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Abstract: Traffic accidents are of worldwide concern, as they are one of the leading causes of death
globally. One policy designed to cope with them is the design and deployment of road safety
systems. These aim to predict crashes based on historical records, provided by new Internet of Things
(IoT) technologies, to enhance traffic flow management and promote safer roads. Increasing data
availability has helped machine learning (ML) to address the prediction of crashes and their severity.
The literature reports numerous contributions regarding survey papers, experimental comparisons
of various techniques, and the design of new methods at the point where crash severity prediction
(CSP) and ML converge. Despite such progress, and as far as we know, there are no comprehensive
research articles that theoretically and practically approach the model selection problem (MSP) in
CSP. Thus, this paper introduces a bibliometric analysis and experimental benchmark of ML and
automated machine learning (AutoML) as a suitable approach to automatically address the MSP
in CSP. Firstly, 2318 bibliographic references were consulted to identify relevant authors, trending
topics, keywords evolution, and the most common ML methods used in related-case studies, which
revealed an opportunity for the use AutoML in the transportation field. Then, we compared AutoML
(AutoGluon, Auto-sklearn, TPOT) and ML (CatBoost, Decision Tree, Extra Trees, Gradient Boosting,
Gaussian Naive Bayes, Light Gradient Boosting Machine, Random Forest) methods in three case
studies using open data portals belonging to the cities of Medellín, Bogotá, and Bucaramanga in
Colombia. Our experimentation reveals that AutoGluon and CatBoost are competitive and robust
ML approaches to deal with various CSP problems. In addition, we concluded that general-purpose
AutoML effectively supports the MSP in CSP without developing domain-focused AutoML methods
for this supervised learning problem. Finally, based on the results obtained, we introduce challenges
and research opportunities that the community should explore to enhance the contributions that ML
and AutoML can bring to CSP and other transportation areas.

Keywords: crash severity prediction; supervised learning; machine learning; automated machine
learning; intelligent transportation systems; Internet of Things

1. Introduction

One worldwide challenge is designing and promoting policies to reduce traffic crashes,
which are one of the leading causes of death and injuries worldwide [1]. In this sense, Intelli-
gent Transportation Systems (ITS) and new Information and Communication Technologies
(ICTs) (e.g., the Internet of Things) are crucial factors that can contribute to accomplishing
such an aim [2,3]. The synergies between these two technological approaches constantly
sense and generate large volumes of data, leading the way towards the design and deploy-
ment of data-driven road safety systems (RSS). RSS aims to predict crashes and classify
their severity, which is valuable information for traffic managers and policy-makers to
increase road safety.
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Such data availability, provided by diverse ITS infrastructures (e.g., automatic vehicle
identification, cameras), and growing computational capabilities have increased the use
of machine learning (ML) to predict crashes and their severity. The main strength of
ML, with respect to traffic theory models, is its ability to predict traffic crashes and their
severity using current and historical data without knowing the theoretical mechanisms of
traffic. From an ML perspective, the crash severity prediction (CSP) problem is focused on
building a predictive model using historical data to predict accident severity based on new
and unseen data [4].

Transportation literature reports a great variety of ML methods used for CSP (e.g.,
random forest, neural networks, support vector machines). As a result, there are review
papers that organize and systematize the existing knowledge of CSP approaches from an
ML perspective. The main contribution of these studies is [4–7] was presenting state-of-the-
art ML techniques for road accident analysis and forecast. However, despite the availability
of these methods, there is no unique ML algorithm that is competitive in all kinds of traffic
crash scenarios, as stated by the no free lunch theorem [8]. Therefore, deciding on the most
suitable ML method for a particular CSP problem is a complex task requiring expert ML
knowledge, time, human effort, and high computational capabilities, which are also assets
that are not always available.

Automated machine learning (AutoML) arises as a promising strategy to reduce
human effort and the time cost of ML in research areas wherein specialized ML knowledge
is an asset that is not always available or affordable, such as the case of RSS. AutoML
aims at automatically finding competitive ML pipelines (the combination of preprocessing
techniques and an ML algorithm) that maximize a performance metric on given data
without being specialized in the problem domain from which the data are derived (general-
purpose AutoML) [9]. AutoML methods have been successfully used in other areas of the
transportation domain, like traffic forecasting [10–13]. Nevertheless, the extent to which
general-purpose AutoML can be competitive in diverse transportation problems, such as
CSP, is far from being fully answered. Therefore, it is necessary to identify the strengths and
weaknesses of general purpose AutoML versus ad hoc ML methods for CSP to determine
whether or not it is worth developing domain-focused AutoML methods to support the
model selection problem in CSP.

In this paper, our objective is to continue exploring the line of research proposed in [14]
through the development of a bibliometric study and a benchmark of ML approaches for
CSP. Specifically, we aim (1) to characterize the performance of diverse ML approaches
in various CSP problems experimentally; (2) to compare the competitiveness and the
significance of general-purpose AutoML versus ad hoc ML methods identified via the
bibliometric analysis, and (3) to test whether or not it would be necessary to develop
domain-centered AutoML approaches to support the model selection problem in CSP. To
accomplish such an aim, we test AutoML (AutoGluon [15], Auto-sklearn [16], TPOT [17])
and ML (CatBoost, Decision Tree, Extra Trees, Gradient Boosting, Gaussian Naive Bayes,
Light Gradient Boosting Machine, Random Forest) methods in diverse CSP scenarios using
real data from the cities of Medellín, Bogotá, and Bucaramanga in Colombia. In this context,
the main contributions of this work are:

• A bibliometric study of ML in CSP. This systematic approach makes it possible to
identify relevant authors in the field, trending topics, keyword evolution, and the
most common ML methods used in CSP. Although there are already survey papers in
the specialized literature [4,5], we expand their scope to the point of identifying and
processing 2318 bibliographic references that allow us to characterize state-of-the-art
of and AutoML methods in CSP from a theoretical perspective.

• An extensive experimental framework of state-of-the-art ML approaches for CSP.
This practical benchmark experimentally characterizes the competitiveness and the
significance of diverse ML methods in multiple crash accident settings modeled as
supervised learning problems (binary and multiclass classification). This benchmark
also provides transportation practitioners and researchers with a framework that
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supports the use of ML and AutoML in a field where ML expertise is an asset that is
not always affordable or available.

The rest of this paper is structured as follows. Section 2 introduces some background
information on AutoML and related work regarding previous contributions that are focused
on the point where CSP and ML converge. Section 3 introduces a bibliometric study covering
the point where ML, AutoML, and CSP converge. Then, Section 4 contains the benchmark
of ML-based approaches in supervised CSP problems. Later on, Section 5 summarizes the
main results obtained in the benchmark’s experimentation. Lastly, Section 6 summarizes
the main conclusions of this research article and sets a research agenda for ML and AutoML
in CSP.

