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Regulatory T (Treg) cells play a role in the maintenance of immune homeostasis and are

critical mediators of immune tolerance. The Forkhead box P3 (FOXP3) protein acts as a

regulator for Treg development and function. Mutations in the FOXP3 gene can lead to

autoimmune diseases such as Immunodysregulation, polyendocrinopathy, enteropathy,

and X-linked (IPEX) syndrome in humans, often resulting in death within the first 2 years of

life and a scurfy like phenotype in Foxp3mutant mice. We discuss biochemical features of

the FOXP3 ensemble including its regulation at various levels (epigenetic, transcriptional,

and post-translational modifications) and molecular functions. The studies also highlight

the interactions of FOXP3 and Tat-interacting protein 60 (Tip60), a principal histone

acetylase enzyme that acetylates FOXP3 and functions as an essential subunit of

the FOXP3 repression ensemble complex. Lastly, we have emphasized the role of

allosteric modifiers that help stabilize FOXP3:Tip60 interactions and discuss targeting

this interaction for the therapeutic manipulation of Treg activity.

Keywords: Foxp3, Treg—regulatory T cell, T effector cell, acetylation, histone acetyl transferase, TIP60, allosteric

modifiers, IPEX

IMMUNODYSREGULATION, POLYENDOCRINOPATHY,
ENTEROPATHY, AND X-LINKED (IPEX) SYNDROME

IPEX is a rare and fatal disorder of immune dysregulation having an X-linked recessive pattern
of inheritance. The first phenotype of IPEX was described in the early 1980s by Powell et al. when
several male infants died within the first year of infancy due to diarrhea, hemolytic anemia, diabetes,
thyroid dysfunction, eczema, and increased susceptibility to infections (1). IPEX is now defined by
the clinical triad of autoimmune enteropathy, endocrinopathy (including neonatal type 1 diabetes
and thyroiditis), and eczematous dermatitis. Due to the X-linked inheritance pattern, males are
exclusively affected (IPEX can be lethal if left untreated within 2 years of infancy) while females are
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asymptomatic carriers and are healthy. IPEX is caused by
mutations in the human FOXP3 gene that normally influences
the function of T regulatory (Treg) cells (2–4). It is interesting
to mention that the intestine harboring a high frequency of
Treg population is the most frequently affected organ in IPEX
(5). The gastrointestinal tract is colonized by a plethora of
microbial niches that provides an unparalleled challenge to the
immune system. The latter responds effectively and efficiently for
sustenance of active immune suppression against the microbial
antigens eliciting an induced Treg development maintaining
intestinal homeostasis (6, 7). However, disruption in Treg
network such as mutations in FOXP3 gene can thereby promote
chronic intestinal inflammation. Various evidences from animal
studies such as mouse models of ulcerative colitis/Inflammatory
bowel disease indicate perturbation of Tregs promotes chronic
intestinal inflammation to the intestinal microbiota (8). The
early discovery of “scurfy” mice, a lymphoproliferative disease
characterized by multi-organ lymphocytic infiltration was also
linked to mutations in the foxp3 gene (9). This scurfy phenotype
displayed homologous clinical and molecular features of IPEX
in humans that were later mapped to the human orthologous
FOXP3 gene using sequence analysis (2, 3). The dynamic gut
microbial dysbiosis and autoimmunity over the lifespan of scurfy
mice have been demonstrated earlier (10).

IPEX is one of the best characterized Mendelian disorders
marked by the destruction of immune tolerance leading to
autoimmunity owing to loss of functional CD4+CD25+ Treg
cells (11–13) represented in Figure 1. Certain patients mimicking
a similar phenotype but without FOXP3mutations are IPEX-like
and is attributed to mutations in CD25 (IL2RA), STAT1, STAT5b,
CTLA4, LPS-responsive beige-like anchor (LRBA), Dedicator of
cytokinesis 8 (DOCK8) BACH2, ITCH, and Mucosa-associated
Lymphoid Tissue Lymphoma Translocation 1 (MALT1) genes
(14–20). Many IPEX patients have significantly higher levels of
serum IgE and more than half of such individuals display high
levels of IgA while levels of IgM and IgG are in the normal range.
Most patients have markedly decreased or absent FOXP3+ Treg
cells, although some mutations do not significantly alter their
cellular frequency in peripheral blood. Nonetheless, frequencies
of both B and T lymphocyte cell subsets are normal in the
majority of IPEX affected individuals (5–8, 12, 21).

