for clinical studies by the
American Academy of Sleep Medicine (AASM); further,
the Sleep Heart Health Study (SHHS) dataset (total
N= 8444 nights on 5793 individuals) was recorded with
contralateral references hardwired and so could not be
re-referenced offline. Lendner and colleagues briefly
considered potential confounding because of muscle
activity: controlling for the spectral slope derived from
the chin electromyogram (EMG), they reported that
this did not alter results. Nonetheless, that the EMG is
(1) of orders of magnitude higher amplitude than the
EEG, (2) exhibits a broad frequency spectrum that over-
laps the EEG spectrum, particularly at higher (.30Hz)
frequencies (Goncharova et al., 2003), and (3) varies
markedly between wake, NREM, and REM (Jacobson et
al., 1964), collectively make this a serious concern that
should always be addressed. In particular, as mastoid
electrodes are sensitive to neck muscle EMG and car-
diac activity (via blood flow in the carotid arteries), here
we considered possible indicators of confounding be-
cause of non-neural sources, with attention to the choice
of mastoid referencing scheme.
Beyond our primary replication attempt, to robustly es-

tablish mean slope differences between states, to more
fully characterize spectral slope distributions we eval-
uated its variability as a function of sleep state, as well as
state-specific covariation between spectral slope, power
and coherence. Using model-based simulation, we con-
sidered whether changes in the spectral slope alone (as-
suming a strict power law model) could account for these
other characteristics.
Finally, as well as within-individual, between-state phe-

nomena, we investigated between-individual, within-state
changes in the spectral slope. Previous reports have sug-
gested that the spectral slope varies between individuals
in systematic and physiologically relevant ways, for exam-
ple, flattening with age (Feinberg et al., 1984; Voytek et
al., 2015; Dave et al., 2018; Donoghue et al., 2020; Bódizs
et al., 2021; Schaworonkow and Voytek, 2021; Hill et al.,
2022). As NSRR cohorts included males and females from
;5 to;97 years of age (and a sample of individuals with a
repeated sleep study, performed years later), we also
tested whether the spectral slope showed age-related
flattening and sex differences, and whether these effects
varied by sleep state.

Materials and Methods
PSG data
All PSG data were as previously reported (Purcell et al.,

2017). Briefly, we combined PSG and demographic data
on 11,630 individuals aged 4–97 years from the NSRR. All
data were collected as part of research protocols that
were approved by local institutional review boards; writ-
ten, informed consent was obtained from each individual
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before participation. The majority of individuals were from
community-based samples, although two studies re-
cruited participants for sleep apnea. A subset (N=4079)
had a second PSG, typically administered five or six years
after the first. We accessed European Data Format (EDF)
files and annotation files (indicating manually scored
sleep states in 30-s epochs as well as arousals and respi-
ratory events). All studies used AASM staging conven-
tions, except the SHHS, which used R&K: here, NREM3
and NREM4 were collapsed to a single N3 state, for con-
sistency with the other studies.
Cohorts ordered by average age are as follows: CHAT

(children), CCSHS (adolescents), CFS (wide range, but
predominantly adolescents and middle-aged adults),
SHHS (middle-aged adults), MrOS (elderly males), and
SOF (elderly females). We generally stratified analyses by
study to control for possible technical and measurement
differences as well as the effects of aging. The CHAT
baseline cohort contained children with an apnea hypo-
pnea index of 2–30, randomized to one of two trial
arms; the CHAT nonrandomized group contained chil-
dren screened for the trial but not randomized, either
because of unwillingness or apnea hypopnea indices
that did not meet inclusion criteria. The CHAT follow-up
cohort was collected six to seven months after interven-
tion with adenotonsillectomy or watchful waiting.
All EEG analyses were based on two central electrodes,

initially re-referenced to the CM (C3-M2 and C4-M1). For
specific analyses, we alternatively re-referenced to the av-
erage mastoid ([M11M2]/2) denoted here as C3-LM and
C4-LM (for “linked mastoid”); we also derived two bipolar
channels: C3-C4 and M1-M2. The chin EMG channel was
derived from left and right submentalis electrodes; the
ECG channel was derived from left and right arm electro-
des. All physiological signals (EEG, EMG, and ECG) were
resampled to 128Hz.

Epoch-level artifact removal
Many recordings contained extended periods of gross

artifact at the beginning and ends, typically scored as
“wake.” Although most NSRR studies did not have explic-
it “lights on/off” annotations, these leading/trailing wake
periods typically included “lights on” periods, i.e., with
the participant not in bed. To alleviate this issue of exces-
sive artifact during wake, we removed all leading/trailing
wake epochs, meaning that all “wake” data reported below
occurred during the sleep period (i.e., after sleep onset and
before the final sleep epoch). We further removed any
epoch containing a manually annotated arousal, apnea, or
hypopnea. All subsequent analyses were state-dependent;
we only selected epochs of a given state if they were
flanked by at least one other similar epoch on both sides,
to exclude transitional/unstable periods of sleep. Of note,
these criteria meant that a nontrivial proportion of the over-
all sample was excluded, and in particular the studies of
younger individuals [because of their relatively low rate of
extended wake time after sleep onset (WASO)].
We next applied epoch-wise normalization to each

channel, subtracting its median value. EEG channels
were further high-pass filtered at 2 Hz using a zero-

phase Kaiser window FIR (transition bandwidth 2Hz,
ripple 0.01). Separately for each stage (N1, N2, N3, R,
or W), we removed epochs for which either C3-M2 or C4-
M1 had (1) a flat signal spanning.10% of the epoch, (2) a
clipped signal spanning .10% of the epoch, (3) .10% of
the epoch exceeding 100mV, (4) .1% of the epoch ex-
ceeding 250mV, or (5) a maximum absolute amplitude
,5mV. Based on EEG and chin EMG channels, we further
removed epochs that were statistical outliers (63 SD
units from the mean) for at least one of those channels for
one or more Hjorth parameter (activity, mobility, complex-
ity; Hjorth, 1970), by comparing that epoch to the mean
across all epochs of that stage and channel. Hjorth-based
statistical outlier removal was performed twice. Finally,
we removed epochs that were flanked by multiple al-
ready-masked epochs (where the masking may have
been because of any of the above reasons). Specifically,
we required that at least three of five flanking epochs
passed quality check (QC), either for the five preceding or
the five following; we further required that retained epochs
were immediately flanked by at least one other QC-pass-
ing epochs.
Collectively, this procedure was intentionally conserva-

tive, weighing specificity over sensitivity with respect to
selecting clean and homogeneous epochs for the final an-
alytic samples. Because we wanted to select a single set
of criteria to be applied across all studies and stages, this
means that studies had a nontrivial proportion of epochs
removed (especially for younger individuals who did not
meet the WASO criterion). Future analyses of these data-
sets focused only on the spectral slope during sleep
could of course achieve larger sample sizes by ignoring
the extent of wake in each study.

Spectral power analysis
We used the Welch method to estimate power spectra

per epoch, using 4-s segments each with 50% (2 s) over-
lap, applying a Tukey (cosine-tapered) window with a =
0.5, yielding a spectral resolution of 0.25Hz. We also esti-
mated spectral band power using the following defini-
tions: slow (0.5–1Hz), d (1–4Hz), u (4–8Hz), a (8–11Hz),
s (11–15Hz), b (15–30Hz), and g (for this analysis, de-
fined as 30–45Hz to match the interval in which the
spectral slope was estimated). In sensitivity analyses, we
compared spectral slopes estimated from the Welch
spectra to those based on multitaper analysis; here we
applied 29 tapers and set the time half bandwidth prod-
uct to 15 to achieve a frequency resolution of 1Hz for a
30-s epoch. The resulting spectral slopes correlated
r. 0.99 and so we based all final analyses on the Welch
method.
As artifacts (e.g., corresponding to electrical line noise

at 60Hz and subharmonics) can lead to sharp peaks in
power spectra which may bias the estimation of spectral
slopes, we quantified the extent of spectral “peaked-
ness” within the 30- to 45-Hz interval. Specifically, we
detrended log-transformed power spectra (assuming a
linear x-axis frequency scale) and applied a median filter
(using an 11 point = 2.5-Hz window) to smooth the de-
trended spectra. Labeling the detrended spectra D and
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the detrended and smoothed spectra S, we quantified
peakedness as the kurtosis of the D – S difference spec-
tra. Power spectra with strong peaks will show more lep-
tokurtic (long tailed) distributions.
As well as summarizing mean power per individual/

channel/stage by averaging over all epochs, we estimated
the SDs of epoch-level metrics, to facilitate the analyses
of within-individual variability in spectral power.