2. Background and Related Work

This section provides background information on AutoML and related work focused
on other literature reviews and experimental comparisons at the point where CSP and
ML meet. We start by giving a brief introduction to AutoML in Section 2.1. This section
is also complemented with a summary of the main AutoML methods considered in this
article. Finally, Section 2.2 reviews the scientific literature that studies CSP from either a
theoretical or experimental ML-based perspective. Besides, this section highlights other
ML approaches that, although outside the scope of this article, are gaining momentum as
potential approaches to CSP, such as deep learning.

2.1. Automated Machine Learning

ML is a field that is focused on algorithms that are capable of carrying out predic-
tion/classification tasks by means of an automatic learning process, without the need to
be explicitly programmed by human intervention [18,19]. Applications such as e-mail
spam and malware filtering, automatic speech recognition, predictive maintenance in
industry, among others are based on ML. As a common denominator, all these applications
require well-designed and efficient ML pipelines that include data preprocessing as a key
factor [20,21].

According to [22], a ML pipeline P can be defined as a combination of algorithms A
that transforms input data X into target values Y. Wherein A is composed of Apreprocessing,
a subset of preprocessing techniques, A f eature, which is a subset of feature engineering
methods, and Aalgorithm, an ML algorithm with a configuration of hyperparameters λi ∈ Λ.
To build an ML pipeline with this structure, human effort and high computational capacities
are needed because no pipeline can perform well in all learning problems [23,24]. This is
usually done by data scientists who use their specialized knowledge or non-expert users
who tackle the problem via a trial and error approach.

AutoML is an emerging area that automatically finds the best combination of pre-
processing techniques and/or ML algorithm and its hyperparameters. The objective is
to improve a specific performance metric on a given dataset without being specialized in
the problem domain fro which this data is derived [9]. Hence, AutoML reduces human
bias and improves computational costs by making the construction of ML applications
more efficient. The current literature [9,22,23] reports a variety of AutoML approaches.
Within the most representative methods, we can find Auto-Sklearn [16], TPOT [17], and
AutoGluon [15]. These are the AutoML methods considered in this paper, and a short
description of them is presented below.

• AutoGluon: It starts training its base of classifiers in the usual manner. Then, a stacker
model is trained using the aggregated predictions of the base models as its features.
Here, the first layer has multiple base models, whose outputs are concatenated and
then fed into the next layer, which consists of multiple stacker models.
These stackers then act as base models for an additional layer. The aforementioned
process is repeated multiple times to get a multi-layer stacking approach that im-
proves the shortcomings of the individual base predictions and takes advantage of the
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interactions between them. Finally, the last stacking layer applies ensemble selection
to aggregate the stacker models’ predictions in a weighted manner.

• Auto-sklearn: In an off-line phase, Bayesian optimization is used to determine an
optimised ML pipeline with high performance on every dataset for a repository of
121 datasets. These pipelines are generated from a search space of 15 classifiers,
14 feature preprocessing methods, and four data preprocessing methods. Then, for
each dataset, a set of 38 meta-features is extracted to characterise every set of data;
these meta-features include simple, information-theoretic and statistical information,
such as statistics, about the number of data points, the number of classes, and data
skewness, among others. Later on, instead of storing the 121 datasets, their meta-
features and the ML pipelines are saved in a meta-knowledge base where each instance
contains the set of meta-features describing every data-set and the optimized pipeline
that works well on it.
In the online phase, that is, when a new data-set Dnew is given, Auto-Sklearn computes
its meta-features, ranks all the dataset information stored in the meta-knowledge base
according to their L1 distance with respect to Dnew, and selects the stored ML pipelines
for the k nearest datasets. This selection of K most promising pipelines is then used
then to seed the Bayesian optimization component as a warm-start approach, which
boosts the performance of the optimization. The Bayesian optimization process (under
a time budget constraint) also generates and tests new pipeline structures from the
same aforementioned search space. Finally, the best pipelines identified during the
Bayesian search process are used to construct an ensemble.

• TPOT: To combine these operators into a ML pipeline, TPOT treats them as GP
primitives and constructs GP trees from them. To automatically generate and optimize
these tree-based pipelines, TPOT uses a genetic algorithm that follows a standard
GP process. First, the GP algorithm generates 100 random tree-based pipelines and
evaluates their balanced cross-validation accuracy on the dataset. For every generation
of the GP algorithm, TPOT selects the top 20 pipelines in the population trying to
maximize the classification accuracy and minimize the number of operators in the
pipeline at the same time.
Each of the top 20 selected pipelines produces five copies (i.e., offspring) in the next
generation’s population, 5% of these offspring are crossed with another offspring us-
ing one-point crossover. Then 90% of the remaining unaffected offspring are randomly
changed using a point, insert, or shrink mutation. In every generation, the algorithm
updates a Pareto front of the non-dominated solutions discovered at any point in
the GP run. The algorithm repeats this evaluate-select-crossover-mutate process for
100 generations to improve classification accuracy. If the user does not define an exe-
cution time for TPOT, the method selects the pipeline with the highest-accuracy from
the Pareto front as the best representative pipeline of the whole optimization process.

2.2. Related Work

Although there is abundant literature in CSP from a ML perspective, not many research
articles address the review of ML contributions to CSP or the characterization of ML
methods through experimental benchmarks in various CSP problems. Therefore, the most
relevant studies are presented below with a brief description of their main contributions.

In 2015, Gajendran et al. [7] reviewed three promising methods to approach CSP.
Specifically, they discussed the strengths and drawbacks of System dynamic models, Fuzzy
logic, and Bayesian methods in term of the accident severity problem. In addition, the
authors highlighted the methodological assumptions of these methods and the data they
can use to deal with CSP in different cities in India. Two years later, in 2017, Iranitalab
and Khattakb [25] compared the performance of four statistical and ML methods in CSP.
The methods included Multinomial Logit, Nearest Neighbor Classification (NNC), support
vector machines, and random forests. The authors used real data from Nebraska, United
States, and demonstrated that NNC had the best prediction performance overall.
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Later on, in 2019, Tang et al. [26] introduced a two-layer stacking method (composed
of random forests, AdaBoost, and gradient boosting decision tree, and logistc regression)
to predict crash injury severity. The performance of the stacking model was compared
with support vector machine, multi-layer perceptron, and random forest. The prediction
results show that the stacking model achieves superior performance by putting together
competitive ML methods that outperform individual techniques. In addition, although this
paper is not a benchmark per se, it established an interesting baseline for ML techniques to
make comparisons in CSP.