The current therapeutic regimen for the treatment consists of
supportive care (includes parenteral nutrition, blood transfusion,
and insulin injections) followed by immunosuppressive therapy
or bone hematopoietic stem cell transplantation (HSCT) (4, 12,
22). The immune-suppressive (IS) drugs influence the acute
phase of autoimmunity in patients with IPEX syndrome. Various
IS agents are used alone or as a part of multidrug regimens. These
include glucocorticoids (prednisone or methylprednisolone and
betamethasone) and steroid sparing agents such as calcineurin
inhibitors (Tacrolimus and cyclosporin A) and sirolimus or
rapamycin (23–25). Nevertheless, prolonged usage of IS agents
may lead to opportunistic secondary infections. With the
advancements in gene editing technologies, CRISPR-based
therapy for IPEX syndrome was found to be promising under
in vitro and in vivo settings (26). Moreover, chimeric antigen
receptor (CAR)-modified Tcell gene therapies could be another

blockbuster for treatment of genetic diseases including IPEX
(27). However, in the current scenario, HSCT remains the most
curative option for IPEX patients, but, potential complications
such as graft-vs.-host disease (GVHD) and growth failure occur
(28, 29).

FORKHEAD BOX P3 (FOXP3)

Genetic Composition, Protein Structure,
and Functional Analysis
FOXP3 belongs to the forkhead/winged-helix family of
transcriptional regulators that includes 4 subfamily members
FOXP1, FOXP2, FOXP3, and FOXP4, respectively. It is
located on the X-chromosome (Xp11.23-Xq13.3) and is highly
conserved in various species, including bovine, canine, murine
and humans. There is almost 86% identical genetic sequence
while 91% similarity in amino acid sequence between mouse
and human counterparts (30, 31). Mutations in the FOXP3 gene
lead to IPEX in humans while a scurfy phenotype in mice (2, 9).
To date, more than 70 distinct mutations have been reported
in both the coding and non-coding regions of the FOXP3
gene associated with IPEX (32). These include loss of function
mutations, including missense, frameshift deletion, mutations in
the polyadenylation site and mis-splicing (14).

In humans, FOXP3 encodes a 431 amino acid (aa) containing
protein with a molecular weight of 47.25 KDa. It consists of
four distinct domains including the N-terminal proline rich
domain responsible for transcriptional repression (from aa 1
to 193), the central zinc finger (ZF) (from aa 200 to 223) and
leucine zipper (LZ) (from aa 240 to 261) that facilitates the
homodimerization or heteromerization and the highly conserved
C-terminal forkhead (FKH) domains (from aa 338 to 421) that
enables nuclear localization and DNA binding activity (33–35)
(representation shown in Figure 1).

The proline rich N-terminal domain in FOXP3 differs from
the glutamine rich domain in other subfamily members and
maybe recognized (36) for its distinctive role in the development
and function of Tregs (37–39). FOXP3 acts as a “master”
regulator of the Treg development process by interaction
with various cofactors such as transcriptional and chromatin-
modifying factors (40). It can act both as a transcriptional
repressor or activator in Treg cells. In the thymus, a subset
of CD4+CD25+ thymocytes can differentiate intra-thymically
to develop into CD4+ FOXP3+ T cells known as natural
(nTreg) or thymus derived (tTreg) cells. However, Treg cells
can also develop from non-regulatory, conventional CD4+ T
cells in peripheral lymphoid organs and non-lymphoid tissues
through the action of cytokines like TGF-β, and IL-10. These
CD4+FOXP3+ Tregs formed extra-thymically are referred to as
induced (iTreg) (in vitro) or peripheral (pTreg) (in vivo) Treg
cells (41, 42).