Spectral slope estimation
Following Lendner and colleagues, to estimate the

spectral slope, we extracted the absolute power from 30
to 45Hz (here 61 values) and fit log-log linear regression
models, which they showed to be appropriate for this in-
terval of the EEG spectrum, being free of strong oscilla-
tory activity. To reduce the impact of line noise and other
artifacts that might induce sharp spectral peaks, we re-
moved outlier data points (i.e., particular frequency/power
pairs): specifically, before running the main regression, we
fit an initial model and removed points that had residuals
.2 SD units from the mean. Also, because we estimated
slope only over a relatively restricted interval (30–45Hz),
we did not consider the potential issue that can arise with
different representations of lower versus higher frequen-
cies because of the log-scaling of linearly uniform fre-
quencies. For example, there is only a 1.45-fold difference
in the log-scale intervals from 30 to 31Hz compared with
44–45Hz; in contrast, there is .20-fold difference be-
tween 30- to 31-Hz and 1- to 2-Hz intervals, implying that
if we had looked at a broader frequency range, this issue
would be more apparent.
Power spectra were estimated individually for each

epoch. To derive the spectral slope, we averaged log-
scaled spectra, and then calculated a single slope esti-
mate. As a sensitivity analysis, we also calculated two
other estimates: (1) averaging untransformed spectra,
then taking the log and estimating the slope; alterna-
tively; (2) averaging slopes calculated per epoch on the
log-transformed spectra. That is, the three approaches
can be labeled: slope(mean(log(X))), slope(log(mean(X)))
and mean(slope(log(X))), respectively, where X are the
epoch-level power spectra. An advantage of the third ap-
proach is that it also provides a convenient estimate of
the variability in slope across epochs. We expect qualita-
tively similar results from all approaches, although the
second approach may be more sensitive to outlier
epochs not otherwise filtered out. Work on the resting
state eyes open/closed alpha rhythm differences sug-
gested that log-transforming power at the epoch level
before averaging was optimal in that context (Smulders
et al., 2018). Based on an initial analysis in the CFS co-
hort, all three metrics were effectively equivalent, both in
terms of correlation with each other (r. 0.95) and the
magnitude of tests of mean differences between stages
(data not shown). The one exception was that slope(log
(mean(X))) was less correlated with the other two metrics
during wake (here r ;0.7), which presumably reflects a
greater sensitivity to noisy/outlier epochs that occur
more often during wake. As noted, our final analyses
were based on slope(mean(log(X))), although we do not

expect any substantive differences in results if these al-
ternatives were used.

Individual-level outlier rejection
After obtaining stage-specific slope and spectral power

estimates for all individuals, we removed individuals from
all primary analyses if they either (1) did not have a suffi-
cient duration of epochs for key stages, or (2) had exces-
sive outliers for key metrics. Specifically, we required at
least 5min (10 epochs) of nominally artifact-free data for
W, N2, and R (as key analyses were based on these
stages, and some individuals had relatively short N1 and/
or N3 durations). We then removed individuals who were
outliers (4 SD units) for any of the following metrics (ap-
plied sequentially such that latter filters only consider the
set of currently of included individuals): g band power for
C4-M1 or C3-M2 for W, N2 or R; g band power for a mas-
toid-mastoid derivation M1-M2 for W, N2 or R; the kurto-
sis (spectral peakedness) measure for C4-M1, C3-M2 or
M1-M2 for W, N2 or R; the mean and SD of the spectral
slope estimates for C4-M1 or C3-M2 for W, N2 or R; for
C4-M1 or C3-M2, the difference in spectral slope be-
tween R and N2, between R and W, or between N2 and
W; finally, the mean and SD of the EMG spectral slope.
For the second round of analyses based on LM channels,
the C3-LM and C4-LM were additionally included in the
above exclusions, as well as C3-M2 and C4-M1.
Our primary analyses are presented with these relatively

stringent individual-level outlier rejection criteria; how-
ever, all key results were qualitatively similar if less strin-
gent (or if no) outlier rejection procedures were applied
instead (data not shown).

State classification
To classify individual epochs in the CFS dataset based

on the spectral slope (or other metric), we used linear
discriminant analysis (LDA; as implemented in “MASS”
R library) together with leave-one-out cross validation.
Classification was performed in a pairwise fashion for W
versus R, W versus N2, and R versus N2. Accuracy was
computed as the measure of classifier performance.
Individuals with,20 epochs for any of the states were ex-
cluded from this analysis, resulting in a final sample of
311 individuals. Following Lendner and colleagues, to en-
sure that the chance level equated to 50% accuracy, we
randomly downsampled one state to ensure the same
number of epochs for both states. To reduce variability,
we repeated the previous step 50 times, averaging to ob-
tain the final accuracy per individual. Within individual,
spectral slopes and log-scaled power estimates were z-
scored before LDA. Matched pair t tests were used to
compare accuracies based on spectral slopes versus
band power.

1/fmodel-based parameterization of individual
differences in power spectra
We directly simulated power spectra for N=5000 indi-

viduals, initially in the form PSD(f) = A/fa 1 e, where A and
a were random variables for the spectral intercept and
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exponent (slope b = –a), respectively. Following others (Gao,
2016; Podvalny et al., 2015), we also extended the basic
power law equation model in three ways. First, whereas a
strict power law implies the slope rotates around 1Hz (i.e.,
log(1)=0), we allowed an alternate point of rotation, fr to be
specified, such that log PSD(f) = log A 1 a log (f/fr) 1 e.
Second, following Gao (2016), we allowed for an additional
“flat” spectrum C, as a single, fixed term added to all points
of the spectrum, such that log PSD(f) = log (exp (log A 1 a
log (f/fr)1 e)1 C) . Third, we allowed the magnitude of the in-
fluence of a to vary across the power spectrum, by weighting
its contribution by a frequency-dependent sigmoid weight
function, w(f) =1/ (11 exp (– (f – wf) /ws)), meaning that at fre-
quency wf the impact of the slope defined by the random
variable a is 50% of its full value; it rises to 100% at higher
frequencies, and at lower frequencies, falls to toward 0%.
The scaling factor ws determined the sharpness of transition.
An independent random variable a*was defined similarly to a
and applied with weight 1-w(f). In this way, although the over-
all, marginal properties of the spectra were broadly similar,
this parameterization allowed for variation in the slope in one
frequency range (e.g.,.20Hz) to be independent of variation
in the slope at lower frequencies.
After generating a sample ofN=5000 independent spectra

(0.5–50Hz in 0.5-Hz increments) under a particular set of pa-
rameter values, we used log-log linear regression to estimate
the realized spectral slope in the 30- to 45-Hz frequency
range, for each individual spectrum. In order to replicate the
findings shown in Results, Relationships between the 30- to
45-Hz spectral slope and power, we then calculated the
Pearson correlation coefficient between the slope and power
value (for power from 0.5 to 50Hz) across all spectra; based
on a median split of the estimated spectral slope, we also
plotted the mean power spectra for individuals with “steep”
versus “shallow” slopes.

Data and code accessibility
EEG signal analysis was performed with Luna (v0.26),

an open-source C/C11 package for the analysis of sleep

signal data (http://zzz.bwh.harvard.edu/luna/); all PSG
data are available via the NSRR (http://sleepdata.org).
The Luna script used for the primary analyses is available
on request. Luna code was run on a cluster of compute
nodes with Linux operating system.