In 2020, Tang et al. [6] designed and developed a methodology review for statistical
and ML methods to cope with clearance time prediction of road incidents, which is a
transportation problem that is closely related to CSP. The authors considered four widely
used statistical models: accelerated failure time model, quantile regression model, finite
mixture model, and random parameters hazard-based duration model; and four ML
methods: K-nearest neighbor, support vector machine, back propagation neural network,
and random forest. The authors concluded that ML methods, especially random forest,
have a more stable performance than statistical methods.

In the same year as [6], Gutierrez-Osorio et al. [5] reviewed papers that used ML
methods for CSP. The authors identified three instances of CSP: crash frequency predic-
tion, crash classification by severity, and crash frequency and severity prediction. These
problems are usually modeled as supervised regression, supervised classification, and a
mixture of these two ML approaches, respectively. Additionally, the authors reviewed the
performance metrics usually considered when making comparisons between methods.

Complementarily, in 2020, Silva et al. [4] provided an overview of state-of-the-art in
road accident prediction using ML algorithms, including more complex methods such as
deep learning (e.g., convolutional neural networks, long short-term memory networks).
In this regard, although deep learning is beyond the scope of this research article, we
emphasize that the contributions of this approach to the field of CSP are far from complete.
The latest contribution is supported by some recent advances reported in the scientific
literature, such as the cases in [27–30]. These authors show how the whole road safety
field (including CSP, collision warning systems [31], causality in highway-safety [32]) can
benefit from deep learning methods.

In summary, we can say that the literature reports well-established contributions
regarding survey papers, experimental comparisons among various ML-based methods,
and the design of new and novel methods at the point where CSP and ML converge. In
this sense, and taking the literature previously presented as starting point, we complement
the state-of-the-art in the following ways. First, we design and present a bibliometric
study and an extensive experimental framework of state-of-the-art ML methods in CSP.
This seeks to consolidate previous theoretical and practical contributions reported in the
literature in a single research effort, which supports the model selection in CSP. Second, we
incorporate AutoML into the CSP field, which is a state-of-the-art data-driven approach
in multiple problem domains that are not limited to the field of transportation. This will
provide interesting insights into how this automated ML approach can contribute to the
field of road safety, where expert ML knowledge is an asset that is not always affordable or
available. Finally, we experimentally assess the performance of ML and AutoML in various
crash severity scenarios modeled as binary and multiclass classification problems. These
scenarios are represented by real data from three cities, which allows the suitability and
competitiveness of AutoML to be tested in diverse CSP scenarios.

3. Bibliometric Analysis of Machine Learning Approaches in Crash Severity Prediction

The main objective of this bibliometric analysis is to investigate the current state of
research at the point where CSP and ML converge. This study is a systematic and analytical
technique supported by specialized software for data capture and analysis, which allows
relevant authors, their affiliations, keywords, and trends related to the study area to be
identified [33]. Furthermore, the bibliometric approach is appropriate when assessing
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the current state of a given discipline by means off a transparent, static, and systematic
representation of research [34]. Therefore, this study relies on bibliometric analysis as
an ideal method to examine the current knowledge base of applications in three topics:
(1) ML for road accidents, (2) crash severity forecasting and, (3) AutoML in CSP and
transportation.

The bibliometric analysis used protocol Figure 1 defined below, which begins with
the definition of the purpose and the selection of the topics to be analyzed. Then, there are
three sequential steps that direct the search strategy, the inclusion and selection criteria,
and the analyses supported by specialized software that facilitate the reporting of results.
Bibliometric indicators were generated using R and WoSViewer. We defined the following
analysis categories: authors, sources, documents, keywords, time evolution of the topics,
and techniques used in the study cases.

Figure 1. Protocol followed for the bibliometric analysis carried out in this study.

3.1. Conducting Research

This study utilized the SCOPUS and IEEE databases for data collection and screening.
SCOPUS and IEEE are world-leading scientific databases widely known for their extensive,
reliable content and many publications [35]. Besides, IEEE is the most relevant and special-
ized database on engineering topics, with the most influential journals and conferences in
computer science and transportation.

The search was performed in the title, abstract, and keywords fields for each topic,
and the search string used for IEEE and SCOPUS was the following: Title-Abs-Key ((road
AND accident) AND (machine AND learning)); Title-Abs-Key ((machine AND learning
OR ml) AND (crash AND prediction OR crash AND forecasting OR crash AND severity
AND forecasting OR crash AND severity AND prediction)); Title-Abs-Key (“automl”
OR “automated machine learning” OR “automatic machine learning” OR “auto machine
learning” OR “Auto ML”).

3.2. Selection

In this stage, the inclusion and exclusion criteria are applied as shown in Figure 2.
The steps followed are explained as follows: (1) a single dataset is generated for each topic
of interest with the records obtained from the IEEE and SCOPUS databases with books,
journals, and conferences publications; (2) eliminate records with publication year < 2010;
and (3) eliminate duplicates; then, (4) exclude documents with 0 citations to select the
most influential publications in the research fields of interest, following the guidelines
introduced by [36,37] for bibliometric analysis; finally (5) include studies according to the
relevance of title and abstract.

For road accidents and ML, 1055 records were initially considered, 452 were finally
selected for quantitative analysis, and 23 were chosen for qualitative analysis as shown
in Figure 2. For Accident Severity and forecasting, 127 records were obtained, of which
67 were selected for quantitative analysis and 25 for qualitative analysis. Finally, for the
AutoML topic, 1136 records were obtained, 462 studies were analyzed, and 7 studies were
selected because they were related to transportation. The details of the selected dataset
can be seen in Table 1 (datasets are available at this repository (https://drive.google.
com/drive/folders/1JEyGlonRf2Nj2YJ2bIZrGO18Jy6VvMjf?usp=sharing, accessed on 29
October 2021)).

https://drive.google.com/drive/folders/1JEyGlonRf2Nj2YJ2bIZrGO18Jy6VvMjf?usp=sharing
https://drive.google.com/drive/folders/1JEyGlonRf2Nj2YJ2bIZrGO18Jy6VvMjf?usp=sharing
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Figure 2. Criteria considered for the inclusion and exclusion of literature related to CSP, ML,
and AutoML.

Table 1. Bibliographic information of the studies reviewed for Road Accident, Crash Severity,
and AutoML.