Initial reports documented the role of Foxp3 as a
transcriptional repressor (43). Co-transfection of Foxp3
and a reporter gene containing a multimeric forkhead binding
site demonstrated that Foxp3 could inhibit the transcription of
the reporter. Furthermore, use of mutant protein lacking the key
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FIGURE 1 | Regulation and function of FOXP3. The human FOXP3 has four distinct domains: N- terminal repressor domain, centrally located central zinc finger (ZF)

and leucine zipper (LZ) and C-terminal Forkhead domain (FKH). The activity of FOXP3 is regulated by various epigenetic modifications, transcriptional, and

(Continued)
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FIGURE 1 | post-translational modifications. FOXP3 is the master regulator for the development and function of regulatory T cells or Treg that are one of key

mediators of immune tolerance and homeostasis. Tregs can suppress both arms of immune responses (innate and adaptive) through several mechanisms leading to

maintenance of immune tolerance. Various mechanisms of Treg suppression events include secretion of immunosuppressive cytokines (TGF-β, IL-10, and IL-35);

suppression by IL-2 consumption; induction of effector cell death via granzyme- and perforin-dependent cell cytolysis; production of immunosuppressive purine

nucleoside adenosine by ectoenzymes CD39 and CD73; cAMP-mediated metabolic perturbation; downregulation of co-stimulatory molecules such as CD80 or CD86

on specialized Antigen presenting cells (APC) i.e., dendritic cells (DCs) via cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and suppression of DCs via interaction

of lymphocyte activation gene-3 protein (LAG3) present on Tregs with MHC-II on DCs. The breakdown of this tolerance leads to autoimmune diseases and

auto-inflammatory events. Mutations in FOXP3 gene, can lead to autoimmune condition such as IPEX in infants.

DNA-binding FKH domain, prevented nuclear localization, and
failed to repress transcription. These results suggested that the
repressive functions were dependent on the presence of the DNA
binding FKH domain. In a subsequent study, using luciferase
reporter plasmids containing binding sites for yeast Gal4 fused
with FOXP3, it was established that the amino-terminal may be
necessary for transcriptional repression (33).

We had shown that FOXP3 is a part of a complex consisting
of the histone deacetylases HDAC7 and HDAC9, and the
histone acetylase Tip60 (KAT5) that interact with its amino-
terminal proline-rich domain (106–190 aa) of FOXP3 mediating
transcriptional repression. Knockdown of endogenous Tip60
limited FOXP3-mediated repression while overexpression of
Tip60 promoted suppression (36, 44, 45).

In another study on the suppressive function of FOXP3,
AML1 (acute myeloid leukemia 1)/Runx1 (Runt-related
transcription factor 1) which binds to FOXP3 in the region
between the LZ and FKH domains also leads to upregulation of
Treg-associated molecules by suppressing the expression and
production of IL-2 and IFN-γ (46). FOXP3 interacts with nuclear
factor of activated T cells (NFAT) to suppress the expression
of inflammatory genes IL-2 and IFN-γ while functioning as a
transcriptional activator of Treg cells by enhancing the gene
expression of CD25, CTLA4, and glucocorticoid-induced
TNF receptor (GITR) (47–50). In addition to the cofactors
listed above, various other transcription factors have been
reported to interact with FOXP3 serving as co-repressors or
co-activators, respectively (40). Some of these include Interferon
regulatory factor 4 (IRF4) (51), NF-κβ molecules RelA and
c-Rel (52, 53), Retinoic acid receptor-related orphan receptor
(RORγT) (54) RORα (55), Eos (IKZF4) (56), Helios (IKZF2)
(57), hypoxia-inducible factor 1-alpha (HIF1α) (58), signal
transducer and activator of transcription (STAT3) (59), YY1
(60), and GATA3 (61).