Results
We analyzed 15,709 whole-night PSGs on 11,630 indi-

viduals (Table 1), 4079 of whom had a second PSG, from
the NSRR. This is the same sample (comprising ten co-
horts from six distinct studies) as previously described in
a study of sleep spindle activity (Purcell et al., 2017).
Three cohorts were pediatric, six were of middle to late
adulthood, and one was a family-based study with a wide
age range. Other than CHAT, all cohorts were observatio-
nal and not undergoing sleep or other interventions.
After stringent exclusions and QCs (see Materials and

Methods and Extended Data Table 1-1), the final analytic
sample comprised 10,255 nights on 7312 individuals.
Most primary analyses were based on the first recording
from each individual, pooling CHAT baseline and non-
randomized samples, yielding six independent cohorts.
Cohorts containing repeated recordings (CHAT follow-up,
SHHS2, and MrOS2) were used in the longitudinal analy-
ses, paired with their respective baseline cohort.

Initial analyses of spectral power and slope stratified
by sleep state
Primary analyses were based on a three-level classifica-

tion: wake, N2 sleep and REM sleep. As more individuals
had a sufficient duration of N2 sleep following extensive
QC (at least 10 epochs), compared with N1 or N3
(Extended Data Table 1-1), we focused specifically on N2
sleep for all primary NREM analyses. (As results for N1
and N3 were broadly equivalent to those for N2, Figures
and tables only show N2 results but refer to it as “NREM
sleep” generically.) We first estimated each study’s mean
log-scaled EEG power spectra (C4-M1) during wake,
NREM, and REM (Fig. 1a). Perhaps most notably, both

Table 1: Cohort characteristics

Study Label Sample N % female Mean age Min. age Max. age DOI
Childhood Adenotonsillectomy
Trial (baseline)

CHAT(BL) 453 52% 6.6 5 10 doi.org/10.25822/d68d-8g03

Childhood Adenotonsillectomy
Trial (nonrandomized)

CHAT(NR) 779 53% 7.1 5 10 doi.org/10.25822/d68d-8g03

Childhood Adenotonsillectomy
Trial (follow-up)

CHAT(FU) 407 51% 7.1 5 10 doi.org/10.25822/d68d-8g03

Cleveland Children’s Sleep and
Health Study

CCSHS 515 50% 17.7 16 20 doi.org/10.25822/cg2n-4y91

Cleveland Family Study CFS 730 55% 41.4 7 89 doi.org/10.25822/jmyx-mz90
Sleep Heart Health Study (wave 1) SHHS1 5793 52% 63.1 39 90 doi.org/10.25822/ghy8-ks59
Sleep Heart Health Study (wave 2) SHHS2 2647 54% 67.6 44 90 doi.org/10.25822/ghy8-ks59
Osteoporotic Fractures in Men
Study (wave 1)

MrOS1 2907 0% 76.4 67 96 doi.org/10.25822/kc27-0425

Osteoporotic Fractures in Men
Study (wave 2)

MrOS2 1025 0% 81.1 73 97 doi.org/10.25822/kc27-0425

Study of Osteoporotic Fractures SOF 453 100% 82.9 75 95 doi.org/10.25822/e1cf-rx65

All data are available via the NSRR (http://sleepdata.org). CHAT(FU), SHHS2, and MrOS2 cohorts contained repeated PSGs performed on subsets of CHAT(BL),
SHHS1, and MrOS1. For post-QC sample description, see Extended Data Table 1-1.
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Figure 1. Spectral power and slopes based on contra-lateral mastoid referencing. For the channel C4-M1 (linked mastoid referenc-
ing, see Extended Data Fig. 1-2; for other channels/reference schemes, see Extended Data Fig. 1-3), (a) mean log power spectra
(5–46Hz) as a function of log frequency by sleep state (wake, NREM, and REM) and cohort with shading illustrating the SDs.
Dashed vertical lines at 8 and 13Hz indicate typical modes of oscillatory activity during wake (a rhythms) and N2 (spindles); dashed
lines at 30 and 45Hz indicate the interval within which the spectral slope was estimated. b, Estimated spectral slopes for the set of
independent first-wave individuals (CHAT baseline and nonrandomized samples pooled). Gray lines connect the three values for
each individual. Note the different scaling of the y-axis for SHHS1 versus the five other datasets (for details, see Extended Data Fig.
1-1). Green, blue, and red indicate wake, NREM, and REM, respectively. See Table 1 for sample size details.
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SHHS studies showed divergent, supralinear mean spec-
tra across all states, especially .30Hz. On further investi-
gation, we identified a set of technical issues specific to the
SHHS that impacted the high-frequency EEG (described
below, Technical factors in the SHHS datasets, and
Extended Data Fig. 1-1). Beyond this and as expected,
wake power spectra exhibited characteristic ;8-Hz a
peaks across all cohorts, whereas N2 spectra exhibited
characteristic s-band peaks. The childhood CHAT sam-
ples (green lines) had more pronounced spindle peaks at
slower frequencies (e.g., 11Hz) and, across all states, high-
er power at lower frequencies.
Evident in the raw power spectra, all cohorts other than

the SHHS showed steeper 30- to 45-Hz slopes in NREM
and REM than wake. Figure 1b shows estimated state-spe-
cific slopes for the six baseline cohorts. Briefly, given a
power spectrum PSD(f) ; 1/f a, the spectral exponent b =
–a was estimated as the linear slope of the log-log regres-
sion of power on frequency (see Materials and Methods). All
three pairwise within-individual differences between wake,
NREM, and REM slopes were highly significant (p, 10�15

matched-pair t tests) and similar results were obtained for
C3-M2 (Extended Data Figs. 1-2, 1-3).

Technical factors in the SHHS datasets
As implied by the spectra in Figure 1a, the SHHS exhib-

ited marked differences in mean power spectra and corre-
sponding spectral slopes were markedly steeper in SHHS
compared with other cohorts (Fig. 1b note the different y-
axis scaling). Furthermore, most evidently during wake,

the SHHS showed a bimodal distribution of slopes. presum-
ably reflecting technical issues with the recordings. Indeed,
SHHS wave 1 data collection occurred 1995–1998 (wave 2,
2001–2003) and relied on an early generation of amplifiers,
Compumedics P-series Sleep Monitoring devices, that were
more prone to artifact; for example, Compumedics noted
potential issues with amplifier grounding. The P-series was
not a truly digital system and, instead of being collected
against a common reference, EEG inputs were hardwired
into the amplifier interface and labeled EEG (C4-M1) and
EEG2 (C3-M2), and so could not be re-referenced offline.
Proprietary algorithms were applied to signals in a manner
that was not readily transparent to SHHS study staff.
Although the SHHS are described in the NSRR as having
only a high-pass hardware filter set at 0.15Hz, the power
spectra in Figure 1a suggest these devices had a nonuni-
form frequency response over this range, leading to the
supralinear spectral slope on the log-log scale across the
30- to 45-Hz range (with a “knee” around 30Hz). The esti-
mates of spectral slope were highly deviant for both SHHS
waves: for example, for C4-M1, the mean wake b values
were �8.1 and�7.6 for waves 1 and 2, respectively, in con-
trast to values close to �1.0 for all other cohorts (as ex-
pected for wake; Colombo et al., 2019).
We also observed a second type of difference within

the SHHS: although still discrepant compared with other
cohorts, estimated slopes for C3-M2 were not as steep as
for C4-M1 (wake b =�5.5 and�5.5 for waves 1 and 2, re-
spectively; Extended Data Fig. 1-1a). Furthermore, the bi-
modality in spectral slope noted for C4-M1 was not
present for C3-M2 (Extended Data Fig. 1-1a). In SHHS1,