Main Information Road Accident Crash Severity AutoML

Timespan 2010:2021 2010:2021 2010:2021
Sources (Journals, Books, etc.) 310 53 333

Documents 452 67 462
Average years from publication 3.21 2.25 2.55

Average citations per documents 9.668 18.51 10.31
Average citations per year per doc 2.134 6.368 2.654

References 10,278 1870 16,000

Document Types Road Accident Crash Severity AutoML

Article 194 37 232
Book chapter 3 28 4

Conference paper 245 1 219
Review 10 1 5

Keywords Road Accident Crash Severity AutoML

Keywords Plus (ID) 2486 435 3650
Author’s Keywords (DE) 1243 201 1129

AUTHORS Road Accident Crash Severity AutoML
Authors 1512 185 2150

Author Appearances 1679 199 2457
Authors of single-authored documents 12 24 24
Authors of multi-authored documents 1500 161 2126

Authors Collaboration Road Accident Crash Severity AutoML

Documents per Author 0.299 0.362 0.215
Authors per Document 3.35 2.76 4.65

Co-Authors per Documents 3.71 2.97 5.32
Collaboration Index 3.42 3.74 4.89

3.3. Data Analysis

Two types of analysis have been considered as shown in Figure 2. First, in the
quantitative analysis, R and WosViewer software was used to generate the analyses related
to authors, trends, the evolution of keywords, and the most relevant publications for each
topic. Second, regarding the qualitative analysis, 48 studies focused on crash severity and
road accident topics were selected to be analyzed. Based on references, we have defined
the application contexts and ML methods applied. In the case of AutoML, no study was
taken as a reference because no applications in road accidents or crash severity were found.
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• Time trend of publications: Since 2014 there has been a growing trend of publications
related to ML, AutoML, crash severity and road accidents, which is reflected in the
number of annual publications. This shows the relevance and timeliness of these fields
for conceptual, methodological, and practical applications (Figure 3). Moreover, in the
transportation field, road accidents show a growing trend, and since 2014 the specific
topic of the severity of collisions has been emerging rapidly. This is supported by the
fact that in 2020 there was a significant scientific production in this regard, which was
mainly focused on a case analysis of cities using various modeling tools, simulation,
and machine learning approaches.

Figure 3. Year-wise distribution of research in the fields of Road Accident, Crash Severity,
and AutoML.

When analyzing the three topics selected for this paper, we can highlight that the
average number of citations per document for CSP is 18.51, 9.66 for road accidents, and
10.31 for AutoML. Together with the increasing trend in the number of publications,
this is indicative of the interest related to crash severity issues. There has been
significant scientific production concerning the topic of AutoML over the last 5 years;
however, its application is focused on concentrated in health, and there are few works
on the topic of transportation. Furthermore, most of the applications in this field are
oriented towards traffic prediction [10,11,38], transport modes [39], and autonomous
vehicles [40]. Thus, no applications focused on CSP were found in the review.

• Relevant sources, documents and authors in the field: The most influential journals
in the study topics are: accident analysis and prevention, IEEE transactions oniIn-
telligent transportation systems, and transportation research record. All journals
are focused on transportation and safety issues. On the other hand, IEEE Access
stands out with a focus on applications, for example, computational applications in
engineering, as shown Table 2.
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Table 2. Most cited journals in the fields of road accidents, crash severity, and AutoML.

Most Cited Sources Articles

Accident Analysis And Prevention 1463
IEEE Transactions On Intelligent Transportation Systems 239

Transportation Research Record 108
Safety Science 87

Machine Learning 62
IEEE Access 57

Journal Of Safety Research 50
Analytic Methods In Accident Research 45

Traffic Injury Prevention 28

The most influential authors (Table 3) include Abdel Aty with his study on accident
and traffic modeling and injury severity [41,42], and Lee J and Mannering with
their articles on impact and accident assessment [43,44]. In the topic of severity
analysis by prediction with ML, the works of Li [45,46] and Zhang [47] are the most
relevant papers. The top 10 most globally cited articles present in Table 3 include:
Sivaraman et al. [48] who explain a new active learning approach to developing vehicle
recognition and tracking systems. Martinez et al. [49] present a study on driving style
characterization and recognition by reviewing various machine learning-oriented
algorithms. Desjardins et al. [50] propose a new concept for the design of autonomous
vehicle controllers based on advanced ML techniques. Zhu [51] present a framework
for big data analytics in Intelligent Transport Systems. Meiring et al. [52] analyze
the applicability of ML and artificial intelligence algorithms to predict the driver’s
behavior and driving style. Young et al. [53] explore the types of data used to develop,
calibrate and validate CSP models. Finally, Ji et al. [54] explore the predictive potential
of variables related to the collision mechanism using ensemble learning models.

Table 3. Most cited articles.

Papers Year Citations

[42] 2000 483
[41] 2003 323
[43] 2002 395
[48] 2010 248
[49] 2018 152
[50] 2011 137
[55] 2016 135
[51] 2019 132
[52] 2015 104
[56] 2018 101
[25] 2017 92
[53] 2014 83
[54] 2020 67

• Evolution of keywords and topics: Analyzing keyword trends, Figure 4 shows that
learning systems, especially ML, strongly influence applications directed to accident
prevention policies. In recent years, terms related to the integrity of people and safety
related to the severity of accidents have gained relevance. ML techniques are essential
for modeling accident-related phenomena, mainly because of structured data available
in open access repositories. Figure 4 also shows that new methods are emerging to
address CSP, especially deep learning. This is due to the availability in recent years of
open and unstructured data, mainly spatial, images or GPS data, which facilitate the
use of these emerging methods.
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Figure 4. Keywords related to road accidents approached from a ML perspective.

• Machine Learning Methods: About 13 studies in the last four years were selected
for analysis. In Table 4 we can observe that the most frequent methods for CSP are
random forest (RF), used in 7 of the 13 studies, decision tree (DT) in 6 papers, support
vector machine (SVM) in 5 articles, and Naive Bayesian (NB) in 4 studies. These
methods are commonly used under the supervised learning paradigm, where CSP is
modeled as a classification problem. On the other hand, we identified the following
methods when analyzing the ML approaches that show the best performance in the
studies consulted. RF [56–58], SVM [59–61], Light-GBM [62], Gradient Boosting [63],
AdaBoost [58], Multi-layer perceptron [64], Nearest Neighbor Classification [25], and
SimpleCart model [65]. These methods were commonly used for case studies located
in the USA (Connecticut, Michigan, California, Florida, Nebraska), United Kingdom,
China (Kunshan), Korea (Seoul), India, and Ghana. Thus, these geographic areas
contain the majority of the scientific production on these topics, as shown in Figure 5.

Figure 5. Countries with the highest scientific production at the point where CSP and ML converge.
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Table 4. Machine learning methods commonly used in CSP.

Reference Year Methods

[65] 2020 Multi-layer perceptron (MLP), rule induction (PART) and
classification and regression trees (SimpleCart)

[57] 2020 Random forest (RF) and bayesian additive regression trees (BART)

[59] 2020
Feed-forward neural networks (FNN), support vector machine (SVM),

fuzzy C-means clustering based feed-forward neural network (FNN-FCM),
and fuzzy c-means based support vector machine (SVM-FCM).

[62] 2020 Naïve Bayesian (NB), Decision Tree (DT), Logistic Regression (LR),
Light-GBM, and Random Forest (RF) model are proposed.