FOXP3 can form large molecular protein complexes
that range from 300 KDa to more than 12000 KDa (36).
Approximately 361 proteins potentially interact with FOXP3

directly or indirectly and are the part of an interactome

as deduced by using biochemical and mass spectroscopy
approaches (61). The functional significance of most
of these interactions remains largely undefined. Using
chromatin immunoprecipitation combined with genome-
wide analysis, FOXP3 was thought to bind to approximately
700 different genes in Tregs and regulate them by either
directly or indirectly activating or repressing them (50).
The existence of these interactions highlights the master
function of FOXP3 in Treg biology, but many of the expected

regulatory events based on these proposed interactions have not
been defined.

Regulation of FOXP3 Expression
Epigenetic Modification

Epigenetic modification regulates the stability of FOXP3
expression via DNA methylation and histone modifications.
The FOXP3 promoter consists of various non-coding sequences
CNS1, CNS2, CNS3 and CNS0 that are targets of modifying
enzymes and subject to regulation at different stages of Treg
development (62, 63). The CNS2 region is indispensable for
Treg commitment and is required for FOXP3 expression in the
progeny of dividing Treg cells and preventing autoimmunity
(62). This region is rich in CpG motifs and DNA methylation
studies have shown that these sites are highly demethylated
within the FOXP3 promoter of Treg cells, in turn, ensuring
FOXP3 mRNA transcription and lineage stability. tTreg cells
are seemingly more stable in a functional sense than TGF-β-
generated iTreg cells due to epigenetic modifications of FOXP3.
In vitro antigenic stimulation of conventional CD4+ effector T
cells in the presence of TGF-β leads to the expression of FOXP3
and acquisition of the suppressor phenotype (64). Surprisingly,
these cells displayed no FOXP3 DNA demethylation despite
expression of FOXP3 whereas subsets of tTreg cells were stable
even after expansion in vitro and remained demethylated. This
demethylation of FOXP3 CNS2 was exclusively associated with
tTreg cells presenting FOXP3 as the most specific marker
for tTreg and also provides an explanation as to why tTreg
are more stable than TGF-β induced Treg cells (65, 66).
The CpG demethylation or hypomethylation of CNS2 or
Treg-specific demethylated region (TSDR) provides stability
of FOXP3 while methylation or hypermethylation results in
transient expression of FOXP3 occurring only in T effector cells
(67). Also, Satb1, a transcriptional factor binds to CNS0 and
functions as a chromatin organizer providing access for histone
modifications (63). Satb1 is considered as a pioneer factor of
Treg differentiation as its occurrence precedes FOXP3 in Treg
precursor population while inhibiting Satb1 reduces FOXP3
levels and subsequent Treg development (63).

Histone modifications such as methylation and acetylation
of H3 influences the Treg development by regulating FOXP3
expression (68, 69). In a recent study, MLL4, a histone
methyltransferase that promotes mono-methylation of H3K4
by binding to FOXP3 promoter, was suggested to be a critical
regulator of Treg cell development as deduced from studies
using conditional deletion ofMll4 in CD4+ T cells (70). Histone
methyltransferase, SMYD3 regulates the expression of FOXP3 in
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iTreg cells by trimethylating histone H3K4 in the promoter and
CNS1 region of FOXP3. However, the ablation of SMYD3 led
to a reduction in H3K4me3 and the abrogation of suppressive
capabilities of iTreg cells (71). Studies have also suggested that
Histone deacetylase 3 (HDAC3) mediates the development and
function of Tregs while conditional deletion of HDAC3 in a
murinemodel blocked the suppressive function of Treg cells (72).
Taken together, these findings ascertain the key role of epigenetic
modifications in regulating FOXP3 expression and orchestrating
Treg cell functional development.