Figure 2. Spectral slope of the EMG. a, Distributions of EMG 30- to 45-Hz spectral slopes, stratified by state and cohort (for statisti-
cal information, see Extended Data Fig. 2-1). b, The mean EMG slopes (identical to those in panel a) plotted differently, to empha-
size the age-related flattening (for the slope associations with sex and BMI, see Extended Data Figs. 2-4, 2-5, 2-6). Green, blue, and
red indicate wake, NREM, and REM, respectively. Also see Extended Data Figures 2-2, 2-3, 2-7, and 2-8 for correlations between
EMG and EEG slopes and EMG-EEG coherence. See Extended Data Figure 2-9 for the illustration of reference choice and ECG
artifacts.
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;50 recording units were used, each for ;100 partici-
pants; after refurbishment, the same physical devices
were used in the smaller SHHS2. We found that device ID
had a marked impact on the spectral slope for C4-M1 but
not C3-M2, accounting for the bimodal spectral slope dis-
tribution (Extended Data Fig. 1-1b). Most individuals
would not have had the same physical unit across both
studies: we noted it was the same units (rather than the
same individuals) who were outliers in each wave
(Extended Data Fig. 1-1b).
These results suggest that (1) technical factors (pre-

sumably related to device frequency response character-
istics, or subsequent low-pass filtering) impacted SHHS
recordings in a manner that greatly biased the 30- to 45-
Hz spectral slope, although (2) the effect differed between
(hardwired) C4-M1 and C3-M2 channels, and (3) a further
layer of device-to-device variability specifically impacted
C4-M1 for ;6–7 of the ;50 devices used. As well as the
30- to 45-Hz spectral slope, these technical factors could
potentially bias any analyses that (implicitly or explicitly)
rely on the high (.30Hz) frequency content of the SHHS
EEG, e.g., machine learning on raw EEG time series for
automatic staging. For these reasons, as well as the in-
ability to re-reference to LMs, we excluded the SHHS
from the majority of the analyses.
Nonetheless, although not a focus here, we note that

the SHHS may still provide usable data for certain types
of spectral slope analysis if one assumes that any techni-
cal differences were constant throughout the recording.
Inasmuch as filtering reduced power by a frequency-de-
pendent constant multiplicative factor, relative differences
in log-scaled slopes may be expected to be preserved. For
example, the REM –N2 relative slope distribution was unim-
odal and broadly similar across channels and SHHS waves,
and also in comparison to other cohorts. Furthermore, moti-
vated by the prior work on anesthesia, we hypothesized that
benzodiazepine use (sedatives that lower brain activity)
might be associated with steeper (more negative) slopes.
Indeed, the 181 individuals in SHHS1 who reported regular
benzodiazepine use had significantly steeper C3-M2 slopes,
with similar effects across wake (b = �0.25, p = 1 �
10�5), NREM (b = �0.30, p = 2 � 10�7), and REM (b =
�0.33, p = 2 � 10�4), controlling for age, sex, BMI,
race, Apnea-Hypopnea Index (AHI), and arousal index.

Potential non-neural confounders of the spectral
slope
The spectral slope in the g range can be affected by

muscle activity as the scalp EEG is inevitably sensitive to
frontalis (peak frequency between 20 and 30Hz) and tem-
poralis (between 40 and 80Hz; Goncharova et al., 2003;
Muthukumaraswamy, 2013) as well as extraocular muscles
(30–120Hz with peak at 64Hz) executing saccadic eye
movements (Yuval-Greenberg et al., 2008; Carl et al.,
2012). In a previous study comparing resting state EEG
with and without paralysis induced by complete neuromus-
cular blockade, power above 20Hz was attenuated 10- to
200-fold under paralysis, suggesting that most scalp EEG
above 20Hz is of EMG origin (Whitham et al., 2007). It also
has been reported that during wake, resting state EEG

recordings contaminated bymuscle activity expressed flat-
ter slopes than EEG with no EMG interference (Freeman et
al., 2003). Neither are intracranial recordings necessarily
completely free of muscle activity interference (Otsubo et
al., 2008; Jerbi et al., 2009; Kovach et al., 2011; Ren et al.,
2019). There are well-known differences in muscle tone and
ocular movements between wake, NREM, and REM sleep;
muscle atonia typical to REM sleep was reported to affect
frontalis muscle to the same extent as submental muscle – a
standard site of PSG EMG recording (Levendowski et al.,
2018) but there is also evidence of increased facial muscle
contractions because of limbic activation during REM
(Rivera-García et al., 2011).
In the five cohorts excluding SHHS (CHAT, CCSHS,

CFS, MrOS, and SOF), we therefore investigated possible
sources of bias and/or noise, first estimating state-specif-
ic slopes from 30- to 45-Hz chin EMG spectra. Briefly, we
observed multiple, potentially nontrivial linkages between
state-dependent differences in EEG and EMG slopes: (1)
similar wake . NREM . REM mean differences (Fig. 2;
Extended Data Fig. 2-1) and age-related flattening (Fig.
2b); (2) positive associations in EEG and EMG slopes
within state (Extended Data Fig. 2-2); (3) mean differences
in EMG-EEG coherence (taken to index potential contami-
nation) between states, primarily REM . NREM . wake
(Extended Data Fig. 2-3a); (4) significant associations be-
tween EMG-EEG coherence and EEG slope (Extended
Data Fig. 2-3b), and (5) modest but significant associa-
tions with BMI for both EEG and EMG NREM slopes
(Extended Data Figs. 2-4, 2-5).
In the CFS, we additionally estimated 30- to 45-Hz

slopes from the ECG, finding that wake slopes were less
steep compared with NREM and REM slopes (matched
pairs t test p,10�15, with means of �4, �5.1, and �5.2
for wake, NREM, and REM, respectively). ECG slopes
were significantly correlated with EEG slopes, e.g., for
C3-M1 r=0.15, 0.20, and 0.18 for wake, NREM, and REM
(p=0.002, 4� 10�5, and 2� 10�5); these ECG-EEG slope
associations persisted when additionally controlling for
age, sex, race, BMI, AHI, and AI (data not shown).
In the CFS cohort, we estimated state-specific magnitude

squared coherence between all EEG derivations and either
the EMG or ECG (Extended Data Fig. 2-7). Particularly dur-
ing sleep, there was high coherence between EMG/ECG
and M1-M2, e.g., over 0.4 for EMG, and over 0.6 for ECG,
with peaks in the s /b band, but extending into g frequen-
cies. Males tended to show higher EEG-EMG/ECG coher-
ence than females. Whereas the C3-C4 did not show strong
coherence with EMG/ECG channels, both CM channels
(C3-M2 and C4-M1) showed relatively high coherences (up
to ;0.4), presumably reflecting the extent to which EMG/
ECG artifact was picked up at the mastoids.
Similar to Lendner and colleagues, conditioning on

EMG slope was not sufficient to fully explain the ob-
served, within-individual state-dependent differences in
EEG slope – although we note that peaks in Lendner’s
EMG power spectra at exactly 20 and 40Hz suggest that
their EMG slope estimates were themselves subject to
bias/noise (see Lendner et al., 2020, their Fig. 2, supple-
ment 2). Nonetheless, sources of between-individual,
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within-state variation (including noise and bias) may be
quantitatively and qualitatively different from the sources
of within-individual, between-state variation, meaning
that non-neural confounds could still bias (either attenuat-
ing, or spuriously inducing) individual differences in the
spectral slope.
Lendner and colleagues considered alternate referenc-

ing schemes including bipolar/local referencing: in our
limited montage context, this corresponded to only the bi-
polar C3-C4 derivation. As a control, we also considered
the “cross-mastoid” derivation M1-M2: although mastoid
electrodes are not truly independent of neural activity, we
expected any signatures of cortical arousal to be greatly
attenuated, compared with the derivations involving a
central scalp electrode. However, M1-M2 slopes often had
greater effect sizes than C3-C4 slopes with respect to
state differences (Extended Data Fig. 1-3) and, within state,
were very highly correlated with EMG slopes (Extended
Data Fig. 2-2) and BMI (Extended Data Figs. 2-4, 2-5).
Given the potential role of mastoids introducing non-neural
sources that might bias slope estimates, we alternatively
considered a linked (i.e., averaged) mastoid (LM) refer-
encing scheme. Although LM-derived slopes were corre-
lated highly with contralateral (CM) slopes (e.g., for C3
r= 0.93, 0.88, and 0.90 for wake, NREM, and REM, re-
spectively) and exhibited comparable state-related dif-
ferences (Extended Data Fig. 3-2), LM referencing (as
originally employed by Lendner and colleagues) dramati-
cally reduced the above mentioned markers of potential
EMG/ECG-driven bias in EEG spectral slopes, e.g., as in-
dexed by (1) EEG and EMG/ECG coherence (Extended
Data Fig. 2-7); (2) correlation between EEG and EMG/
ECG spectral slopes (Extended Data Fig. 2-8); and (3)
likely spurious associations with BMI (Extended Data
Figs. 2-5, 2-6). With regard to cardiac activity at mastoid
channels because of their proximity to the carotid ar-
teries, ECG potentials on the scalp have opposite polar-
ities in the left and right hemispheres and are slightly
asymmetric because of heart position, with higher ampli-
tude on the left (Hamaneh et al., 2014). As illustrated in
Extended Data Figure 2-9, LM referencing takes advant-
age of this to effectively cancel out much of the cardiac
activity seen at each mastoid (conversely, the cross-
mastoid M1-M2 derivation exacerbates it).