[60] 2020 Multinomial logit, mixed multinomial logit, and support vector
machine (SVM)

[66] 2020 Random forest (RF) , artificial neural network, and decision tree (DT)

[64] 2020 Multi-layer Perceptron (MLP), Decision Tree (DT), Random Forest (RF) classifier
and Naive Bayes (NB).

[63] 2019 Random forest (RF), Adaboost with decision tree, gradient boosting decision
tree (GBDT), and extreme gradient boosting decision tree (XGboost).

[58] 2019 Decision Tree (DT), K-Nearest Neighbors (KNN), Naïve Bayes (NV)
and AdaBoost

[47] 2018 K-Nearest Neighbor(KNN), Decision Tree (DT), Random Forest (RF) and
Support Vector Machine (SVM)

[25] 2017 Multinomial Logit (MNL), Nearest Neighbor Classification (NNC),
Support Vector Machines (SVM) and Random Forests (RF),

[61] 2016 decision trees(DT), artificial neural networks, Bayesian networks, support
vector machines (SVM), and regression models

4. The Proposed Benchmark

This practical section aims to provide experimental insights into the model selection
problem in CSP. To accomplish such an aim, we compare the performance of diverse ML
methods in three case studies modeled as supervised classification problems (binary and
multiclass problems). The selection of the ML methods is guided by the results obtained in
the bibliometric analysis shown in the previous section. Thus, we chose the methods that,
according to the literature, demonstrate a robust performance across the different studies
consulted. In addition, we also test whether general-purpose AutoML can be competitive
against these ad hoc ML methods in the three case studies.

The following parts of this section are devoted to presenting the case studies and their
raw data in Section 4.1. Next, Section 4.2 introduces the datasets that were generated from
the raw data for the experimentation. Then Section 4.3 shows the experimental set-up pro-
posed, which includes the performance metrics, the ML methods for the experimentation,
and the statistical tests selected to make comparisons among the ML methods.

4.1. Case Studies and Raw Data

Colombia has approximately 49 million inhabitants. In 2020, it reported 16,042,336 reg-
istered vehicles, of which 59% are motorcycles, while vehicles such as trucks, vans, buses,
vans, and mopeds represent 40%. Private vehicles are the most relevant in Colombia, at
92% , while public services represent 6%, and other types of services represent the 2% [67].

Road safety in Colombia is a serious public health problem and is the second leading
cause of death. According to a report by the Institute of Legal Medicine, in 2019, nearly
7000 people lost their lives in road accidents, and more than 35,000 people suffered severe
injuries. The primary victims are motorcyclists (53%) and pedestrians (21.8%), followed
by motor vehicle users (12%) and bicycle users (8%). This phenomenon impacts the
Colombian economy with 23.9 trillion pesos annually, which is equivalent to 3.6% of the
Gross Domestic Product [68].
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This paper will take three Colombian cities as case studies: Bogota, Medellin, and
Bucaramanga. These cities are characterized for having open data portals in the transporta-
tion domain. Bogota is the capital of Colombia with approximately 8 million inhabitants,
Medellin is the second-largest city in population with 2.5 million inhabitants, and Bucara-
manga is a mid-size city with more than 600 thousand inhabitants. It should be noted that
although Bogota is the capital country, has the largest population and is the economic center
of the country, Medellin is the city with the highest accident rate per population. Bogota
and Bucaramanga have an accident rate of 0.004 and 0.006, respectively), and Medellin has
a rate of 0.016 [69].

The raw data was obtained from open data portals from each city and correspond
to data obtained from different IoT from the integrated transportation system, such as
cameras, speed sensors, and online reporting systems of road incidents. These data records
are subsequently processed, stored, and made available through local and national open
data portals. The details of the raw data are shown in Table 5.

Table 5. Raw Data Information.

City Records Year Data Source

Bogotá 66,329 2015–2019 datosabiertos.bogota.gov.co (accessed on 29 October 2021)
Medellín 150,646 2014–2018 medata.gov.co (accessed on 29 October 2021)

Bucaramanga 32,857 2012–2020 observatorio.bucaramanga.gov.co/index.php/datos-abiertos/ (accessed on 29 October 2021)

4.2. Datasets

We have generated different datasets for each case study from the raw data presented
above. Table 6 shows Medellín’s datasets where CSP is approached as a binary classification
problem. Each dataset corresponds to 1 year of historical data. Crash severity is the variable
to be predicted, and it has two possible labels that characterize the severity of an accident:
people injured and only material damages.

Each dataset contains the same nine attributes, composed of traffic-related and calen-
dar features. Traffic attributes are Type of accident, GPS coordinates of the accident, and Type of
road where the accident occurs, whereas calendar features are Minute, Hour, Day of the week,
Day of the year, and Month. In addition, Table 6 shows the imbalance ratio of every dataset,
which is calculated by dividing the majority class by the minority class. As can be seen, all
five datasets are well-balanced.

Table 6. Medellín case study: Description of Binary datasets.

Dataset Instances
Distribution of Classes

Imbalance Ratios (A/B)
People Injured (A) Only Material Damages (B)

Med2014 41,776 23,198 18,578 1.25
Med2015 42,427 23,550 18,877 1.25
Med2016 46,838 26,594 20,244 1.31
Med2017 42,443 22,917 19,526 1.17
Med2018 46,655 24,247 22,408 1.08

Table 7 shows the datasets generated for Bogota (Bog) and Bucaramanga (Buc). As
can be seen, these two case studies are modeled as multiclass classification problems. One
single dataset corresponds to 1 year of historical data. Crash severity is once again the
variable to be predicted, and it has three possible labels that characterize the severity of
an accident: people injured, casualties, and only material damages. Table 7 also shows the
number of instances and the imbalance ratio per dataset. As can be observed, there are
well-balanced and highly imbalanced datasets in both case studies.

datosabiertos.bogota.gov.co
medata.gov.co
observatorio.bucaramanga.gov.co/index.php/datos-abiertos/
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Table 7. Bogotá (Bog) and Bucaramanga (Buc) case studies: Description of Multiclass datasets.