Transcriptional Regulation

In addition to epigenetic modulation, an array of transcriptional
events controls the transcription of FOXP3 depending on the
signals T cells receive either in thymus or periphery (73,
74). Many transcription factors bind to CNS regions along
with the FOXP3 promoter during the Treg developmental
process. Binding of transcription factors to the demethylated
CNS2 is required for the heritable sustenance of FOXP3 and
CNS3 for the induction of FOXP3 expression (62). Foxo
transcription factors, primarily Foxo1 and Foxo3, induce FOXP3
expression by translocating to the nucleus and bind to CNS2
and promoter regions of FOXP3, and contribute to Treg
commitment. These transcriptional factors are also characterized
by a conserved winged helix DNA binding and are essential
for defining the program of T cell differentiation especially into
tTreg cells expressing FOXP3. However, upon T-cell receptor
(TCR) activation by antigenic stimulation, phosphatidylinositol
3-kinase (PI3K)/protein kinase B (Akt) pathway gets activated
and Akt phosphorylates Foxo1/Foxo3 that leads to their
inactivation and nuclear exclusion (75–78).

One NF-κB transcription family member, c-Rel, also plays a
crucial role in tTreg cells by binding to the promoter, CNS2 and
CNS3 regions of FOXP3 allowing its active transcription (79, 80).
A previous study demonstrated that c-Rel promotes FOXP3
expression by the formation of an enhanceosome containing
c-Rel, p65, NFAT, Smad, and CREB promotes FOXP3 expression
in tTreg cells (81). In pTreg cells, both Smad2 and Smad3 are
critical for TGF-β-mediated Foxp3 induction. TGF-β signaling
triggers the activation of both these transcription factors Smad2/3
that bind to enhancer regions of the foxp3 elevating FoxP3
expression in pTreg cells (82, 83). Our laboratory established that
both Smad3 and NFAT are required for histone acetylation in this
enhancer region for the induction of Foxp3 (83). Other members
of the NF-κB and Nr4a family also contribute to the induction
of FOXP3 in pTreg cells (80, 81, 84). These findings validate the
fine tuning of Treg cells development, intra-thymically or extra-
thymically orchestrated by different transcriptional mechanisms
that modulate FOXP3 transcription.

Post-translation Modifications

The expression of FOXP3 can also be regulated at the protein
level by various post-translational modifications (PTMs)
such as phosphorylation, ubiquitination, methylation, and
acetylation (85). These modifications influence the stability,
DNA binding capacity, subcellular localization, protein
interactions (transcriptional activators/repressors and chromatin

Remodelers) of FOXP3, all events which collectively contribute
to the induction or maintenance of Treg function.

Phosphorylation
The phosphorylation of FOXP3 can occur on serine, threonine,
and tyrosine residues. We have been the first to identify that
chromatin bound FOXP3 can be phosphorylated at threonine
residues (86). Since then, several reports have identified various
kinases that phosphorylate FOXP3 and depending on the site,
can either activate or inhibit FOXP3. The N-terminal repressor
domain of FOXP3 consists of 4 cyclin dependent (CDK)
motifs (Serine/Threonine-Proline) that can be phosphorylated
by CDK2/cyclin E. This phosphorylation leads to a reduction
in Treg suppressive activity and thus negatively regulates Treg
cellular function. However, mutation of Serine/Threonine to
Alanine at each CDK motif significantly increased FOXP3
stability and Treg suppressive ability (87). Pim-1 and Pim-
2, oncogenic serine/threonine kinases can also phosphorylate
FOXP3 and negatively regulate the Treg suppressive function
(88, 89).

Pim-1 phosphorylates Ser422 located in the FKH domain
and limits binding of FOXP3 to its target genes lessening its
transcriptional activity. However, inhibition of Pim-1 improved
FOXP3 DNA binding activity and enhanced the suppressive
activity of Treg cells (88). Pim-2 phosphorylates at multiple sites
in the N-terminal domain of FOXP3 contributing to decreased
suppressive functions of Treg by altering the expression of
cell-associated surface markers, including CD25 and GITR
(89). In contrast, certain kinases can also induce FOXP3
expression. Lymphocyte-specific protein tyrosine kinase (LCK)
phosphorylates Tyrosine-342 of FOXP3 and upregulates its
expression resulting in decreased Matrix metalloproteinase 9
(MMP9), S-phase kinase-associated protein 2 (SKP2), and
Vascular endothelial growth factor A (VEGF-A) levels in
cancer cells (90). More recently, it was shown that Nemo-like
kinase (NLK) can phosphorylate FOXP3 on multiple residues
and stabilize it by preventing ubiquitin-mediated proteasomal
degradation and thus contribute to sustained Treg suppressive
function. However, the conditional deletion of NLK causes loss
of Treg suppressive activity and increased inflammation (91).