LM analyses of the spectral slope by sleep state
Given concerns over (1) technical factors in the SHHS

and (2) differences between LM-derived and CM-derived
slopes, we based our primary analyses of the EEG spec-
tral slope on LM referencing, with the SHHS dataset
removed. We re-ran all outlier exclusions on this new da-
taset, yielding a final QC1 dataset of N=4459 recordings
from N=3543 distinct individuals, of whom N=690 (pri-
marily in MrOS) had a second PSG.
We observed unambiguous support for statistically dif-

ferent slope means, namely, wake . NREM . REM (Fig.
3; Extended Data Figs. 3-1a and 3-2). Averaging over co-
hort means, overall b = �1.11, �2.58 and �3.3 for wake,
NREM, and REM, respectively [N1 and N3 exhibited simi-
lar slopes to N2 (�2.58), albeit typically marginally less

steep, mean b = �2.4 and �2.34, respectively; Extended
Data Fig. 3-2]. We also compared a goodness of fit in W,
N2, and R and the average R2 estimates across all studies
and stages were R2 = 0.7 or above. Although, R2 for wake
was significantly lower than for sleep stages (R2 = 0.72 in
wake, R2 = 0.98 in N2, and R2 = 0.98 in REM), in a sample
of individuals with relatively high goodness of fit (R2. 0.9
for all stages, 38% of all subjects), we still observed same
pattern of slope significant differences between stages
(wake. NREM. REM).
Despite mean differences, slopes were significantly cor-

related across states (Extended Data Fig. 3-3), suggesting
systematic and state-independent factors influenced
slope, other than arousal level per se. To a first approxi-
mation, N1, N2, and N3 slopes correlated r ; 0.7; for
REM and NREM, r; 0.5–0.7; for wake and sleep, r; 0.2–
0.5. As noted, given the broad similarity of N1, N2, and N3
slopes, all NREM analyses below used N2 sleep only, to
ensure greater homogeneity in NREM sleep across
individuals.

Within-individual epoch-level discrimination of sleep
state based on the spectral slope
Lendner and colleagues evaluated the extent to which

the EEG spectral slope could be used to classify epochs
as wake, REM, or NREM (N3). In comparison to slow os-
cillation (SO) power, the spectral slope enhanced discrim-
ination of wake versus REM, and was comparable for
wake versus NREM. Here, we adopted a similar LDA ap-
proach to classify epoch-level data in the CFS cohort
(chosen because it contained the most diverse age
range).
Given state definitions and scoring rules, it is not clear

why one would expect SO power to be a particularly
strong predictor of wake versus REM, however. We there-
fore focused on what we considered a more relevant
comparison (for the question of discriminating REM from
wake): different parameterizations of the higher frequency
EEG, namely, b (15–30Hz) and g (30–45Hz) band power,
as well as other classic frequency bands.
Using LDA to discriminate wake and REM in the CFS

cohort, the spectral slope did not perform differently
compared with b power (p= 0.78, with an average accu-
racy of 87.5% vs 87.3% for the slope; Fig. 4) and per-
formed only marginally better than g power (p= 0.048,
with 86.7%). In contrast, while the spectral slope per-
formed better than b power for classifying REM versus
NREM (p= 10�15, 73.7% vs 66.8%), it was worse for
classifying wake versus NREM (p, 10�43, 75.6% vs
87.2%). Although higher frequency EEG activity may, as
others have suggested (Liu et al., 2020), be an informative
(and often overlooked) feature for distinguishing REM from
wake, potentially driven by the EMG content of the high-
frequency EEG, we did not find evidence that the spectral
slope per se is an optimal parameterization for this partic-
ular goal. Indeed, here b power alone performed similarly
(see Extended Data Fig. 4-1 for results with all classic fre-
quency bands). Equivalent results were observed for rela-
tive power with respect to total 0.5- to 50-Hz power (data
not shown).
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Variability in spectral slope by sleep state
In addition to between-state differences in means, we

also characterized state-dependent differences in the var-
iability of spectral power and slope, considering both
within-individual (epoch-to-epoch) and between-individu-
al (person-to-person differences in means) sources of varia-
tion. Analogous to Figure 1a, but based on LM referencing

and excluding SHHS, Figure 5 shows mean power spectra
(top row) but also the variability (SD units) in power, parti-
tioned into within-individual and between-individual compo-
nents (middle and lower rows, respectively). Across all
cohorts there was consistently greater variability in waking
spectral power at higher frequencies, e.g., .20Hz, increas-
ing up to 45Hz, consistent for both estimates of variability.

Figure 4. State classification using LDA based on spectral slope or absolute b band power. Three bar plots illustrate mean accura-
cies across individuals of W versus R, W versus N2, and R versus N2 classification and dots represent individual accuracies (or-
ange, spectral slope as a predictor and purple b power as a predictor; see Extended Data Figure 4-1 with power of other classic
frequency bands as a predictor); P-values above the bars indicate whether there was a significant difference between accuracies
produced by LDA based on spectral slope versus b power. Dashed gray line illustrated chance level performance. For details, see
Materials and Methods.

Figure 3. Spectral power based on LM referencing, excluding SHHS. a, Plots as for Figure 1b but based on the LM referencing
scheme (all state differences, matched pair t test p, 10�15) at C3LM (for C4LM channel, see Extended Data Figs. 3-1, 3-2). b,
Pearson correlation coefficients in slope between the three sleep states considered (all p, 10�5) at C3LM (for C4LM channel, see
Extended Data Fig. 3-3). Green, blue, and red indicate wake, NREM, and REM, respectively.
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There was also a tendency for greater variability at the
points of canonical oscillatory activity for wake (i.e.,;8Hz)
and NR (i.e., ;13Hz). In contrast, variability in REM power
spectra was approximately uniform across this frequency
range (Extended Data Fig. 5-1 shows these data plotted
separately for each cohort).
We next considered the components of variability in the

spectral slope (Fig. 6). Because the number of epochs ob-
served for a given individual/state may influence the var-
iance/error in estimated slopes (which will influence
between-individual variability in mean slopes), we plotted
the mean number of epochs for each state (Fig. 6, top
row). As expected, individuals typically had more NREM
epochs; there was also a tendency for older cohorts to
have relatively more wake than REM epochs. In general,
between-individual variability in slope (Fig. 6, second
row) was similar across states, with perhaps the excep-
tion of greater variance for REM in the older cohorts
(potentially reflecting their reduced REM duration). With
respect to within-individual variability (Fig. 6, third row),
there was a clear pattern of greater epoch-to-epoch
variability in slopes during wake compared with REM,

with intermediate levels observed for NREM, which may
reflect greater heterogeneity and noise in the waking
data.
We also considered the correlation between an individ-

ual’s mean slope and the corresponding epoch-to-epoch
variability in slope (for that same individual). If, for a given
state/individual, epoch-level estimates of slope followed a
single normal distribution, one would not expect any sig-
nificant correlation between mean and variance. Fig. 6,
bottom row, shows the mean/variance correlations, aver-
aged over individuals, separately by sleep state and
cohort. Correlations were typically significantly different
from 0.0 and followed a distinct pattern across cohorts:
wake and REM slopes exhibited negative mean/variance
correlations, whereas NREM slopes exhibited positive
correlations. In other words, for REM and wake, individu-
als with more epoch-to-epoch variability in slope tended
to have steeper (more negative) slopes, on average. The
opposite was true for NREM: individuals with greater vari-
ability tended to have flatter slopes. These results suggest
that looking only at a single value of the spectral slope
(i.e., for one individual, an estimate based on all epochs)

Figure 5. Means, within-person and between-person variability in state-specific spectral power. All analyses based on the LM-refer-
enced dataset, with the SHHS studies excluded. Within-individual variability was based on the SD of epoch-to-epoch differences,
calculated for each individual separately and then averaged over all individuals in each cohort. In contrast, between-individual vari-
ability was the SD based on differences between individuals’ mean power, calculated once for each cohort. See Extended Data
Figure 5-1 for these data plotted individually for each cohort.
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will miss other forms of state-dependent distributional dif-
ferences in slope dynamics.