Distribution of Classes
Dataset Instances People Injured (A) Casualties (B) Only Material Damages (C) Imbalance Ratios

Bog2015 31,341 10,738 529 20,074 C/A = 1.87
C/B = 37.95

Bog2016 34,988 10,578 567 23,843 C/A = 2.25
C/B = 42.05

Bog2017 35,171 10,381 538 24,252 C/A = 2.34
C/B = 45.08

Bog2018 36,953 12,609 500 23,844 C/A = 1.89
C/B = 47.69

Bog2019 34,990 12,371 492 22,127 C/A = 1.79
C/B = 44.97

Buc2012 4343 1587 64 2692 C/A = 1.70
C/B = 42.06

Buc2013 4055 1519 67 2469 C/A = 1.63
C/B = 36.85

Buc2014 3723 1617 37 2069 C/A = 1.28
C/B = 55.92

Buc2015 3765 1705 47 2013 C/A = 1.18
C/B = 42.83

Buc2016 3733 1705 64 1964 C/A = 1.15
C/B = 30.69

Buc2017 3807 1903 39 1865 A/B = 1.02
A/C = 48.79

Buc2018 3910 2100 40 1770 A/B = 1.19
A/C = 52.5

Buc2019 3724 1993 42 1689 A/B = 1.18
A/C = 47.45

Buc2020 1797 1000 38 759 A/B = 1.32
A/C = 26.31

Bogota’s datasets have 12 features. Traffic attributes are ID of the crash accident, type
of accident, Number of casualties, Number of people injured, Neighborhood, and Type of road.
These datasets also have calendar features, which are Day of the week, Day of the year, Month,
Hour, and Minute. In the case of the Bucaramanga case study, the datasets also contain
traffic and calendar features. Such attributes are Type of vehicle involved in the crash, Type
of road, Neighborhood ID, Neighborhood name, Day of the week, Day of the year, Month, Hour,
and Minute.

4.3. Experimental Set-Up

In this section we introduce the ML and AutoML methods chosen for the experimenta-
tion, the metric used to measure performance, and the statistical tests considered to assess
the significance of the results.

• AutoML and ML methods: AutoML competitors are AutoGluon (Ag), Auto-Sklearn
(As) and TPOT (Tp) with its default hyperparameter values. Ag and As were used for
three execution times (15, 60, and 150 min) while Tp did not have an allocated time.
Such an execution time corresponds to the time the methods take to find the best ML
algorithm and its hyperparameter configuration for a given dataset. The assumption is
that longer time budgets lead to better results. Therefore, such a progressive increase
from 15 to 150 minutes should exemplify the expected behavior [70]. Additionally,
every execution time assigned to a particular AutoML method is considered to be an
individual AutoML competitor.
As baseline methods, we used CatBoost (CatB), Decision Tree (DT), Extra Trees (Ex-
traT), Gradient Boosting (GB), Gaussian Naive Bayes (GnB), Light Gradient Boosting
Machine (LGBM), Random Forest (RF), and a tuned Random Forest (tuned_RF). More-
over, it is relevant to note that we have not performed any optimization or tuning of
the hyperparameters of the AutoML methods or the baseline methods. The above is
justified because we aim to compare the performance of AutoML versus the baseline
using the same human effort for both in order to carry out a fairer comparison.
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• Performance metrics and Statistical tests: For the results of this paper, we followed
the same experimental set-up proposed in the studies by Gijsbers et al. [71] and
Angarita et al. [14]. They introduced earlier methodological guidelines to compare
AutoML methods, and compare these techniques with other ML methods in CSP,
respectively. Specifically, the area under the receiver operator curve (ROC_AUC)
is used for the binary classification problems considered in this benchmark. For
the multiclass problem, we used the Log Loss function. In addition, the final score
achieved by every method is the average.
We made use of non-parametric statistical tests to assess the differences method
performance. Two statistical tests are used following the guidelines proposed in [72].
First, Friedman’s test for multiple comparisons is applied to check whether there are
differences among the methods. Then, the Holm’s test is used to check whether the
differences in the Friedman ranking are statistically significant or not.

5. Results

The experimentation carried out in this benchmark is focused on three objectives.
First, to characterize the performance of ML in the crash severity problem. Second, to
compare the competitiveness and the significance of general-purpose AutoML versus ad
hoc ML methods identified in the Bibliometric analysis in binary (Medellín) and multiclass
(Bogotá, Bucaramanga) problems with different degrees of imbalanced data. Third, to
test if it would be necessary to develop a domain-focused AutoML for CSP to support
the model selection problem or if a general-purpose AutoML might be sufficient for such
a purpose.

Keeping the aims mentioned above in mind, Figure 6 shows the general performance
of ML and AutoML methods in the binary Medellín datasets. This figure contains box-
plots with information on the distribution of the results of each method obtained from
global binary datasets. The X-axis displays the evaluated methods, while the Y-axis shows
their performance measured in ROC_AUC score. The performance metric shown for each
method is the mean value obtained in the 5 binary datasets after carrying out a 10 cross-
validation process per dataset. In the boxes, the central horizontal line indicates the median,
the hinges of the boxes indicate the first and third quartiles, and the whiskers indicate the
value 1.5 · IQR where IQR is the interquartile range. The red dots below or above each
box-plot refer to outlier values.

Figure 6. Aggregated ROC_AUC results of ML and AutoML methods in binary datasets from
Medellín case study.
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According to Figure 6 it can be said that all the methods are consistent in dealing
with well-balanced binary problems. All methods have high performance in this type
of supervised learning problem except for DT and GNB. Although these two methods
perform well above 70%, their ROC_AUC scores are the lowest among the ML and AutoML
algorithms. As far as the AutoML methods (Ag and As with three ETs, and Tp) are
concerned, their performance is fairly uniform. Specifically, there is no AutoML method
that consistently outperforms all the AutoML competitors. This last point is consistent
with other AutoML results in transportation problems (supervised traffic forecast and
supervised CSP) where longer run times do not necessarily lead to drastically better
results [10,11,14].

As for the classic ML methods in Figure 6, it is quite interesting to see how CatB and
LGBM perform quite competitively with respect to AutoML approaches. Indeed, CatB is
the method with the best performance in all binary datasets. Nevertheless, to conclude
that CatB and LGBM are the best methods in the baseline of ML methods, the user should
run all the algorithms on the global baseline datasets. This is where the contributions of
AutoML come in, since by deploying any of the AutoML methods, with at least a short
execution time and using less human effort, the user can achieve similar or better results
than those obtained by CatB and LGBM.

Having presented the binary dataset results, Figure 7 summarizes the results obtained
in the multiclass problems. This figure shows box-plots with information on the distribution
of the results obtained in all multiclass datasets by each ML and AutoML method. The
X-axis displays the methods evaluated. The Y-axis shows their performance measured in
terms of the log_loss score. The performance metric shown for each method is the mean
value obtained in the five Bogota datasets (Figure 7a) and the nine Bucaramanga datasets
(Figure 7b) after doing a 10 cross-validation per dataset. Once again, the central horizontal
lines of the boxes indicate the median, the hinges of the boxes indicate the first and third
quartiles, and the whiskers show the value 1.5 · IQR.

(a) Aggregated performance in the Bogotá case
study

(b) Aggregated performance in the Bucaramanga
case study

Figure 7. Aggregated log_loss results of ML and AutoML methods in the Bogotá and Bucaramanga
multiclass datasets.