Methylation
The activity of FOXP3 can be regulated by methylation on
arginine residues by Protein arginine methyltransferases PRMT1
and PRMT5. PRMT1 methylated Arginine48 and Arginine51
upon interaction with FOXP3. This was confirmed using selective
inhibitors against PRMT1 that attenuated the Treg suppressive
functions. Further, the activity of a methylation defective mutant
of FOXP3was sharply reduced in curbing graft-vs.-host disease in
vivo (92). Additionally, our laboratory demonstrated that PRMT5
can methylate FOXP3 and conditional deletion of PRMT5 in
Tregs modulate their numbers and function resulting in a scurfy-
like phenotype in vivo (93).

Ubiquitination
Ubiquitination is one of the most extensively studied regulatory
modifications. Protein ubiquitination is a multistep process that
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involves three different enzymes i.e., E1 or ubiquitin activating
enzyme, E2 or ubiquitin conjugating and E3 or ubiquitin
ligase. The ubiquitin polypeptide consists of 7 lysine residues
and each of them participates in its own poly-ubiquitin chain
(94). Ubiquitination of FOXP3 is related to lysine48 type
polyubiquitination that marks it for 26S proteasome-mediated
degradation (95). FOXP3 typically undergoes proteasomal
degradation under stress conditions. For instance, in a hypoxic
environment, levels of Hypoxia-inducible factor-1, also known
as HIF-1α are upregulated. The latter binds to FOXP3 and
targets it for proteasomal degradation, thereby attenuating Treg
development (58).

Streptococcus infections in psoriasis patients lead to the
induction of CCL3 that decreased FOXP3 stability by promoting
its degradation (96). Stub1, an E3 ubiquitin ligase promotes
lysine48 polyubiquitination of FOXP3 in an Hsp70-dependent
manner in response to an inflammatory stimulus raised
by proinflammatory cytokines and lipopolysaccharide (LPS).
Knockdown of Stub1 prevented FOXP3 degradation while

overexpression in Treg cells abolished their capacity to repress
inflammatory immune responses in vitro and in vivo (97). In
contrast, deubiquitinase enzyme (DUB) USP7 is overexpressed in
Tregs where it associates with FOXP3 in the nucleus and regulates
FOXP3 turnover. The knockdown of USP7 decreased the levels of
endogenous FOXP3 and diminished the Treg suppressive activity
while ectopic expression of USP7 increased FOXP3 expression by
preventing its degradation (98).

Acetylation
The activity of FOXP3 can be regulated by acetylation and
deacetylation of specific lysine residues. Using mass spectroscopy
and later structure-guided mutagenesis, various lysine residues
(31, 262, 267, 250, and 252) in FOXP3 subject to acetylation
were identified (99, 100). Acetylation augments the stability of
FOXP3 and increases its DNA binding ability leading to elevated
Treg suppressive function by facilitating the binding of FOXP3
to its transcriptional targets. The processes of both acetylation
and ubiquitination target lysine residues and thus compete where

FIGURE 2 | Role of Tip60 in maintenance of peripheral Treg cell [Figure adapted from (103)]. (A) Dot plots of Treg cell populations from Foxp3YFP−Cre, p300fl/fl

Foxp3YFP−Cre, Tip60fl/fl Foxp3YFP−Cre, and p300fl/fl Tip60fl/fl Foxp3YFP−Cre mice. (B) Average percentage of Foxp3 expressing CD4+ T cells in spleen, lymph nodes,

mesenteric lymph, and thymus. (C) CD4+ T cells transduced with both Foxp3 and WT Tip60 or Tip60 mutants (Q377/G380E and K327Q) and assessment of the

suppressive function of transduced cells. (D) Structure model of Tip60 (acetylated at K327) favoring Foxp3 binding at cleft.
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ubiquitination targets FOXP3 for proteasomal mediated protein
degradation while acetylation imparts stability to FOXP3 and
prevent it from degradation (101).