Relationships between the 30- to 45-Hz spectral slope
and power
As expected, the spectral slope was not independent

of absolute (or relative) power across the spectrum.

Consistently across all cohorts, we found that slope-
power correlations (as well as slope-coherence correla-
tions; see Extended Data Fig. 7-1) showed qualitatively
different patterns between wake, NREM, and REM; how-
ever; Figure 7, top row, shows state-specific correlations
between spectral slope (based on the 30- to 45-Hz inter-
val) and power across a broader spectrum (10–46Hz in
0.25-Hz bins; also see Extended Data Fig. 7-2). For

Figure 6. Epoch counts, variability in spectral power (within-individual and between-individual), and correlations between mean
slope and within-individual slope SD. All analyses based on the LM referencing; all epoch counts refer to the number of epochs
passing the stringent QC procedures. Green, blue, and red indicate wake, NREM, and REM, respectively. For details, see Materials
and Methods.
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example, considering power at 30Hz we observed highly
significant (p, 10�10) negative correlations during REM,
but positive correlations during wake. To visualize slope/
power relationships more directly, Figure 7, lower three
rows, also shows log-scaled absolute power stratified by
a median split on spectral slope. Dashed (vs solid) lines
represent mean power for individuals with steeper (vs shal-
lower) slopes. During wake (Fig. 7, second row), steeper
slopes resulted from greater divergence in power at higher
frequencies (e.g., toward 45Hz). In contrast, during REM
(Fig. 7, bottom row) steeper slopes resulted from greater
divergence at lower frequencies (10–30Hz), which was at-
tenuated at higher frequencies, i.e., up to 45Hz. During
NREM we observed an intermediate profile (Fig. 7, third
row). The larger differences in wake higher frequency
power echoed the increased variance in power and slope
(Figs. 5, 6). That is, individual differences in waking power
and slope were driven by factors that particularly influ-
enced g band power, whereas this was not the case during
REM.

Modelling state-dependent changes in the EEG power
spectrum
We adopted a simplified, model-based approach to de-

termine if, by themselves, changes in the spectral slope

(assuming a strict power law model) were sufficient to ac-
count for the (qualitatively different) slope/power relation-
ships depicted above, here focusing on spectral power/
slope relationships (primarily Fig. 7). We directly simulated
power spectra for N=5000 individuals, initially in the form
PSD(f) = A/fa 1 e, where A and a were normally distrib-
uted random variables representing the spectral intercept
and exponent (slope b = –a), respectively (see Materials
and Methods). Loosely following others (Miller et al.,
2009; Podvalny et al., 2015; Gao, 2016), we then ex-
tended the model in several ways; schematically depicted
in Figure 8, these (nonmutually exclusive) parameteriza-
tions were as follows: (1) allowing spectral slope and in-
tercept to be correlated (positively or negatively); (2)
including a flat spectral component C, such that PSD(f) =
A/fa 1 C; (3) allowing an alternate center of rotation fr
such that log PSD(f) = log A 1 a log (f/fr); and/or 4) allow-
ing for the slope to vary across the power spectrum. The
latter was implemented by modeling two independent
slopes (a and a*) along with a frequency-dependent sig-
moidal weight function w(f) (Extended Data Fig. 8-1, first
column), such that the spectrum was in the form log PSD
(f) = log A1w(f) a log (f/fr) 1 (1-w(f)) a* log (f/fr) . Although
the second slope a* could in principle be parameterized
differently from a (i.e., in terms m, s , fr and correlation with
the intercept, to model a “knee” in the mean spectral

Figure 7. Relationships between spectral slopes and spectral power. Top row shows Pearson correlation coefficients between indi-
viduals’ mean spectral power and mean spectral slope, conditional on sleep state and cohort (for coherence, see Extended Data
Fig. 7-1). Extended Data Figure 7-2 provides similar information for both central channels and extended frequency range. The lower
three rows show mean power stratified by a median split on spectral power: means for the group of individuals with steeper slopes
are represented by dashed (vs solid) lines. All analyses were based on the LM-referenced dataset. Green, blue, and red indicate
wake, NREM, and REM, respectively.
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slope), here these were fixed to the same values for a. The
relevant point is simply that, under these “tapered” mod-
els, changes in a will tend to influence the slope only at
higher frequencies (e.g.,.30Hz) but not at lower frequen-
cies (e.g.,,20Hz), as modelled by w(f).
We initially set population slope parameters a ; N(m,

s2) to m = 1, 2.5, and 3 to reflect typical observed means
for wake, NREM, and REM, respectively. In the simulated

power spectra, we followed the analysis procedures as
above, estimating state-dependent variability in power,
the mean slope, the correlation between slope and
power, and mean power stratified by a median split on
slope (Fig. 9; Extended Data Fig. 8-1a). Given the consis-
tency across studies evident in Figure 7, here we repro-
duce only the CFS results in Figure 9, first column, to
reflect the empirical, observed values for key statistics,

Figure 8. Model parameters. These cartoons illustrate the parameterizations of the aperiodic component of the power spectrum we
considered in the simulations. In each case, the green term indicates the aspect of the model that was varied, and the correspond-
ing plots show the impact of power spectra (in linear-linear and log-log coordinates, left and right figures, respectively). For illustra-
tive purposes only, the five lines (from blue to red) show the expected power spectrum for five different parameter values (e.g., a =
1, 1.5, 2, 2.5, and 3). Power absolute values/units (y-axes) are arbitrary and so not shown: these figures are intended only to show
some of the qualitative patterns of differences that can arise because of variation in a given model parameter. The w(f) function was
similar to those depicted in Extended Data Figure 8-1b, with a 50% value at 25Hz in this example (lower row). Beyond these factors,
the model also allowed slope and intercept to be correlated and specified a stochastic error term (smoothed with respect to fre-
quency). For details, see the text and Materials and Methods.
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focusing on the state-dependent slope-power correlation
and slope-stratified mean power.
Our initial model, which assumed a strict power law im-

plying a rotation of the slope around 1Hz as a function of
a (Fig. 9, second column; Extended Data Fig. 8-1a), was
unable to recapitulate the qualitatively different patterns
of slope-power correlation we observed across states.
Namely, slope and power were always positively corre-
lated, meaning that individuals with steeper slopes tended
to have lower power at all frequencies above 1Hz. In a re-
vised model, we observed two alterations that were suffi-
cient to account for the major, state-specific pattern of
results (Fig. 9, third column): changing the center of rota-
tion (fr) and allowing for a frequency-dependent tapering

of the influence the a parameter on the spectral slope, via
a nonuniform w(f). Specifically, we set fr to 10, 35, and
45Hz for wake, NREM, and REM, respectively. Changing
the center of rotation allowed for the qualitatively differ-
ent slope-power relationships observed across states.
However, by itself, changing only fr yielded slope-power
correlations that grew very negative at lower frequencies
for NREM and REM. To achieve the attenuated correla-
tions we observed (i.e., trending back toward r= 0 by
;10Hz), it was sufficient to assume w(f) functions as
shown in Extended Data Figure 8-1b, first column, imply-
ing that influences on the slope at these lower frequen-
cies were independent of factors impacting the 30- to
45-Hz slope.