Figure 7a displays the results obtained from the Bogotá datasets. In this case, all
AutoML methods and the ML methods CatB, LGBM, GB, RF, and tuned_RF perform
competitively. It is quite interesting no note that all datasets from this case study have a
minority class (Casualties) that is quite unbalanced with respect to the other two classes
(Only material damages and People injured). Despite this, the methods mentioned above
can deal with this data characteristic effectively. On the other hand, DT, ExtraT, and GNB
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are the methods with the worst performance and the highest variability in the aggregated
results, as shown in Figure 7a.

Figure 7b summarizes the results of the second case study related to multi-class
problems. It should be noted that the Bucaramanga datasets have the highest level of
imbalance. At the same time, they are also the datasets with fewer instances as compared to
data from Medellín and Bogota. These characteristics affect the ML methods’ performance
in particular. As can been, they present high variability in the results, and their log_loss
score is higher (worse) than that of the AutoML methods. For the case of AutoML, Ag and
its ETs are the best methods in all Bucaramanga datasets.

Finally, to assess whether the differences in performance observed in Figures 6 and 7
are significant or not, we made use of non-parametric statistical tests. Two statistical tests
have been applied following the guidelines proposed in [72]. First, Friedman’s test for
multiple comparisons has been used to check significant differences between the ML and
AutoML methods. Then, the Holm post-hoc test was also applied to assess the significance
of the differences in performance.

Considering that the p-value returned by these tests was 0, the null hypothesis can be
rejected. Thus, the mean ranking returned by the test is displayed in Table 8. The results in
Table 8 confirm the better global results of Ag with its three ETs, Tp, As with 60 and 150 min
of ET, CatB, and GB in the binary and multiclass problems. Holm post-hoc tests used CatB
and Ag60m as control algorithms in binary and multiclass datasets, respectively. This is
due to the fact that these two methods got the first position in the average ranking output
obtained with the Friedman’s test. Table 8 also presents the adjusted p-values returned by
this test. In order to highlight significant differences, those p-values lower than 0.05 are
shown in bold. By looking at Table 8, we can observe that there are important differences
in the test’s outcomes. It can be said that CatB is statistically better than GNB and DT in
binary problems. Additionally, Ag60m is statistically better than As15m, LGBM, tuned_RF,
RF, ExtraT, DT, and GNB.

Table 8. Friedman’s average ranking and p-values obtained via the Holm post-hoc test using CatB
and Ag60m as control methods in binary and multiclass datasets, respectively.

Binary Problems Multiclass Problems

Methods Av. Ranking p-Values Methods Av. Ranking p-Values

CatB 4 - Ag60m 3.6786 -
LGBM 4.2 1 Ag150m 3.8929 1

Ag150m 4.3 1 Ag15m 4.0714 1
Ag15m 4.7 1 As150m 5 1
Ag60m 4.8 1 CatB 5.2143 1

GB 5.2 1 GB 5.2143 1
Tp 5.2 1 Tp 5.4286 1

As150m 7.8 1 As60m 6.1429 1
Tuned_RF 8.4 0.958359 As15m 8.7143 0.023123

As60m 9.2 0.593928 LGBM 9.4286 0.006696
RF 10.6 0.196244 tuned_RF 9.4286 0.006696

As15m 11 0.146612 RF 11.7857 0.000018
ExtraT 11.6 0.086515 ExtraT 13.4286 0
GNB 14 0.00529 DT 14.1786 0
DT 15 0.001409 GNB 14.3929 0

6. Conclusions

This final section introduces the main reflections drawn from the research carried
out in this paper. Section 6.1 introduces the summary and conclusions. Then, Section 6.2
presents a set of challenges and research opportunities to encourage further exploration
and use of ML and AutoML in CSP and other transportation-related areas.
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6.1. Summary

This paper introduced a bibliometric analysis and a benchmark of ML and AutoML in
CSP. We aimed to provide a framework that supports the use of ML in a field where expert
ML knowledge is an asset that is not always affordable or available. The bibliometric study
investigated the current state of research on CSP addressed from a ML perspective. It
allowed us to identify typical methods used in different CSP case studies. Then, the ML-
based methods identified were used for the baseline of the benchmark to make comparisons
with the AutoML approaches.

From the bibliometric analysis, we figured out that scientific literature reports vari-
ous ML methods (e.g., Random forest, Gradient Boosting, Light Gradient Boosting) that
perform competitively in different supervised CSP problems. However, as is well-stated
by the no free lunch theorem, there is no single ML method that that is competitive in all
crash prediction problems. Therefore, practitioners and non-expert ML users must carry
out extensive experimentation to determine the most suitable ML method for the particular
CSP problems they are addressing. Although this is a strategy that can yield good results, it
requires time, computational capabilities, and human effort. From the bibliometric analysis,
we also observed the opportunity to analyze and predict CSP using AutoML because it
is a topic that has been barely explored in literature. Although there are some AutoML
applications in transportation, they are mainly focused on traffic forecasting.

In the context mentioned above, AutoML arises as a suitable approach to automatically
address the model selection problem in CSP. Nevertheless, an extensive analysis that
determines AutoML’s strengths and weaknesses versus ad hoc ML methods has not been
carried out in very diverse learning CSP scenarios. Thus, the bibliometric study has been
complemented with a benchmark of state-of-the-art AutoML (AutoGluon, Auto-sklearn,
TPOT) and ML methods (CatBoost, Decision Tree, Extra Trees, Gradient Boosting, Gaussian
Naive Bayes, Light Gradient Boosting Machine, Random Forest). This benchmark aimed:
(1) to characterize the performance of ML in CSP addressed from a supervised learning
perspective using real data from three case studies; (2) to contrast the competitiveness
and significance of general-purpose AutoML versus ad hoc ML methods identified in
the bibliometric analysis in binary and multiclass problems with different degrees of
imbalanced data; (3) to evaluate if it would be necessary to develop specific AutoML
approaches for CSP or whether general-purpose AutoML would be sufficient to deal with
this supervised learning problem.

From the benchmark’s experimentation, we concluded that most ML methods con-
sistently deal with well-balanced binary problems. In the case of AutoML approaches,
their performance is fairly uniform, and it does not improve with longer execution times.
Therefore, with a relatively short time, the transportation user can expect competitive
results. Regarding the classic ML methods, CatB and LGBM perform competitively with
respect to the AutoML methods. In fact, although there were no significant differences
between them, CatB was the method located in the first position of Friedman’s average
ranking for binary datasets. Thus, it is a suitable alternative to AutoML methods when
dealing with CSP binary problems.