The process of acetylation and deacetylation is catalyzed
by Histone acetyltransferases (HATs)/lysine acetyltransferases
(KATs) and Histone deacetylases (HDACs). Both Tip60 (KAT5),
a member of MYST family and p300 (KAT3b), a member of
p300/CBP family, are the major acetylases that acetylate FOXP3
enhancing DNA binding and stability of FOXP3 (44, 101, 102).

We have shown that both Tip60 and p300 positively regulate

FOXP3 acetylation in a cooperative manner and provided a

proof of concept of the vital role of Tip60 in maintaining
peripheral Treg cell population that keeps a check on limiting
autoimmune responses (103). In contrast, Sirtuin 1 (SIRT1),
a member of the lysine deacetylase co-localizes with Foxp3

in the nucleus and results in decreased acetylation of FOXP3.
Further, inhibition of SIRT1 decreases poly-ubiquitination of
FOXP3, thereby increasing FOXP3 protein levels (104). FOXP3
also associates with Tip60, HDAC7, and HDAC9 at the N-
terminal to form a chromatin remodeling complex, which alters
the acetylation state of FOXP3 (45).

Effect of Interactions of Tip60 With FOXP3
and Precision Therapy
The first report that described that activity of FOXP3 is regulated
by Tip60-mediated acetylation came from our laboratory (44).
Tip60, HDAC7, and HDAC9 were associated in a dynamic
ensemble with FOXP3, and Tip60 was found to function as the
essential subunit of FOXP3 repression complex. The N-terminal
of FOXP3 106–190 aa of the repressor domain is required

FIGURE 3 | Acetylation of FOXP3 by cooperative interactions between Tip60/p300 and hypothetical model for action of allosteric modifier for Treg cell function.

Interaction of HATs Tip60 and p300 leads to autoacetylation of Tip60 and p300 mediated acetylation of Tip60 at K327. Inversely, Tip60 also acetylates p300. The

result of these cooperative interactions acts as a molecular switch that releases p300 ensuing Tip60 interacts with FOXP3 and subsequently acetylating it. In

autoimmune disorders such as IPEX, mutations in FOXP3 lead to dysregulation of immune homeostasis by disrupting the function of Tregs. One of the major

mutations A384T in FOXP3 leads to disruption of Tip60:FOXP3 interaction. Use of allosteric modifiers SGF003 and B7A can, however stabilize these interactions by

inhibiting autoacetylation of Tip60 and delaying release of Tip60 from the complex. This leads to correction of suppression and restoration of Treg suppressive

function. The allosteric modifier B7A inhibits Tip60 autoacetylation and stabilizes its interaction with FOXP3A384T. This allows access of NFAT to interact with

FOXP3A384T forming a stabilized complex leading to restoration of Treg cell function. Here, the crystal structure with PDB ID 3QRF (108) of FOXP3 FKH domain (red

and yellow) complexed with DNA and NFAT (blue and purple) using EzMol (109) is represented.
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for Tip60-FOXP3 interactions. Further, overexpression of Tip60
but not its HAT-deficient mutants promoted FOXP3 mediated
repression while knockdown of endogenous Tip60 alleviated the
transcriptional repression (44). Our study indicates that Treg
function can be modulated by acetylation of FOXP3 toward
a suppressive phenotype and can be subjected to therapeutic
interventions such as altering of enzymatic activity of HATs or
HDAC to modify Treg functions.