Figure 9. Observed data, initial and revised model simulation-based predictions. The left column of plots reproduces the observed
results from the CFS cohort, for state-dependent slope-power correlations (top row) and mean power stratified by a median-split on
slope (lower three rows). Green, blue, and red indicate wake, NREM, and REM, respectively. Based on N=5000 simulated spectra,
the middle and right columns show the equivalent simulation-based results, from the original model parameterization (“variable
slope model”, the middle column), assuming a strict power law model with mean a = 1, 2.5, and 3 for wake, NREM, and REM,
respectively (and SDs of 0.5, 0.5, and 0.75, approximately following the observed between-individual estimates from Fig. 6), and a
revised model (“variable slope model with alternate centers of rotation and tapering”, the right column), with similar population
parameters for slope means and variances but allowing different centers of rotation (fr = 10, 35, and 45Hz for wake, NREM,
and REM, respectively) and setting w(f) such that variation in a had less influence on the slope at lower frequencies (see
Extended Data Fig. 8-1b). Whereas the initial model (simply varying mean spectral slope by state) could not recapitulate the
observed results, the revised model could. For further details, see text and Materials and Methods.
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Fully exploring these parameterizations is beyond the
scope of this report and other modifications of the basic
model may yield predictions that are equally consistent
with our observations. These analyses were intended only
to provide qualitative insights rather than quantitative fits
to the data; these models also did not consider within-in-
dividual patterns of variability as documented above, pa-
rameterizing only the mean slope and spectra for each
individual. Further, these models only considered the ape-
riodic component of the power spectrum. In real data, os-
cillatory activity during wake and NREM will impact
observed slope-power correlations at lower frequencies
(e.g., in Extended Data Fig. 7-2, the childhood cohorts
show dips in absolute slope-power correlations near a
and s frequencies for wake and NREM, respectively,
presumably reflecting individual differences in a/spin-
dle rhythms not strongly related to the spectral slope).
In our supplementary analysis, we aimed to eliminate
any potential impact of oscillatory activity using IRASA
method (Extended Data Fig. 3-1b) and observed similar
stage-specific patterns of spectral slope as in our origi-
nal analysis. These results suggest that it was not sim-
ply reflecting unaccounted-for periodic components.
Slopes estimated based on,30-Hz frequencies did not
yield the same NR . R pattern, however. Assuming that
these differences are not driven by oscillatory activity
(i.e., as per the premise of IRASA), these results are in-
deed consistent with our simulations, which pointed to
the likelihood of variable slopes across the frequency
spectrum and analyses that estimate a single slope
across a large frequency range may therefore be diffi-
cult to interpret.

Demographic sources of variation in state-specific
spectral slope
Finally, we considered how the spectral slope varied

with age and sex, and whether those effects varied be-
tween wake, NREM, and REM. First, we leveraged the
repeated PSGs from the MrOS cohort of older men
(approximately five years between visits) to estimate
test-retest reliability as well as age-related changes in
a longitudinal/within-individual context. Spectral slopes
showed moderate to high test-retest correlations (Fig. 10;
Extended Data Fig. 10-1). For example, for C4-LM, the
test-retest r=0.51, 0.63, and 0.75 for wake, NREM, and
REM, respectively (all p, 10�15; Extended Data Fig. 10-1).
We further observed significant flattening of slopes over
time, albeit only for NREM and REM, with differences of
0.00, 0.32, and 0.57 for wake, NREM, and REM, respec-
tively (matched pairs t test p=0.98 for wake, and p, 10�15

for NREM and REM). Similar patterns held in MrOS for C3-
LM (Extended Data Fig. 10-1).
Furthermore, all pairwise between-state differences in

slope (i.e., R-W, R-NR, and NR-W) had similarly high test-
retest correlations (e.g., r=0.67 for R-NR; Extended Data
Fig. 10-1). In absolute terms, the magnitude of state dif-
ferences grew smaller over time (all p, 10�15), meaning
that states with initially steeper slopes showed greater
age-related decline (i.e., REM . NREM . wake). As
noted, MrOS is an elderly cohort (mean ages were 76.4

and 81.1 years in waves 1 and 2, respectively). Potentially
because of either increased noise in estimated slopes
during wake, or a form of floor/ceiling effect in age-related
change, we did not observe significant flattening of the
wake slope in this cohort. In contrast, however, REM
slopes showed the greatest age-related flattening, poten-
tially suggesting that the sleep-based spectral slope is a
more sensitive measure of aging in this population.
Extended Data Figure 10-2 (and Extended Data Fig. 10-

1) shows the comparable results for the longitudinal com-
ponent of the CHAT cohort. Although, because of the
extended WASO inclusion criterion, the portion of CHAT
passing QC in both waves was relatively small (N=80 pairs),
we still observed significant test-retest correlations, but only
during sleep (for C4-LM, r=0.08, 0.71, and 0.79 for wake,
NREM, and REM, respectively, with p=0.46 for wake and
p,10�10 for both sleep states). CHAT PSGs were only sep-
arated by approximately sixmonths on average, and so
mean differences may not necessarily be interpretable. With
that said, a six-month interval during childhood represents a
greater developmental window, and previously we did find
significant within-individual differences in spindle activity in
CHAT consistent with broader cross-sectional trends seen
in larger datasets (Purcell et al., 2017). In the present longitu-
dinal CHAT analysis, we observed nominally significant
(p,0.01) age-related change, but only for a modest flatten-
ing of REM slopes (Extended Data Fig. 10-1).
We also evaluated age-related changes in the spectral

slope cross-sectionally, separately for each cohort (taking
only the first recording for individuals with a repeated
PSG). Results broadly pointed to age-related flattening of
slopes, and particularly for REM, although there was
some degree of ambiguity and potentially inconsistency
across studies. Both CHAT cohorts (prepubertal children,
;6–10 years) cross-sectionally showed strong age-re-
lated flattening for NREM and REM slopes, with a weaker
flattening of the wake slopes (Extended Data Fig. 10-3).
Cross-sectionally, MrOS showed a flattening only of the
REM slope (Extended Data Fig. 10-3); this stronger REM
effect was consistent with the longitudinal MrOS analysis
above (Extended Data Fig. 10-1). In contrast, the smaller
SOF cohort of women of very advanced age (75–95 years)
did not show any age-related changes (Extended Data
Fig. 10-3), whereas the CFS cohort (which has the broad-
est age range, from 7 to 89 years) showed an inconsistent
pattern, with a flattening of NREM slope (b=0.005 slope
units per year, p=0.006), but a steepening of REM slope
(b = �0.01, p=10�4) and no change in wake slope (p=
0.68). Secondary analyses pointed to possible nonlinear
age-related change for REM slopes in CFS (e.g., p=5�
10�6 for a second order, orthogonal polynomial age term,
in a regression of REM slope controlling for sex, BMI, race
and AHI/AI). Fuller exploration of possible nonlinear age-
related trends (incorporating potential cohort-specific ef-
fects also, given that these NSRR cohorts do not overlap
greatly in age ranges) is beyond the scope of the current
manuscript.
Finally, we observed consistent sex differences in spec-

tral slopes, whereby males tended to have flatter slopes
than females (Extended Data Figs. 2-4, 2-5). In the
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primary analyses, we pooled MrOS (all males) and SOF
(all females) as a single cohort to facilitate the analyses of
sex differences while controlling for cohort effects as best
as possible. In the combined analysis (CHAT, CCSHS,
CFS, and MrOS1SOF, controlling for age, race, cohort
and BMI) male slopes differed (i.e., were less steep) by
0.18, 0.34 and 0.32 units for wake, NREM, and REM
(p=3� 10�8 for wake, and p, 10�15 for NREM and REM;
Extended Data Fig. 2-4). As illustrated in Extended Data
Figure 2-5, sex differences were statistically stronger for
the final LM-referenced analysis compared with the origi-
nal CM-referenced analysis), although sex differences
were observed consistently across all channel deriva-
tions, all cohorts and all states (Extended Data Figs. 2-4,
2-5).