On the other hand, with respect to multiclass problems, all AutoML methods, CatB,
LGBM, GB, RF, and tuned_RF perform competitively in the Bogotá case study, which is
characterized by having a high degree of imbalanced data. In the Bucaramanga case study,
Ag and its ETs are the best methods for dealing with the associated datasets, which are
the most challenging as they have the highest degree of imbalanced data and the lowest
number of instances. This is corroborated by the Friedman’s average ranking that put
Ag15m, Ag60m, and Ag150m in the first place in the ranking. Thus, this general-purpose
AutoML method is quite competitive and robust in scenarios facing imbalanced data.
Consequently, the competitiveness of this AutoML approach can meet the demand of
various crash accident scenarios without developing domain-focused AutoML methods.

Finally, we note that the data used in the experimentation present some challenges,
such as incomplete data, lack of traceability of the data source, data inconsistency, outdated
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data, or errors that may limit its use and could affect the performance of ML methods.
Despite this, the open data portals, which provided the data used, facilitate access to large
amounts of official data obtained from city IoT platforms, which would otherwise require
more extensive collection and processing efforts. This allows the development of research
studies to be more agile due to data availability in formats that are ready for analysis
and processing. Therefore, as future work, we would like to approach CSP problems and
other transportation applications in several cities of Colombia, which also have Open Data
Portals with traffic data. The goal would be to validate the ML and AutoML methods used
in this study and compare case studies with similar and divergent characteristics.

6.2. Challenges and Research Opportunities

This section presents challenges and research opportunities that the research commu-
nity and practitioners should explore in order to improve the contributions that ML and
AutoML might bring to RSS, CSP, and other transportation-related areas.

6.2.1. The Method Selection Problem: From AutoML towards Automated Deep Learning

As can be seen in the results obtained via the benchmark analysis (Section 4), different
types of ML techniques perform better or worse depending on the CSP problem at hand.
These variations on the methods’ performance could be caused by the degree of imbalance
in the input data, or the quality of the data, among other aspects. Therefore, these particu-
larities of every CSP problem suggest the need for expert ML knowledge in order to select
the best ML workflow (the combination of preprocessing techniques and ML methods).
However, this knowledge asset is not always affordable or available for RSS development.

In the above context, AutoML and automated deep learning (AutoDL) [73] are promis-
ing strategies to support the role of ML experts and to reduce the human effort and the
time cost of ML and deep learning in RSS. Based on the results obtained in this research,
we can say that general-purpose AutoML can support the model selection problem in CSP.
Nevertheless, we cannot say the same about AutoDL. According to recent literature [27–30],
deep learning is gained great interest due to its ability to address more network-level
CSP problems without the need to define preprocessing approaches for the input data.
This, therefore, reduces the human effort of using deep learning in CSP. However, finding
the most suitable architecture is a demanding task, which consumes the same resources
mentioned above: ML knowledge, time, human effort, and computational capabilities.

In this sense, extensive analyses are required to characterize the performance of Au-
toDL in various CSP and other transportation problems. Particularly, special attention
needs to be paid to figure out if general-purpose AutoDL can be competitive in specific
problem domains, such as CSP. If that were the case, AutoDL could potentially accel-
erate the adoption of deep learning in RSS, both from an academic perspective and for
RSS deployment.

6.2.2. Data Fusion and Real-Time Data to Enhance the Power of ML and AutoML in CSP

ML and AutoML methods cannot normally incorporate data from different sources.
Indeed, in RSS, data coming from a single type of sensor might not be sufficient to represent
the complexity underlying CSP problems. For instance, diverse Internet of Things (IoT)
devices (e.g., cameras, loop detectors, radars, infrared sensors) provide data with distinct
formats to manage RSS (e.g., historical traffic records in the form of tables, non-structured
data like images). In this context, the challenge lies in defining guidelines for the har-
monization and fusion of data that adequately guarantee the performance of ML and
AutoML approaches.

Specifically, the aim is to define suitable guidelines that enable single dataset to be
collected and generated with information obtained from different sources. This challenge
significantly affects the performance of current AutoML methods, as these approaches are
designed to work exclusively with tabular data [9]. Therefore, data from IoT devices like
cameras and radar sensors, which contain traffic accident data in the form of images and
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signals, could not be analyzed and mined under the current design of AutoML methods.
Thus, this data fusion challenge also demands the re-design of AutoML techniques to
incorporate the diversity of data formats available in RSS.

Data fusion is a challenge that is part of a more significant research opportunity: the
management and fusion of real-time data in the context of RSS. Concretely, in supervised
learning, the input data is available before starting any training processes. The aim is to
train a model from such data using a batch approach. This means that ML and AutoML
methods use all available samples in the input data to build and train a model that should
work on new and unseen data. Currently, most ML and AutoML applications are focused
on the batch learning approach, wherein data is available before training a model [74]. In
this context, model training is solely supported on an input dataset whose data distribution
does not change over time. Nevertheless, such a static approach is not the case for real CSP
applications within RSS and Intelligent Transportation systems.

ML and AutoML must face real CSP scenarios, wherein different IoT devices continu-
ously generate new data streams. Hence, the additional challenge to data fusion is to design
of ML and AutoML methods that adapt to real-time data. Further research is needed in
the design and deployment of ML and AutoML methods for CSP and related applications,
using the concepts of incremental learning [75,76] and data drift detection [77].

6.2.3. Explainability for a Better Crash Severity Understanding

According to the results presented in this paper, ML and AutoML demonstrate their
ability to address various CSP problems. However, performance is not the only objective in
current RSS and other Intelligent Transportation System domains. The explainability of pre-
dictions made by ML and AutoML is also relevant for decision-makers and transportation
managers in order to extract relevant risk factors and implement related policies [30].

While ML methods (e.g., rule-based learners, decision trees) can provide different
degrees of interpretability of decisions made in the inner structure of the methods, AutoML
and AutoDL approaches cannot usually offer this information [78]. In these automated
methods, there are few clues regarding the methods’ decisions to obtain high perfor-
mance. For instance, AutoDL methods are composed of search spaces that contain complex
architectures with intricate connections between layers and neurons.

Thus, understanding how AutoML and AutoDL can obtain their competitive perfor-
mance becomes a relevant and exciting challenge. As AutoML and AutoDL are increasingly
used employed in various applications areas [11,79], the demand for explainability and
interpretability is growing among various stakeholders, including those involved in RSS
and CSP. This request is based on the fact that decisions made based on AutoML, and
AutoDL may lead to the formulation of policies that may require detailed explanations [80].
This is known as explainable artificial intelligence (XAI) and is widely acknowledged as a
crucial concept to take into account in the understanding of the severity of traffic accidents.
As stated in [81], the challenge of XAI in different knowledge domains, such as CSP, is to
generate more explainable methods while maintaining their output performance. Hence,
research opportunities lie in the design and inclusion of diverse XAI approaches in the
AutoML and AutoDL workflows.
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