After the initial discovery of FOXP3 acetylation by our
laboratory, another HAT, p300 was discovered that can acetylate
FOXP3 and regulate Treg cells. Acetylation of FOXP3 is
reciprocally regulated by the HAT p300 and HDAC SIRT1
(101). In a subsequent study, data from our laboratory
demonstrated that both Tip60 and p300 can cooperatively
acetylate FOXP3 (103). We proposed that the interaction of
p300 with Tip60 boosts autoacetylation and improves the
stability of Tip60. Following this activation of Tip60, p300
acetylates K327 of Tip60, which then acts as a molecular
switch facilitating Tip60 to change binding partners. This event
releases p300 from Tip60 and consequently Tip60 associates
with another substrate, FOXP3, that it later acetylates. Inversely,
Tip60 also promotes p300 acetylation critical for its HAT
activity. Synergistic interactions of Tip60 and p300 lead to the
maximal induction of FOXP3 activity. Interestingly, conditional
knockout of Tip60 but not p300 in Treg cells in vivo reduced
Treg population significantly in peripheral organs, leading
to catastrophic scurfy like disease (103). Notably, knockout
of Tip60 in Foxp3 expressing cells decreased the Treg cell
population in both spleen and lymph nodes while displaying
a differential effect in thymus or periphery. Finally, CD4+
naïve T-cells transduced with both Foxp3 and wild type
(WT) Tip60 or Tip60 mutants (Q377/G380E and K327Q)
demonstrated decreased suppressive function compared to WT
Tip60 [Figure 2 adapted from (103)]. These results clearly
represent the indispensable role of Tip60 in maintenance of
peripheral Treg cells.

The importance of FOXP3 in regulating Tregs is supported
by a study in which patients with rheumatoid arthritis, a
chronic autoimmune disease exhibited an insufficient expression
of FOXP3 inducing a deficiency in Tregs. Mechanistically,
it was shown to be related to inadequate levels of Tip60.
Ectopic expression of Tip60 restored FOXP3 levels, directing
Treg differentiation and its suppressive activity in a model of
rheumatoid arthritis (105).

One of the most common mutations in IPEX, Alanine to
Threonine (A384T), occurs in the FKH domain of FOXP3. This
mutation can explicitly disrupt the FOXP3-Tip60 interactions
affecting Treg function. The mutation permits some level
of FOXP3 DNA binding capacity and the ability of Treg

to suppress inflammatory cytokine production (3, 106). We
identified small allosteric molecules that target Tip60 using a
cavity induced allosteric modification (CIAM) approach (106,
107). These synthetic allosteric modifiers (SGF003 and B7A)
can help stabilize Tip60-FOXP3 interactions and promote
Treg functionalities. Mechanistically, these partially inhibit the
autoacetylation of Tip60, thus delaying the release of Tip60
from Tip60-p300-FOXP3 complex. Hence, loss of function could
be rescued to increase Tip60-Foxp3 interactions by using such
a pharmacological intervention (Figure 3). In a recent finding
from our group, treatment with SGF003 or B7A led to a rapid
and marked increase in Tip60 binding to both WT and A384T
FOXP3 (106).

Furthermore, we have also shown that both compounds
heightened the suppressive capacity of murine and human
Tregs without affecting the proliferation, capacity to secrete
inflammatory cytokines such as IFN-γ or Th17 differentiation
of murine and human responder T effector cells. Therapeutic
potential of the Tip60 modifier was studied in a dextran
sodium sulfate (DSS) induced colitis model and collagen-induced
arthritis (CIA) model, respectively. The allosteric modifier B7A
was able to provide protection in both the disease models by
promoting Treg function without directly affecting T effector
cellular responses and thus significantly improving autoimmune
symptoms (106).

In a more recent study, the interaction of FOXP3-NFAT
was assessed in the presence of B7A in both WT and
A384T FOXP3 mutants, and we observed that B7A enhanced
the interaction of FOXP3 with NFAT in both of WT and
A384T (93, 106). The hypothetical model of FOXP3A384T-NFAT
interaction is represented in Figure 3. Taken together, these
results identify the therapeutic potential of Tip60 allosteric
modifiers in autoimmune diseases. Moreover, the development
of higher affinity forms of these allosteric modifiers might
provide prospective opportunities for targeting Tregs in various
disease conditions.
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