Discussion
Using a diverse collection of cohorts from the NSRR, we

replicated Lendner and colleagues’ report of progressively
steeper spectral slopes (going from wake, to NREM, to REM
sleep), based on the 30- to 45-Hz EEG. We further pointed
to several technical issues that had the potential to impact
estimation of the spectral slope, with a focus on potential
EMG and ECG contamination, and the choice of mastoid
referencing scheme. Based on thousands of diverse studies

across multiple settings and with different equipment, our
core results, the qualitative pattern of within-individual be-
tween-state differences in average slope, appeared to be ro-
bust to these factors.
The 30- to 45-Hz spectral slope is an appealing metric:

as well as being easy to compute, it explicitly focuses on
two components of the sleep EEG that, historically, have
often been ignored: the aperiodic component, and “high”-
frequency activity (in our context of a typical PSG, here
meaning.30Hz). With regard to the latter point, following
AASM guidelines for staging, many analyses of the sleep
EEG begin by bandpass filtering in the 0.3- to 35-Hz fre-
quency range. This is often warranted: the most easily
recognizable (and oscillatory) features of the sleep EEG
are ,20Hz, and it is well documented that the lower am-
plitude, higher frequency EEG is more susceptible to arti-
fact (Hipp and Siegel, 2013; Muthukumaraswamy, 2013).
Nonetheless, as others have noted, even if, or precisely
because, the high-frequency EEG contains muscle infor-
mation, it may still be informative for staging, and particu-
larly for discriminating wake versus REM. While our study
does not directly address the question as to whether in-
cluding high-frequency EEG improved automated staging
in our cohorts, we did not find any evidence to suggest
that the spectral slope per se was an optimal parameter-
ization for state discrimination, compared with other

Figure 10. Repeated spectral slope assessment in the MrOS cohorts (waves 1 and 2). All analyses were based on the LM-refer-
enced dataset. N=610 individuals had QC1 recordings for all states in both MrOS1 and MrOS2. Visits were typically approximately
five years apart (mean ages of 76.4 and 81.1 for waves 1 and 2, respectively). Green, blue, and red indicate wake, NREM, and REM,
respectively. See Extended Data Figures 10-1 and 10-2 for same in CHAT dataset. Age-related effects in a cross-sectional analysis
are presented in Extended Data Figure 10-3.
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simple summaries such as band power. That is, the spec-
tral slope may remain a conceptually distinct and powerful
biomarker to be used in other contexts, including within-
state, between-individual analysis, but its comparative
utility for sleep staging has not, in our opinion, been pro-
ven yet.
Although Lendner and colleagues demonstrated that

slopes could be reliably estimated with different referenc-
ing schemes, our study suggested that CM referencing
was more likely to be prone to bias and/or noise from
non-neural sources. Adopting a LM referencing scheme
appeared to largely (but not completely) mitigate these
biases, for example, as indexed by spectral coherence
between EEG and EMG/ECG, or correlation between
spectral slopes derived from these different modalities.
Dependencies between EEG, EMG, and ECG could arise
because of physiologically driven artifact: for example,
the potential for muscle artifact being picked up in the
high-frequency (here .30Hz) EEG. Alternatively, sources
of noise shared across sensors (e.g., electrical noise,
movement) could lead to coordinated changes in (mis-)
estimated slopes. Beyond these factors, however, it re-
mains a possibility that nonspurious, physiological linkages
lead to partially coordinated slopes. There are well charac-
terized differences between states in neural, cardiac and
muscle activity, and so state-dependent changes in corti-
cal arousal could drive and/or co-occur with other central
and peripheral nervous system changes.
Importantly, the sources of variation (either physiologi-

cal or artefactual) that drive individual differences in spec-
tral slopes may differ (both quantitatively and qualitatively)
from those that generate within-individual differences.
That is, even if changes in slope are reliable indicators of
changes in arousal levels within individuals, estimated
slopes are not necessarily unbiased biomarkers of individ-
ual differences in the same phenomena. For example, if
body mass index had a systematic bias on the slope (e.g.,
via differential cardiac/muscle contamination of the EEG),
this could lead to spurious interpretations of linkages be-
tween cortical arousal and BMI, even if slope were an un-
biased marker of cortical arousal level within-individual. In
this spirit, we therefore sought a better understanding of
the sources of variability in this metric, to realize its poten-
tial as a biomarker in research or clinical contexts, espe-
cially those involving comparisons between groups, such
as neuropsychiatric patient populations.
We also discovered several issues with the EEG data in

the SHHS datasets, including channel and device-specific
differences. Other studies that use SHHS data, collected
using very early portable EEG monitoring devices, should
be aware of these effects (which we will document via the
NSRR website, including the device IDs associated with
differences in the spectral slopes). While these issues
very directly impact analyses based on the spectral slope,
other forms of analysis that implicitly use high-frequency
information (e.g., applying machine learning to the raw
time series) could presumably be susceptible to noise
and/or bias for these same reasons.
As well as replicating the differences in the means, we

reported differences in other aspects of the state-specific

slope distributions, including its variability (both between
and within individuals) and covariation with spectral power
and coherence. It is noteworthy that, despite the common
characterization of REM as “paradoxical” sleep (i.e., brain
“active/wake-like” but muscles “inactive/asleep”), we found
that REM and wake often showed the most divergent
EEG metrics, with NREM sleep being an intermediate.
Specifically, as well as the mean spectral slope, we ob-
served this pattern for (1) within-individual slope vari-
ability, (2) frequency-dependent covariation between
spectral power and slope, and (3) interhemispheric g
coherence. With respect to the relationships between
slope and power, the observed state-dependent effects
could not be accounted for by only a change in the
spectral slope, under a strict power law model. Using a
simplified model to provide qualitative insight (Miller et
al., 2009; BJ He et al., 2010; Gao et al., 2020), the state-
specific power-slope correlations we observed were
consistent with (1) changes in the center of rotation of
the slope and (2) a restricted influence at lower frequen-
cies of the factors that determined 30- to 45-Hz slopes
(even accounting for oscillatory activity, that below
30Hz activity shows sources of variation in the spectral
slope that are distinct from.30Hz, and particularly
during R). Based on a cursory initial evaluation, altering
the mean and/or variance of the spectral intercept, its
correlation with the spectral slope, and/or the presence
of a flat spectral component (Gao, 2016) were not suffi-
cient to account for our observations, although more
work to quantitatively model our data (including any in-
dividual differences, e.g., with respect to age and sex)
may be warranted.
Finally, we considered individual differences in state-

specific spectral slopes, in particular test-retest stability
and age-related change. In longitudinal analyses based
on a subset of individuals with a repeated PSG (typically
around five years later), we observed moderate to high
stability of spectral slopes, particularly during sleep. This
is consistent with a prior report on a smaller sample
where intrasubject reliability of spectral slope (2–25Hz)
was measured on two separate resting state recordings
performed on the same day (Pathania et al., 2021). We
also observed statistically significant age-related reduc-
tion (flattening) of slopes during sleep. In cross-sectional
analyses, we observed broadly consistent age-related ef-
fects in most but not all cohorts, perhaps suggesting un-
accounted for between-cohort sources of variability, or
nonlinear age-related effects in the CFS, the cohort with
the widest age range. Flatter slopes (2–24Hz) in older
adults in cross-sectional samples were previously re-
ported based on wake recordings during task perform-
ance (Voytek et al., 2015; Dave et al., 2018), and similar
effects of age-related flattening were observed in children
(approximately eight years old) whose slopes were
steeper during rest than in adults (W He et al., 2019). Our
results, however, suggested that slopes during REM ap-
pear to be particularly sensitive to age-related change.
Further, the differences in slope between NREM and REM
(or wake and REM) showed significant test-retest and
age-related changes. Future work might investigate
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potential linkages between REM spectral slopes and bio-
logical aging, including the emergence of synucleinopa-
thies including Parkinson’s disease, that are often
preceded by changes in REM sleep.
Although large, this study is not without limitations.

Perhaps most obviously, analyses were restricted to a
very limited montage: two central channels (although
Lendner and colleagues noted that state-related changes
in the 1/f slope were broadly reflected across the scalp). A
second caveat is that, although Lendner and colleagues
also included wake epochs after sleep onset in their final
analyses, our studies, many of which were conducted in
participants’ own homes, did not systematically include
any “quiet rest” periods before sleep, and wake periods
were often noisy, especially at the starts and ends of re-
cordings (potentially reflected in higher variability, and
lower goodness-of-fit measures in slope during wake).
We therefore imposed a relatively strict epoch-wise filter-
ing scheme; as such, although our results generally show
a high degree of consistency, findings that point to atte-
nuated effects during wake (namely, test-retest reliability
and age-related flattening) should be interpreted with this
caveat in mind. Finally, the few instances of inconsistency
between studies (i.e., age-related trends in the CFS co-
hort, which had a very broad age range and was enriched
for individuals with sleep apnea) might point to factors
that require different approaches (e.g., use of nonlinear
modeling or more stringent QC).
Overall, as seen in other areas of electrophysiological re-

search, theoretically-inspired alternative parameterizations
of the sleep EEG have much promise, although better char-
acterizing the sources of variation in these measures,
whether from artifact, from state-related changes in arousal,
or from demographically and medically relevant differences
in physiology, remains an important challenge.
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